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Abstract. In this paper we study certain moduli spaces of Barsotti-Tate

groups constructed by Rapoport and Zink as local analogues of Shimura vari-

eties. More precisely, given an isogeny class of Barsotti-Tate groups with un-
ramified additional structures, we investigate how the associated (non-basic)

moduli spaces compare to the (basic) moduli spaces associated with its isoclinic

constituents.
This aspect of the geometry of the Rapoport-Zink spaces is closely related to

Kottwitz’s prediction that their l-adic cohomology groups provide a realization

of certain cases of local Langlands correspondences and in particular to the
question of whether they contain any supercuspidal representations.

Our results are compatible with this prediction and identify many cases
when no supercuspidal representations appear. In those cases, we prove that

the l-adic cohomology of the non-basic spaces is equal (in the appropriate

sense) to the parabolic induction of the l-adic cohomology of some associ-
ated lower-dimensional (and in the most favorable cases basic) Rapoport-Zink

spaces. Such an equality was originally conjectured by Harris in [11] (Conjec-

ture 5.2, p. 420).

Résumé. (Sur les espaces de Rapoport-Zink non basiques) Dans cet article,

on considére certains espaces de Rapoport-Zink non-ramifiés, associés à des
groupes p-divisibles non-basiques et étudie la leur géométrie en rapport à cela

des espaces de Rapoport-Zink basiques correspondants.

À l’origine de ce problème sont la conjecture de Kottwitz concernant la
réalization des correspondances de Langlands locales dans la cohomologie étale

l-adique des espaces de Rapoport-Zink et plus simplement la question de iden-
tifier pour quels de ces espaces la partie supercuspidale de la cohomologie n’est

pas vide.

Nôtres résultats sont compatible avec cette conjecture et dans des cases
particuliers ils répondent à la derniére question. En particulier, dans ces

cases on établit une formule reliant la cohomologie de ces espaces á l’induction

parabolique de celle des certains espaces de Rapoport-Zink de dimension in-
férieure (et dans les cases plus favorables basiques). Cette formule a été

précédemment conjecturée da Harris dans [11] (Conjecture 5.2, p. 420).
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1. Introduction

1.1. In [31] Rapoport and Zink introduce some local analogues of (PEL) type
Shimura varieties, in the category of rigid analytic spaces over a p-adic local field.
(PEL) type Shimura varieties arise as moduli spaces of abelian varieties with addi-
tional structures, namely endomorphisms, polarizations and level structures. Simi-
larly, the spaces constructed by Rapoport and Zink are moduli spaces of Barsotti-
Tate groups with the analogous additional structures.

A conjecture of Langlands predicts that some cases of correspondences between
automorphic representations and global Galois representations are realized inside
the cohomology of Shimura varieties. Analogously, a conjecture of Kottwitz (which
is heuristically compatible with the conjecture of Langlands) predicts that some
cases of correspondences between admissible representations of p-adic groups and
local Galois representations are realized in the cohomology of the spaces constructed
by Rapoport and Zink. (For linear groups over a local field, both the local case of
Langlands’ conjecture and Kottwitz’s conjecture have been proved, respectively in
[12], and [8].)

In the global case, the construction of Shimura associates to certain algebraic
groups G/Q (together with a conjugacy class of homomorphisms h : S → GR)
a projective system of varieties defined over a number field E (called the reflex
field), whose cohomology groups (regarded as an inductive limit) are naturally
representations of the product of two groups: the points of G over the finite adeles
of Q, G(Af ), and the absolute Galois group of E. Conjecturally, these groups realize
the correspondence between automorphic representations of G and representations
of the global Weil group of E. In the local case, the construction of Rapoport
and Zink depends not only on a choice of an algebraic group G/Qp (together with
a conjugacy class of cocharacters µ : Gm → G) but also on a further datum b
associated with (G,µ). Moreover, the cohomology groups of the Rapoport-Zink
spaces (again regarded as an inductive limit) are naturally representations of the
product of three groups: the p-adic group G(Qp), the Weil group of the local reflex
field, WE , and a second p-adic group Jb depending on the new data, also of the
form Jb = Jb(Qp), for an algebraic group Jb/Qp.

The presence of a third group raises important new questions. If we maintain
our focus on the algebraic group G, a first goal is understanding the role played by
the data (b, µ), and in particular, whether all admissible pairs would be relevant in
a proof of the existence of the local Langlands correspondence for the group G via
the study of the cohomology of the Rapoport-Zink spaces. This question amounts
to investigate for which pairs (b, µ) the cohomology of the associated Rapoport-Zink
spaces contains supercuspidal representations of G(Qp).

