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A Bayesian Clustering Method for Tracking Neural
Signals Over Successive Intervals

Michael T. Wolf∗, Member, IEEE, and Joel W. Burdick, Member, IEEE

Abstract—This paper introduces a new, unsupervised method
for sorting and tracking the action potentials of individual neu-
rons in multiunit extracellular recordings. Presuming the data are
divided into short, sequential recording intervals, the core of our
strategy relies upon an extension of a traditional mixture model
approach that incorporates clustering results from the preced-
ing interval in a Bayesian manner, while still allowing for signal
nonstationarity and changing numbers of recorded neurons. As a
natural byproduct of the sorting method, current and prior sig-
nal clusters can be matched over time in order to track persisting
neurons. We also develop techniques to use prior data to appropri-
ately seed the clustering algorithm and select the model class. We
present results in a principal components space; however, the algo-
rithm may be applied in any feature space where the distribution
of a neuron’s spikes may be modeled as Gaussian. Applications
of this signal classification method to recordings from macaque
parietal cortex show that it provides significantly more consistent
clustering and tracking results than traditional methods based on
expectation–maximization optimization of mixture models. This
consistent tracking ability is crucial for intended applications of
the method.

Index Terms—Bayesian classification, clustering, expectation–
maximization (EM), multitarget tracking, neuron tracking, spike
sorting.

I. INTRODUCTION

THE NEED to reliably identify and track the activities of a
particular neuron in multiunit extracellular recordings is a

common problem in basic electrophysiological studies and en-
gineered neural interfaces. Extracellular neural recordings are
obtained by positioning the tip of an electrode near enough to
a neuron to detect and localize in time the occurrence of the
neuron’s action potentials or spikes, which are the basis for
neural communication and information processing. However,
the electrode tip may happen to be within the “listening sphere”
of multiple neurons, thus causing the activity of several neurons
to be recorded on a single electrode. In general, the interpreta-
tion of extracellular recordings requires a process to associate
the spikes in the experimental data with the individual neurons
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that generated them, a task commonly referred to as “spike sort-
ing” (see [1] for a review). Here, we address the challenge of
autonomously classifying spikes according to their generating
neurons and tracking the identities of the neuronal sources over
time, even as their signal characteristics may change during a
recording.

Specifically, this paper considers the following spike sorting
and tracking problem. Starting at time t1 , an electrode signal
S is sampled over an interval T1 of duration ∆. After some
preprocessing steps (the spikes in S are detected and temporally
aligned), the spike waveforms found in T1 are projected onto an
d-dimensional feature space (e.g., a 2-D principal component
analysis (PCA) basis) so that each waveform is represented as a
point. These points must then be “clustered” into sets, with each
assumed to be associated with a unique neuron in the multiunit
signal. Additional signal samples are taken across successive
intervals T2 = (t2 , t2 + ∆], T3 = (t3 , t3 + ∆], and so on.1 Our
goal is to accurately associate the spikes in each Tk to their
generating neurons, and then, track the clusters representing
individual neurons across successive sampling intervals, as well
as to discover the appearance or disappearance of neurons.

This spike sorting and tracking problem arises, for example,
in the authors’ related work on algorithms for autonomously po-
sitioning electrodes to obtain high-quality extracellular record-
ings [2]–[5]. In the algorithm’s main loop, the electrode’s signal
is periodically sampled for a brief interval (e.g., ∆ = 10 s) and
analyzed to determine if positional adjustments will improve
the quality of a given neuron’s signal. To accomplish this, the
detected spikes in each interval must be sorted according to their
generating neurons, and previously identified neurons must be
reidentified in the current recording interval (“tracked”), de-
spite possible changes in the amplitude, phase, and numbers of
neuronal signals.

Our method of spike sorting in successive sampling intervals
may also be useful in offline processing of lengthy recordings
gathered in basic scientific studies. During these recordings,
the spike waveforms often evolve over time due to electrode
drift and other causes, even without active electrode movement
[6]. Dividing these long recordings into short time intervals for
analysis can improve spike sorting results, as the data are apt to
be effectively stationary over these brief intervals [7], [8].

Unsupervised spike sorting has long been an important and
difficult problem in electrophysiology. Many traditional clus-
tering procedures have been adapted for sorting neuronal spike
waveforms, including hierarchical [9], k-means [10], [11],

1For simplicity, we assume the lengths of successive sampling intervals are
the same, but this is not necessary, nor must the intervals be adjacent. We only
assume that ∆ is sufficiently long to capture a nontrivial number of spikes.
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neural networks [12], superparamagnetic [13], template match-
ing [14], and density grids [15]. The optimization of a (typically
Gaussian) mixture model has been shown to be a particularly
effective approach [1], [7], [16]–[19].

Most existing techniques, however, are designed for offline
batch processing of a single large dataset. Due to our interest
in autonomous electrode positioning algorithms, we require an
unsupervised method that may be used in real time2; thus, non-
causal methods such as [7] and [8] are not applicable. Addition-
ally, the short, successive intervals inherent to our problem can
complicate the clustering operation because fewer data points
(spikes) are available to process, thus exacerbating issues of
volatility and variations due to noise. This volatility increases
the inconsistency of the clustering results across intervals—i.e.,
spikes sampled in neighboring intervals from the same neurons
may, using traditional methods, be sorted into drastically differ-
ent clusters. (Examples of inconsistency issues are illustrated in
Section V; for instance, compare time k = 7 versus k = 8 of
the maximum likelihood (ML) or k-means rows of Fig. 2.) The
inconsistency of conventional clustering methods’ output over
successive intervals is a crucial issue, as it inhibits the associa-
tion of clusters (i.e., the tracking of neurons) across intervals.