More completely, one would like to understand the role played by the group Jb.
Indeed, Kottwitz’s conjecture predicts that the cohomology of the Rapoport-Zink
spaces not only realizes (some cases of) the local Langlands correspondence for the
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group G, but also for the group Jb, for each b. Furthermore, the obvious com-
patibility between the two correspondences (due to the fact that they are realized
inside the same cohomology groups) would be an example of Langlands’ functori-
ality principle (for each b the group Jb is an inner form of a Levi subgroup of G).
Equivalently, the cohomology groups of the Rapoport-Zink spaces conjecturally also
realize a generalized Jacquet-Langlands correspondence for Jb and G.

Kottwitz’s predictions provide a conjectural answer to the first question we
raised. In fact, they imply that supercuspidal representations of G(Qp) should
appear only in the cohomology groups of the Rapoport-Zink spaces associated with
pairs (b, µ) for which Jb is an inner form of G (such pairs are called basic). More
precisely, they predict that, for any admissible pair b, the admissible representations
of G(Qp) which arise in the cohomology of the associated Rapoport-Zink spaces are
parabolically induced from the Levi subgroup of G(Qp) which is an inner form of
Jb.

Extending Kottwitz’s predictions, in [11] (Conjecture 5.2, p. 420) Harris conjec-
tured that the l-adic cohomology of non-basic Rapoport-Zink spaces is equal (in the
appropriate Grothendieck group) to the non-normalized parabolic induction of the
l-adic cohomology of the corresponding basic spaces, for a specified choice of the
associated parabolic subgroup. Such a reduction of the computation of the l-adic
cohomology of the Rapoport-Zink spaces associated with a group G to that of the
basic cases for G and its Levi subgroups can be viewed as mirroring the results
describing the admissible representations of G(Qp) in terms of the supercuspidal
representations of G(Qp) and of its Levi subgroups. In the case of G = GLn and
µ = (0, . . . , 0, 1) (i.e. in the case of Drinfeld’s modular varieties) Harris’ conjecture
was already known, due to the work of Boyer ([4]), and played an important role in
the proof of the existence of the local Langlands’ correspondence for GLn in [12],
and consequently also in [8].

1.2. Let G = ResF0/Qp
(G0), for F0/Qp an unramified finite extension and G0 =

GLn or GSp2n, for some integer n ≥ 1. The goal of this paper is to investigate
the above conjectures for the admissible pairs (b, µ) associated with such a group
G/Qp. In particular, we will establish some instances of a variant of the conjecture
of Harris.

Let us fix µ and consider the set B(G,µ) of all possible b’s such that the pair (b, µ)
is admissible. This is defined as a subset of the set of σ-conjugacy classes in G(K),
for K the maximal unramified extension of Qp and σ its Frobenius automorphism.
Its definition is originally due to Kottwitz who in [18] and [19] studied the set B(G)
of all σ-conjugacy classes in G(K), for G any connected reductive group over Qp.
This set classifies isomorphism classes of F -isocrystals with G-structures over k, for
k the residue field of the ring of integers of K. Indeed, each element b ∈ G(K) de-
fines an exact faithful tensor functor Nb from the category of p-adic representations
of G to that of F -isocrystals over k, via Nb(W,ρ) = (W ⊗K, ρ(b)(idW ⊗σ)). It fol-
lows from the definition that any such functor N is defined by a unique b ∈ G(K),
and that if b, b′ are σ-conjugate in G(K) then the corresponding functors Nb, Nb′
are isomorphic. For each b ∈ G(K), the group Jb is by definition the group of auto-
morphisms of the F -isocrystal with G-structures Nb. (Thus if b, b′ are σ-conjugate
in G(K) then the associated groups Jb, Jb′ are isomorphic.) In the cases we are in-
terested in, any such functor N is uniquely determined by its value on the natural
representation of G. Therefore, in these cases, an F -isocrystal with G-structures
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(defined as an exact faithful tensor functor) is simply an F -isocrystal (in the classi-
cal sense) together with additional structures, namely given endomorphisms and/or
a non-degenerate alternating pairing.

We return to these cases, i.e. to G as at the beginning of the section, and
denote by V the natural representation of G. To each b ∈ G(K), we associate
the Newton polygon νb of the corresponding F -isocrystal with G-structures over k,
Nb(V ). Then the set B(G,µ) is realized as a subset of the set of convex polygons
with integral break-points and the same end-points (Newton polygons), all lying
above a fixed convex polygon, also with integral break-points and the same end-
points, associated with µ (the Hodge polygon). It follows that there is a natural
partial order on the set B(G,µ): for any two elements b, b′ in B(G,µ), we say b ≥ b′

if all points of νb lie below or on νb′ . Under this partial ordering (which is called the
Bruhat ordering), B(G,µ) has unique maximal element, which is called µ-ordinary
(and the corresponding admissible pair ordinary), and a unique minimal element
corresponding to the basic pair. (A group-theoretic description of the Newton map
for G any connected reductive group over Qp is discussed by Rapoport and Richartz
in [30].)