Our method, founded on optimization of a Gaussian mixture
model (GMM) via expectation–maximization (EM) [20], [21],
is specifically designed to increase the consistency of clusters
across successive intervals and track the clusters of persisting
neurons. The key idea is to incorporate the available informa-
tion over time, using the clustering results from interval Tk−1
to improve the clustering of the data from interval Tk in several
ways. Most importantly, we have constructed a special Bayesian
prior for the clustering of data in interval Tk . While utilizing pri-
ors is common practice in statistical inference, we specifically
derive a novel “mixture prior” that aids in tracking individual
components of GMMs and still permits the number and identity
of neurons to change over successive intervals. We also provide
here the closed-form formulas for the corresponding EM calcu-
lations, which require introducing a new set of latent variables.
Not only does our procedure provide more consistent clustering
results, but we also show that it provides neuron tracking (data
association across recording intervals) “for free,” by virtue of
these latent variables.

Additionally, we develop techniques to use the model’s statis-
tics from the preceding interval to provide initial values (or
seed clusters) for EM, and describe a Bayesian model selection
method (estimating the number of neurons recorded in Tk ) that
is more accurate than other commonly used criteria. Thus, clus-
tering is effected as a maximum a posteriori (MAP) method
(using priors to determine both the model parameters and the
model order) rather than the ML method. Employing this MAP
method and matching clusters across many successive intervals,
neurons can be tracked through large, gradual changes of wave-
form shape over long periods of time (e.g., hours). (However,
like all other methods based on waveform shape, this approach
may fail if abrupt, discontinuous changes in a neuron’s wave-

2Real time here implies that analysis occurs immediately after each short
sampling interval and does not require analysis to be continuously online.

form occur.) We reported a preliminary version of this algorithm
in [22].

Note that other authors [16], [23] have imposed a general
spike waveform prior on all clusters but not one that aided in
discriminating waveforms of specific neurons or in tracking
these neurons over time. Bar-Hillel et al. [7] used results from
neighboring intervals for initialization of GMM/EM, but only
for the same model order, and still employed a standard ML EM
method.

The remainder of this paper is organized as follows. Section II
reviews classical clustering based on GMM/EM, so that our ex-
tensions can be more clearly delineated. Section III details our
method for sequential clustering based on Bayesian parameter
estimation and model selection, while Section IV discusses how
neurons can be tracked using this clustering process. Applica-
tions of this method to neural recordings in macaque cortex are
presented in Section V, where we provide characterizations of
our method and comparisons to other techniques. Concluding
remarks are given in Section VI.

II. ML OPTIMIZATION OF MIXTURE MODELS VIA EM

The classical clustering technique based on ML optimization
of a mixture model [20], [21] has been the basis for several spike
sorting algorithms. This approach assumes that each neuron
produces spikes whose waveform features vary according to a
probability distribution, and thus, each generating neuron may
be represented as a component in a mixture model. For example,
if the ith data point (spike sample in feature space) yi ∈ R

d

was generated by the gth neuron (belongs to component, or
“cluster,” Cg ) with associated distribution parameters θg , then
it is governed by the probability density p

(
yi | i ∈ Cg , θg

)
. If

we assume a Gaussian density, which is denoted by fN , the
distribution parameters are the mean and covariance matrix θg =
{µg ,Σg}, and the density is

p(yi | i ∈ Cg , θg ) = fN (yi |µg ,Σg )

≡ 1√
det(2πΣg )

exp
(
−1

2
(yi − µg )T Σ−1

g (yi − µg )
)

.

Including all N data points in the recording interval and all
mixture components g = 1, . . . , Gm , the mixture likelihoodLM

of the model parameters given the data is

LM (Θm ) = p
(
Y |Θm ,Mm

)
=

N∏
i=1

Gm∑
g=1

πgfg

(
yi | θg

)
, (1)

where the parameters are defined as follows.
1) Y = {yi}N

i=1 is the set of all spike observations.
2) Mm is the mth model class under consideration in the

current recording interval, which dictates the model order
Gm (i.e., the number of neurons contributing to the signal),
the form of the gth probability density fg (e.g., Gaussian),
and the form of the model parameters Θm , which include
θg and πg .

3) πg is the mixture weight of component Cg , i.e., the prior
probability that an observed spike was generated by the
gth source neuron, with πg ≥ 0 and

∑Gm

g=1 πg = 1.
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Fig. 1. Structure of the algorithm. Before clustering takes place: 1) the electrode signal is recorded for a brief sampling interval; 2) neuronal spike waveforms
are detected in this voltage trace and aligned by their minimum; and 3) spikes are projected onto an appropriate feature space, such as a 2-D PCA basis. 4) Next,
these data points are clustered using EM optimization of a GMM, over several possible model classes. 5) Finally, neurons are tracked by associating the clusters
from the current interval to the previous interval. This entire process is repeated for every sampling interval.

The EM algorithm [24] is typically applied to estimate the
mixture parameters by log-likelihood maximization. At the
same time, the EM procedure assigns data points to mixture
components, thereby clustering the spikes. To apply this tech-
nique, the data Y are considered “incomplete” and are aug-
mented by Z, which is the set of spike membership indicator
variables zi = (zi1 , . . . , ziGm

)

zig =
{

1, if spike waveform yi belongs to cluster Cg

0, otherwise.

Incorporating Z, one can derive the corresponding complete-
data log-likelihood

lC D (Θm |Y,Z,Mm ) =
N∑

i=1

Gm∑
g=1

zig log[πgfg (yi | θg )]. (2)

EM iterates between an E-step to calculate the conditional ex-
pectation ẑig = E[zig | yi, Θ̂m ] ∈ [0, 1] using the current pa-
rameter estimates, and an M-step to find the parameter estimates
Θ̂m that maximize 2 given ẑig .3 This iteration guarantees (under
weak conditions) a nondecreasing LM (1) and is continued until
a predetermined convergence criterion.

III. MAP CLUSTERING FOR NEURON TRACKING

Fig. 1 outlines the general flow of the spike sorting process,
with particular attention to the clustering step. Note that several
candidate model classes are attempted for every dataset (see
Section III-A) and that the EM iterations must be initialized by
“seed clusters,” or an initial guess (see Section III-D).

Let us now incorporate the sequential nature of the data sam-
pling intervals,4 thus establishing a Bayesian framework for

3The symbol “ˆ” will be used to denote an estimated quantity.
4A few comments are in order about the selection of the interval duration ∆. A

short duration helps to minimize complicating nonstationarity effects; however,
short durations may also result in very few spike samples per cluster, which
decreases the chance of proper clustering as well as the confidence of the cluster
parameter estimates (though the MAP approach helps mitigate these issues).
As a rule of thumb, for 2-D feature spaces, we aim for a minimum of 10–20
spikes per neuron in the interval (corresponding to average firing rates as low as
1–2 Hz in the ∆ = 10 s duration used in Section V). An appropriate duration
of “nonstationarity” must be determined by the user based on the experimental
conditions, such as acute versus chronic electrodes, dimensions of electrodes
and guide tubes, settling time, etc.

MAP parameter estimation (determining parameter estimates
Θ̂m and cluster membership Z) and model selection (determin-
ing the most appropriate number of clusters Ĝ). Let the super-
script k denote the time interval index, such that Y k = {yk

i }N k

i=1
denotes all spike observations in the kth recording interval
Tk , and let Y 1:k = {Y 1 , . . . , Y k} denote all data from the 1st
through the kth recording intervals. The MAP parameter esti-
mates can be naturally derived from Bayes’ rule

p(Θk
m |Y 1:k ,Mm )∝p

(
Y k |Θk

m ,Mm

)︸ ︷︷ ︸
likelihood, (1) and (4)

p
(
Θk

m |Y 1:k−1 ,Mm

)︸ ︷︷ ︸
prior, Section III-B

,

(3)
where Θk

m denotes the mixture model parameters for the mth
model during Tk .5

A. Model Classes

While many model classes are possible within our framework,
we focus on model classes that yielded the best results for neu-
ronal signals in a PCA basis. Because the EM algorithm assumes
the number of clusters Gm is known (but the number of neurons
in the current signal is a priori unknown), we employ a typical
workaround of applying EM to several candidate model classes
Mm , m = 1, . . . , M̄ , varying Gm = 1, . . . , Gmax among them,
and then selecting the best afterward. In each model class,
Gaussian distributions account for the variability in each neu-
ron’s signals. There are many parsimonious models of the co-
variance matrices Σg of Gaussian distributions; we choose a
shared-volume model so that all clusters are approximately the
same “size” in feature space.6

Commonly, nonspike events are included in the data Y k

due to mistakes made by upstream components of neural sig-
nal analysis (e.g., spike detection and alignment) and must
be identified as outliers. To capture these outlier observa-
tions, a uniform “background” distribution f0 is added to

5Since no prior data are available in the first time interval, for T1 we employ
the ML version of GMM/EM as in Section II.

6Celeux and Govaert [25] thoroughly discuss covariance models. They
parameterize the covariance matrix via an eigenvalue decomposition Σg =
λg Dg Ag DT

g , with factors describing the volume (λg ), shape (Ag ), and orien-
tation (Dg ) of the corresponding constant-deviation ellipsoids. Some or all of
these factors may be constrained to be equal across clusters; for a shared-volume
model, Σg = λDg Ag DT

g .
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the mixture model: f0(yk
i |V k ) = 1/V k , with data volume

V k =
∏d

j=1(maxiy
k
i,j − miniy

k
i,j ).

Thus, the mixture likelihood (1) can be rewritten as

p
(
Y k |Θk

m ,Mm

)
=

N k∏
i=1

(
πk

0 f0
(
yk

i | θk
0
)

+
Gm∑
g=1

πk
g fN

(
yk

i |µk
g ,Σk

g

))
, (4)

where θk
0 contains the (constant) parameter(s) of the outlier

distribution and πk
0 = 1 −

∑Gm

g=1 πk
g since the mixture weights

must sum to unity. The set of independent GMM parameters is
then Θk

m = {µk
g ,Σk

g , πk
g }Gm

g=1 .7

B. Prior on Cluster Location

Next, we construct an appropriate prior on the model param-
eters Θk

m based on the clustering results from interval Tk−1 .
The model parameters are assumed to be independent across
mixture components and across each parameter; therefore,

p
(
Θk

m | ·
)

=
Gm∏
g=1

[
p
(
µk

g | ·
)
p
(
Σk

g | ·
)
p
(
πk

g | ·
)]

.