Let b0 be the µ-ordinary element in B(G,µ). The following definition is justified
by the results in [24] (we report on them in section 6). We say that an element
b ∈ B(G,µ) (or the corresponding admissible pair (b, µ))) is of (HN) type if there
is a break-point x of νb which lies on νb0 and the two polygons coincide up to x
or from x on. We call such a break-point x of νb also of (HN) type. We remark
that when G is symplectic the polygon νb is symmetric (for any b). Thus, for each
break-point x of νb there is an associated symmetrical break-point x̂. Furthermore,
it is an easy observation that x is of (HN) type if and only if x̂ is of (HN) type.
To each b of (HN) type we attach a Levi subgroup Mb of G as follows. Every
break-point x = (x1, x2) ∈ Z2 of νb defines a decomposition of the F -isocrystal
Nb(V ) = V 1 ⊕ V 2, for V 1, V 2 the two sub-F -isocrystals of Nb(V ) characterized by
the properties that V 1 has Newton polygon ν1 consisting of the first x1 slopes of
νb and V 2 has Newton polygon ν2 consisting of the remaining slopes of νb. Then,
to any subset S of the set of break-points of νb we associate the unique common
refinement of the decompositions of Nb(V ) corresponding to each x ∈ S. It follows
from the definition that any such decomposition is coarser than or equal to the slope
decomposition (i.e. the decomposition of Nb(V ) into isoclinic factors), which in
these notations is the decomposition associated with the set of all break-points of νb.
In particular, it follows from the analogous statements for the slope decomposition
that any such decomposition of V is F0-linear, for F0/Qp the field extension as at
the beginning of the section, and in the case when G is symplectic compatible with
the symplectic pairing on V if the set S is symmetrical, i.e. satisfying the condition
x ∈ S if and only if x̂ ∈ S. For each b ∈ B(G,µ) of (HN) type we define Mb

to be the stabilizer in G of the decomposition of V into p-adic vector subspaces,
which underlies the decomposition of the F -isocrystal Nb(V ) associated with the
set of all break-points of νb of (HN) type. It follows from the definition that Mb

is a Levi subgroup of G. Finally, we also write Lb for the stabilizer in G of the
decomposition of V underlying the slope decomposition of Nb(V ). Then, Lb is also
a Levi subgroup of G and it is an inner form of Jb (see [18], Section 5.2, p. 215;
[31], Corollary 1.14, p. 11) . It follows from the definition that for each b of (HN)
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type Mb ⊇ Lb, and Mb = Lb if all the break-points of νb are of (HN) type (i.e.
when all but possibly one of the sides of νb lie on the µ-ordinary polygon νb0).

In this paper, we prove that if the admissible pair (b, µ) is of (HN) type then
the l-adic cohomology groups of the associated Rapoport-Zink spaces contain no
supercuspidal representations. More precisely, we prove, for pairs of (HN) type, a
variant of Harris’ conjecture which shows that, as representations of G(Qp), these
cohomology groups are parabolically induced from Mb(Qp) to G(Qp). In the special
cases when Mb = Lb, e.g. for b = b0, we prove Harris’ conjecture.

1.3. The strategy in this paper can be described as follows. Let us fix a conjugacy
class µ of cocharacters of G. For any non-basic element b ∈ B(G,µ) ⊂ B(G), there
exists a proper Levi subgroup M of G such that b arises as the image of an element
of B(M) (which with abuse of notations we still denote by b) under the natural
map B(M) → B(G). It is clear from the definition that such a Levi subgroup M
of G is not unique. On the other hand, it follows from the definition of Lb that
each b ∈ B(G) arises as the image of a basic element of B(Lb), and thus as the
image of an element in B(M), for any M ⊃ Lb. Furthermore, for each b ∈ B(G,µ),
there exists a unique conjugacy class of cocharacters wbµ of Lb (which is the image
of µ under conjugation by the element wb ∈ W , the Weyl group of G) such that
b ∈ B(Lb) is wbµ-admissible and thus b ∈ B(Lb, wbµ) the unique basic element
(see [18], Proposition 6.2, p. 219; [11], Proposition 4.1, p. 415). It follows that,
for any M ⊃ Lb, b ∈ B(M,wbµ) (here, with a second abuse of notation we still
write wbµ for the class of cocharacters of M induced by that of Lb via the inclusion
Lb ⊂M). In particular, any element b ∈ B(G,µ) of (HN) type arises as the image
of an element in B(Mb, wbµ) .