Since the cluster covariance Σk
g and the mixture weight πk

g

associated with a given neuron may vary substantially across
sampling intervals, we choose diffuse priors for these less in-
formative model elements. Most important to the practical issue
of neuron tracking is the location of each cluster center µk

g . To
establish priors on these locations, we look for the gth cluster
mean µk

g in Tk to be near to any of the cluster centers found in
Tk−1 , without regard to which one, and thus utilize a Gaussian
mixture to represent the cluster means found in Tk−1 . To allow
for the possibility that Ck

g represents a new neuron that was not
recorded in Tk−1 , a uniform distribution component is included
as well. Thus, the prior on the gth mean combines a uniform
component for new neurons and Gaussian components for all
Ĝk−1 clusters estimated in interval Tk−1 :

p
(
µk

g |Y 1:k−1 ,Mm

)
=

ωk
0

V k
+

Ĝk −1∑
j=1

ωk
j fN

(
µk

g | µ̂k−1
j , Sk−1

j

)
.

(5)
The parameter µ̂k−1

j is the estimated value of the jth cluster

mean in Tk−1 , and Sk−1
j is the covariance associated with the

estimation that the current mean µk
g is in the same location as the

prior mean µ̂k−1
j . In this model, Sk−1

j = Rk−1
j + Qk−1 , where

Rk−1
j = (1/nk−1

j )Σk−1
j is the measurement covariance matrix

associated with the estimation of µ̂k−1
j (nj is the number of data

points in cluster Cj ) and the empirically determined covariance
matrix Qk−1 accounts for effects, such as electrode movement,
which cause a cluster to drift around in the feature space.

7The parameter set includes only the independent elements of the symmetric
matrix Σk

g , which will depend on the chosen parsimonious covariance model.
We will treat the matrix as a single parameter for brevity.

The mixture weight ωk
j , which represents the prior probability

of assigning a cluster to the jth component, is defined as

ωk
j =




1
c
λk

0 , j = 0

1
c
Pk

d,j , j = 1, . . . , Ĝk−1 ,

(6)

where λk
0 is the expected number of newly appearing neurons

and spurious clusters in the recording interval, Pk
d,j is the prob-

ability of redetecting the jth neuron found in Tk−1 , and c is a
normalizing constant.8

Note that the PCA feature space is recalculated at every inter-
val to find the best PC features for that dataset. Thus, the spike
waveforms from Tk−1 must be projected to the PCA space of
Tk , and then, the prior clusters’ statistics are calculated in this
space.

C. Extending EM to Account for Cluster Location Priors

Note that the prior (5) resembles the mixture likelihood (1)
and would, in fact, share the same difficulty of maximiza-
tion. We, therefore, introduce cluster association indicators
Zk = {ζk

gj}, which indicate hidden data that specify whether
the cluster Ck−1

j found in Tk−1 is related to the current cluster
Ck

g in Tk , or, ideally,

ζk
gj =

{
1, if µk

g and µ̂k−1
j represent the same neuron

0, otherwise.

Based on this approach, instead of using (5) directly, we employ
the following complete-data log prior on the means:

log p
(
µk ,Zk |Y 1:k−1 ,Mm

)
=

Gm∑
g=1

Ĝk −1∑
j=0

ζk
gj log

[
ωk

j fj

(
µk

g |ψk−1
j

)]
, (7)

where ψk−1
j denotes the parameters of the jth mixture

component in the prior (ψk−1
j = {µ̂k−1

j , Sk−1
j } for Gaussian

components).
Rewriting (3) to include the hidden variables, taking the log-

arithm, and using (2) and (7) result in

log p
(
Θk

m ,Zk |Y 1:k , Zk ,Mm

)
=

N k∑
i=1

Gm∑
g=0

zk
ig log

[
πk

g fg

(
yk

i | θk
g

)]

+
Gm∑
g=1

Ĝk −1∑
j=0

ζk
gj log

[
ωk

j fj

(
µk

g |ψk−1
j

)]
+ C, (8)

where C is a constant. The EM algorithm operates on the
complete-data posterior (8) with the formulas given later.

8This mixture weight follows from methods in conventional target tracking
[26], employing a model where each neuron is detected according to a Bernoulli
trial and the number of new and spurious clusters in an interval is Poisson-
distributed.
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1) E-Step: As in the classical EM algorithm, given the pa-
rameter estimates from the M-step, the expectation of each spike
membership indicator ẑk

ig is

ẑk
ig =

π̂k
g fg

(
yk

i | θ̂k
g

)
∑Gm

n=0 π̂k
n fn

(
yk

i | θ̂k
n

) . (9)

Recall that fg (yk
i | θ̂k

g ) is a Gaussian distribution with parame-

ters θ̂k
g = {µ̂k

g , Σ̂k
g } for the components g = 1, . . . , Gm and an

outlier density for the zeroth mixture component. The expecta-
tion of the other hidden data, the cluster association indicators,
i.e., ζ̂k

gj = E[ζk
gj | Y 1:k , Θ̂k

m ], has an analogous form

ζ̂k
gj =

ωk
j fj

(
µ̂k

g |ψk−1
j

)
∑Ĝk −1

l=0 ωk
l fl

(
µ̂k

g |ψk−1
l

) . (10)

2) M-Step: Since the prior term in (8) is independent of the
parameters πg and Σg , these estimates remain the same as the
classical ML clustering version. For the mixture weights

π̂k
g =

nk
g

Nk
, (11)

where nk
g =

∑N k

i=1 ẑk
ig , and for the shared-volume form of the

covariance matrix9 [25]

Σ̂k
g = λk

Wk
g

|Wk
g |1/d

, (12)

where λk =
∑Gk

m
g=1 |Wk

g |1/d/Nk and Wk
g =

∑N k

i=1 ẑk
ig (y

k
i −

µ̂k
g )(yk

i − µ̂k
g )T . Maximizing (8) with respect to µk

g results in
the estimate

µ̂k
g =


 N k∑

i=1

ẑk
ig (Σ̂

k
g )−1 +

Ĝk −1∑
j=1

ζ̂k
gj (S

k−1
j )−1


−1

×


 N k∑

i=1

ẑk
ig (Σ̂

k
g )−1yk

i +
Ĝk −1∑
j=1

ζ̂k
gj (S

k−1
j )−1 µ̂k−1

j


, (13)

in contrast to the ML estimation of the cluster center location
µ̂k

g =
∑N k

i=1 ẑk
ig y

k
i /

∑N k

i=1 ẑk
ig . Note that (13) has the form of a

weighted average of the data points yk
i and the prior means µ̂k−1

j ,
with the weights governed by their (fuzzy) association to cluster
Ck

g and the respective covariance matrices. A minor drawback

is that (13) is a function of the parameters Σ̂k
g , thus implying

the need to simultaneously solve for both µ̂k
g and Σ̂k

g . However,

one may approximate Σ̂k
g by its value from the previous EM

iteration (Σ̂k
g varies little across consecutive EM iterations) to

solve (13), and then, update Σ̂k
g using (12).

D. Generating Seed Clusters

The EM algorithm requires initial values to seed its iterations.
The choice of these seed clusters is a key issue, as the EM

9The equation assuming a fully variable covariance is Σ̂k
g = (1/nk

g )∑N k

i=1 ẑk
ig (yk

i − µ̂k
g )(yk

i − µ̂k
g )T .

algorithm is highly susceptible to finding local optima near its
initial values. Assuming again that the clusters found in Tk−1
provide a good starting point, an obvious seeding strategy is
to group the current data points according to the closest prior
cluster. For this purpose, we use the (squared) Mahalanobis
distance between the ith data point yk

i in Tk and the jth cluster
center estimated from Tk−1

d2
j (y

k
i ) = (yk

i − µ̂k−1
j )T (Σ̂k−1

j )−1(yk
i − µ̂k−1

j ) . (14)

However, recall that the EM algorithm is applied to a range
of candidate model classes, with varying model order (numbers
of clusters). A complication arises in cases where the candidate
model order Gm is different from Ĝk−1 , which is the model
order estimated in Tk−1 . Such differences can arise, for example,
when neurons go silent or new neural signals are introduced
between sampling intervals. Later, we outline our approach for
each of the three possible relations between Gm and Ĝk−1 .

1) Case Gm = Ĝk−1: The seed assignment process assigns
each observation to the closest prior cluster: each yk

i is assigned
to the jth cluster, where j is the index that minimizes d2

j (y
k
i ) in

(14).
2) Case Gm < Ĝk−1: The goal is to produce good clus-

tering seeds when ∆G = Ĝk−1 − Gm neuron(s) disappear be-

tween sampling intervals. All
(
Ĝk −1

Gm

)
combinations of the Ĝk−1

prior clusters are evaluated to determine which set of Gm prior
clusters minimizes the sum of the squared Mahalanobis dis-
tance. The left column of Fig. 4 displays a seeding example
with Ĝk−1 = 3 and Gm = 2.

3) Case Gm > Ĝk−1: In this case, ∆G = Gm − Ĝk−1 “ex-
tra” seed clusters must be generated. Such a situation can occur
when ∆G new neurons have been detected and a new cluster
must be created for each. The spikes from Tk are first assigned
to the Ĝk−1 prior clusters, as in the first case before, after which
we wish to divide the cluster that is most likely to contain multi-
ple neurons (see the right column of Fig. 4 for an example with
Ĝk−1 = 1 and Gm = 2). Since such a group is likely to have
a larger data spread, the group with the largest average point-
to-centroid Euclidean distance is chosen. This cluster’s points
are projected onto its principal axis, and then split between the
adjacent points that have the largest distance between them [see
Fig. 4(f) and (g)]. This is essentially a one-step divisive hierar-
chical clustering technique. The aforementioned identification
and splitting of groups are repeated as necessary for ∆G > 1.

E. Selecting the Model Class Mm

The model selection step, which estimates how many clusters
exist in the signal, is based on a Bayesian approach as well, by
taking the model with highest probability

P (Mm |Y 1:k ) =
1
Dp(Y k |Y 1:k−1 ,Mm )P (Mm |Y 1:k−1),

(15)
where D is a normalizing constant. This probability (15) is
difficult to compute because the evidence p(Y k |Y 1:k−1 ,Mm )
theoretically requires an integration over all possible parameters.
However, Laplace’s method for asymptotic approximation of
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integrals [20], [27]10 can be employed to estimate a value of
the evidence term while evaluating only at the MAP parameters
Θ̂k

m

p(Y k |Y 1:k−1 ,Mm ) ≈ p(Y k | Θ̂k
m ,Mm )

× p(Θ̂k
m |Y 1:k−1 ,Mm )(2π)ηm /2 |Hm (Θ̂k

m )|−1/2 , (16)

where ηm is the number of independent parameters in model
Mm . The first factor is the well-known likelihood of the
Gaussian mixture (4). The other factors, collectively known
as the Ockham factor since they penalize the complexity of the
model parameterization, include the parameter prior (5) and the
Hessian matrix

Hm(Θ̂k
m )=−∇∇|Θ̂k

m
log p

(
Y k |Θk

m ,Mm

)
p
(
Θk

m |Y 1:k−1,Mm

)
,

which has an analytical expression for the model classes under
consideration [28]. Most popular model selection approaches,
such as the Akaike information criterion (AIC) and Bayes infor-
mation criterion (BIC), are essentially approximations to (16)
and specific to the ML method [27]. For our application, the
Laplace approach naturally incorporates the prior on Θk

m .
The model class prior P (Mm |Y 1:k−1) in (15) is the

model selection result from Tk−1 , under the assumption that
the model class is constant. However, since the model class
may change (e.g., neural signal sources appear or disap-
pear), we use a weighted mixture of the previous result and
a uniform prior: P (Mm |Y 1:k−1) ← α P (Mm |Y 1:k−1) +
(1 − α)(1/M̄), where M̄ is the total number of model classes
under consideration. The parameter α ∈ [0, 1] (we use α =
0.95) imposes a “forgetting factor” on the prior, which ensures
a nontrivial probability of each model class at every sampling
interval.

IV. TRACKING CLUSTERS ACROSS INTERVALS

Ultimately, our goal is to “track” individual neurons—i.e.,
to associate specific neurons with specific signal clusters over
time. Viewing this as a data association task on the means, the
quantity ζ̂k

gj already encodes the probability that current cluster

Ck
g is associated with prior cluster Ck−1

j , relative to all Ĝk−1 +1
components in the prior (5). Each current cluster Ck

g is, therefore,

matched to a prior cluster Ck−1
j ∗ via j∗ = arg maxj ζ̂

k
gj . Thus, at

the completion of the EM iterations, in addition to the model
parameters Θ̂k

m and the cluster memberships ẑk
ig , the algorithm

also yields cluster associations ζ̂k
gj for tracking.

New neurons are identified when Ck
g is matched to the uniform

distribution, thus highlighting the importance of a uniform com-
ponent in the prior. Disappearing neurons are identified when
prior clusters are not matched to any current clusters. Note that
a time interval may include both addition and subtraction of

10For globally identifiable functions (having a single maximizing point at
Θ̂k

m ), Laplace’s method states that the right-hand side (RHS) of (16) approaches
p(Y k |Y 1:k−1 ,Mm ) asymptotically as the amount of data Y k increases. Al-
though we know only that Θ̂k

m is a local maximum (and do not show global
identifiability), the approximation offers a valuable measure with fewer assump-
tions than prevailing information criteria.

neurons, thus changing the identities of the neurons even when
the number of neurons remains the same. Additionally, multi-
ple current clusters Ck

g may match the same prior cluster Ck−1
j .

While a single-match nearest neighbor approach could be used,
we wish to allow for “splits” of the neuronal signal components
(when the signals of two (or more) previously indistinguishable
neurons are now separated).

V. EXPERIMENTAL RESULTS

The proposed MAP algorithm was applied to recordings from
macaque parietal cortex, collected in acute recording sessions
with platinum–iridium, 1.5 MΩ impedance electrodes in a mi-
crodrive controlled by our autonomous electrode positioning
algorithm [2]–[4]. Spikes were detected in the recorded volt-
age stream via a wavelet matching approach [29], aligned by
their minimum, and projected onto a 2-D PCA space prior to
clustering.

As noted earlier, EM optimization of a GMM with ML pa-
rameters has shown its effectiveness in many clustering appli-
cations [20] and, specifically, spike sorting [1], [7], [16]–[19].
Thus, we compare our proposed MAP method to such a tech-
nique, which we have also used in hundreds of recording ses-
sions. We previously chose this method due to its success com-
pared to other spike sorting options. In the implementation of
the contrasting ML approach, seed clusters are generated from a
standard hierarchical agglomerative technique and model order
is selected according to Bayesian information criterion (BIC),11

following the suggestions of [30]. Both the MAP and ML imple-
mentations use the same models for the components’ covariance
matrices and the same uniform “background” mixture compo-
nent to capture outliers.

A. Detail: Sequence of Consecutive Recording Intervals

Fig. 2 displays clustering results over a sequence of 12 con-
secutive recording intervals, chosen to highlight how the MAP
algorithm enables neuron tracking, especially as compared to al-
ternatives. Each sampling interval lasts 10 s, with separating in-
tervals of about 25 s during which no signals are sampled (while
the control algorithm repositions the electrodes). Each interval’s
data were clustered using its own PCA features; however, for
consistent visualization, these datasets are plotted in the same
PCA feature space (PCs from k = 7). Although it is impossible
to know the actual spike–neuron associations conclusively, the
results are compared to a best-effort manual clustering, as deter-
mined by an expert’s thorough examination of both the spikes’
full waveforms and their PCA features (whereas the automated
clustering uses only PCA features). While manual sorting is not
foolproof, it provides the most common and basic baseline. In
addition to MAP and ML algorithm results, a k-means clustering
result is also presented, with the number of clusters k manually
selected to match the number of clusters in the expert results.
Listed for each interval in Fig. 2 is the percentage of spikes

11BIC ≡ 2lM (Θ̂k
m | Y k ,Mm ) − ηm log N k , for maximized mixture log-

likelihood lM , and number of independent model parameters ηm .
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Fig. 2. Cluster results over 12 consecutive recording intervals, displayed in a common PCA space. Rows: 1) extracted, aligned waveforms from the interval
(colored by MAP result); 2) results from our MAP algorithm; 3) manual sorting by expert; 4) results from the baseline (ML) algorithm; and 5) results from
k-means, with k = 3. Shaded ellipses indicate σ = 2 for each cluster; percentile is of spikes classified similarly to the expert; capital letters label neuron ID; black
points indicate classification as outliers.
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TABLE I
CLUSTER STATISTICS OF SELECTED INTERVALS FROM FIG. 2

classified similarly to the expert’s results,12 and each cluster is
labeled with a “neuron ID,” thus indicating the neuron that it
tracks.13 Table I provides a detailed view of the intervals where
the MAP and ML results differed significantly.

Ostensibly, spikes from the same three generating neurons
(labeled A, B, and C) persist through the 12 sampling intervals
of Fig. 2, as determined in the expert clusters. The clustering
challenge is difficult, however, as the spike waveform features
are not highly separated and the firing rates (and thus num-
bers of data points) are sometimes low. Note that the MAP
algorithm consistently identifies three clusters in roughly the
same PCA position. The ML algorithm often provides good re-
sults, but some intervals show incongruous (though statistically
sound) results, seemingly more susceptible to noise variations.
Meanwhile, the k-means solution is unreliable, even with the
advantage of knowing the model order a priori.

Even a small number of intervals with poor results signifi-
cantly impacts our ability to track neurons over time. For exam-
ple, in T3 (i.e., k = 3), the ML method groups most spikes from
neurons A and C into a single cluster, whose mean is relatively
distant from the means of T2 . When attempting to associate the
clusters across these intervals, this result is interpreted as the

12For this calculation, each cluster is matched to the expert cluster sharing
the most spikes, and the number of spikes these clusters have in common is
considered to be classified similarly.

13Because the ML method does not include a natural data association process,
the following procedure was used to test its neuron tracking ability. The clusters
from T1 are assigned neuron IDs (A, B, C, . . .). Thereafter, a cluster in Tk

is associated with the nearest cluster in Tk−1 , provided its mean lies within 2
standard deviations of the prior mean location, using the same covariance Qk

(discussed in Section III-B) as used in the MAP algorithm. If no match is found,
a new track is created (new ID assigned). Note that the presented MAP tracking
results are identical when using this procedure or when using the procedure in
Section IV.

loss of neurons A and C and the appearance of a new neuron
(D) in T3 (rather than tracking neurons A and C from T2 , as
the MAP method does). Next, when the spikes from neurons
A and C are (mostly) correctly classified by the ML method
at k = 4, they are considered as “new” neurons G and F since
their mean locations are appreciably removed from the prior
mean in T3 . Such errors, occurring also at k = 7, k = 11, and
k = 12, prevent neuron tracking in the ML method. Note that
our MAP algorithm results in one track per neuron lasting across
all 12 intervals, whereas the ML algorithm cannot track the three
neurons and also generates many spurious tracks.

B. Consistency and Tracking Over Longer Time Frames

Fig. 3 provides comparisons between the MAP and ML algo-
rithms’ consistency and tracking ability in two sessions lasting
over an hour (over 100 sampling intervals), displaying for each
sampling interval the locations of all cluster means in the first
principal component (again, a common PCA space is chosen for
display only). The connected “neuron tracks” (using the proce-
dure in Section V-A for tracking ML clusters) are labeled by
neuron ID (A–Z, a–z, AA–AZ, . . .). The unbroken, single-ID
tracks in the MAP results indicate our algorithm has tracked
putative neurons over the entire duration of the recordings, ex-
hibiting the algorithm’s ability to consistently cluster many con-
secutive sampling intervals and successfully associate clusters
across each interval. By contrast, the ML tracks are often bro-
ken, even though it appears that the clusters should persist over
time. Also, the ML method produces many spurious clusters,
thus resulting in a large number of (presumably) false neuron
tracks.

Broadening time frames further, we can attempt to quan-
tify the notion of clustering consistency via the change in
the number of clusters from interval to interval. Comput-
ing Ψ =

∑S
s=1

∑Ks

k=2 |Ĝk − Ĝk−1 | over all time intervals of
each recording session provides a quantitative measure of
“inconsistency”—however, many changes in the value of G are
correct, as the number of recorded neurons may vary over the
recording session. Examining a set of 100 consecutive record-
ing sessions, comprising about one month of recording trials
and 21 914 total sampling intervals, Ψ = 3516 for the MAP al-
gorithm, compared to Ψ = 17 646 for the ML algorithm, which
is equivalent to an 80% decrease.

C. Changing Numbers of Clusters

It is necessary to recognize appearing and disappearing neu-
rons in the recorded signal, a goal somewhat at odds with an
increase in clustering consistency. The columns of Fig. 4 present
a detailed view of two examples involving transitions to fewer
and to more clusters. In both cases, although Ĝk−1 is differ-
ent from the number of neurons at time k, the MAP algorithm
determines the correct number of clusters Ĝk , as sufficient ev-
idence exists that the number of neurons in Tk is “inconsis-
tent” with the previous interval Tk−1 . The numbers quantifying
this evidence are provided at the bottom of the figure, show-
ing the difference in log probability of the chosen model class
versus the model class selected in Tk−1 . Also listed are three
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Fig. 3. Graphical comparison of the tracking ability of the MAP versus ML algorithms in two sessions, each lasting over an hour. Each plot depicts the first
principal component of the cluster means versus time. Neuron tracks are represented by lines and labeled by letter ID. Gray dots indicate a neuron ID lasting only
one time step (for which the letter label is suppressed). Note that the MAP algorithm (upper graphs) produces unbroken tracks with single IDs, whereas the ML
algorithm (lower graphs) clusters the data inconsistently, losing the tracks frequently, and generating many spurious clusters.

Fig. 4. Examples of consecutive recording intervals where the number of
neurons change across intervals. (Left column) Example showing decrease from
Ĝk−1 = 3 to Ĝk = 2 clusters. (Right column) Example showing increase from
Ĝk−1 = 1 to Ĝk = 2 clusters. Black dashed 2-sigma ellipses show locations
of prior clusters. (b) and (c) Seed clusters for G = 2 are chosen by keeping best
two of the three prior clusters. (f) and (g) Seed clusters for G = 2 are formed
by splitting the one prior cluster along its principal axis (think red line) at the
point of largest gap (dashed green line). Below the plots are the quantities used
to select the model class for interval k. We list the difference between values
for the chosen model class (with two clusters, dubbed M2 ) and the model class
selected in the previous interval (at k − 1). Recall that the model probability
may be decomposed into three key factors, whose values are listed here as well
(see Section III-E, particularly (15) and 16 for the representative formulas).

main components of the model class probability (15)—the data
likelihood, Ockham factor, and model prior—to show the rel-
ative contribution of these terms. Recall that the model evi-
dence (16), p(Y k |Y 1:k−1 ,Mm ), is the combination of the data
likelihood (which generally increases with the number of mix-
ture components) and the Ockham factor (which penalizes such
added model complexity). In each depicted scenario, the Ĝk = 2
model class was chosen with probability greater than 99%. Also
shown in this figure are plots of the seed clusters for the selected
model class and how these seed clusters are generated from the
Tk−1 result.

VI. CONCLUSION

We have detailed a Bayesian clustering algorithm to opti-
mize a mixture model via EM, and our results show how this
MAP algorithm provides more consistent clustering and im-
proves tracking of neurons over time. In addition to constructing
a novel “mixture prior” on the cluster locations, we have intro-
duced a new set of latent variables and derived the resulting
expressions for incorporating the prior into a MAP EM algo-
rithm. We have also created a new process for generating seed
clusters and proposed a suitable model class selection method.
From an electrophysiology perspective, this neuron tracking al-
gorithm decreases the corruption of neuronal statistics, such
as firing rate, caused by misclassification and can increase the
number of scientifically useful neurons identified on the signal.
From the perspective of building an autonomous electrode posi-
tioning algorithm that tries to maximize the SNR of a particular
neuron, consistently tracking the neurons’ identities is essential
in determining appropriate electrode control.

Although we have focused on providing more consistent re-
sults, our algorithm also performs well when the prior is not
similar to the current clusters (as in Section V-C). The prior’s
construction as a mixture of densities effectively influences the
posterior cluster locations but assumes neither a certain num-
ber of clusters nor the a priori association of particular current
and prior clusters. Thus, our algorithm is not unduly biased
by the prior when evidence suggests the appearance (or disap-
pearance) of neurons. These same properties of the algorithm
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allow it to recover from errors made in clustering the previous
interval.

Our algorithm is more likely to avoid poor local optima be-
cause of our superior seeding method and because the mixture
prior on the cluster means better guides the EM process. (Al-
though the result is not guaranteed to be globally optimal, it
tends to be the desired solution.) Also, our model selection
procedure is quite effective because: 1) the model evidence in-
creases when the parameters are near those of the last interval,
as influenced by our MAP EM approach; 2) the model prior
biases the result toward a consistent number of clusters; and 3)
Laplace’s asymptotic approximation is better than other meth-
ods at distinguishing between “close calls.”

In deconstructing the algorithm’s performance, the contribu-
tion from good seed clusters dominates when there are many
data points and/or when the covariance Sk−1

j is large (both
more likely for longer recording intervals). For short sampling
intervals (with relatively few data points but effectively station-
ary signals), the use of cluster location priors during EM plays
a stronger role and enables the same clusters to be identified
with few data points, as the parameter prior increases the pos-
terior probability that cluster means lie in the same place and
influences the model evidence.

Because we aim for real-time applications to autonomous
electrode positioning and brain–machine interfaces, computa-
tional considerations are important. The total processing time
for each sampling interval in the results of Section V aver-
aged ∼2 s using nonoptimized MATLAB code on a 3.2-GHz
Pentium D processor, which is well within the needs of our
current application. The main computational burden is the cal-
culation of the Hessian matrix, which may be removed by using
the BIC to approximate model evidence (instead of Laplace’s
method) while maintaining most benefits of our approach. In this
case, the average time per interval drops to about 0.25 s, which
is, in fact, about 40% faster than the ML method—although the
MAP method is more complex, it usually requires fewer EM
iterations to converge.

A few elements may be considered for future work. The
tracking algorithm may be made more robust (for example, for
temporarily silent neurons) by incorporating prior information
from several time intervals, and perhaps, implementing a mul-
tiple hypothesis tracking approach (see [28]). Also, choices of
feature space other than PCA, as well as a neuron’s “dynamics”
in this space, may be considered further.
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