We state a variant of Harris’ conjecture. It predicts that, given a connected
reductive group G and a conjugacy class of its cocharacters µ in the class considered
in [31], for any µ-admissible element b ∈ B(G,µ) and any Levi subgroup M of G
for which the pair (b, wbµ) as described above is admissible, the l-adic cohomology
of the Rapoport-Zink spaces associated with the data (G, b, µ) is equal to the non-
normalized parabolic induction, fromM(Qp) to G(Qp) of that of the Rapoport-Zink
spaces corresponding to the data (M, b,wbµ). Then, Harris’ conjecture (as stated
in [11]) is, for any group G and admissible pair (b, µ), the case M = Lb of the this
variant. On the other hand, if we assume Harris’ conjecture to hold not only for G
but also for its Levi subgroups, then the above variant follows.

In this paper we prove this variant of Harris’ conjecture under the assumptions
that the pair (b, µ) is of (HN) type and M ⊃ Mb, for a group G as in section 1.2.
We remark that, for a given pair (b, µ), the general case of M ⊃ Mb follows from
the special case M = Mb, as we compare the result for the group G with those
corresponding to its Levi subgroups containing Mb.

Finally, we point out that although the conclusive results obtained in this paper
only apply to admissible pairs of (HN) type (and the associated Levi subgroups),
most of the work is carried out for any admissible pair (and any Levi subgroup
satisfying the above condition).

1.4. We outline in more detail the structure of this paper.
Let G/Qp be an unramified algebraic group as in section 1.2. For a given admis-

sible pairs (b, µ), we write L = Lb and J = Jb. Assume b is non-basic and let M
be a proper Levi subgroup of G containing L. Then b ∈ B(M,wbµ) and to the pair
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(b, µ) we associate two different systems of Rapoport-Zink spaces, namely the one
attached to the data (G, b, µ), which we denote by M∞, and the one attached to
(M, b,wbµ), P∞ (which is the corresponding basic one for M = L). It is a simple
observation that there exists a morphism (or more precisely a compatible system
of morphisms) Θ : P∞ → M∞, which is equivariant for the action of the groups
M(Qp) and J(Qp), as well as for the descent data over the local reflex field E (for
simplicity, we refer to the descent data as the action of WE). (Sections 2 and 3)

To each Levi subgroup M as above we associate a parabolic subgroup P = PM
of G as follows. Let V = ⊕iV i be the decomposition of V associated with M .
Since M ⊃ L this decomposition underlies a decomposition of F -isocrystals. We
order the V i’s according to the increasing order of the slopes of νb and consider
the filtration V• of V defined by Vj = ⊕0≤i≤jV

i. We define P = PM to be the
stabilizer in G of this filtration. Then, P is a parabolic subgroup of G with M as
a Levi subgroup.

Our idea is to introduce a third system of rigid analytic spaces, which we denote
by F∞, associated with the data (P, b, wbµ), for P = PM . F∞ is also defined as a
system of moduli spaces of Barsotti-Tate groups with additional structures (among
which the datum of a filtration), and similarly to the case of the Rapoport-Zink
spaces is endowed with an action of P (Qp), J(Qp) and WE . (Section 4)

The new system F∞ enjoys the following properties:

• there exists a morphism j : F∞ →M∞, which is equivariant for the actions
of P (Qp) ⊂ G(Qp), J(Qp) and WE ;

• the morphism Θ : P∞ → M∞ factors through j, and the corresponding
morphism P∞ → F∞ (which we still denote as Θ) is equivariant for the
actions of M(Qp) ⊂ P (Qp), J(Qp) and WE ;

• there exists a morphism Ξ : F∞ → P∞, which is equivariant for the actions
of P (Qp), J(Qp) and WE (where the action of P (Qp) on P∞ is defined via
the epimorphism P →M), and which satisfies the condition Ξ ◦Θ = 1P∞ .

We achieve our goal, by comparing the cohomology of these three systems, as
representations of the above groups.

Let l be a prime number, l 6= p. For each tower Y = P∞,F∞,M∞, we consider
its l-adic étale cohomology groups Hi(Y ) (more precisely, we consider the direct
limit of the étale cohomology groups with compact support and coefficients in
Ql(DY ), for DY = dimY ). The groups Hi(Y ) are naturally l-adic representations
of QY ×WE and J(Qp) (for QY = M(Qp), P (Qp), G(Qp) respectively). These are
not a priori admissible. On the other hand, for any l-adic admissible representation
ρ of J(Qp), the following holds:

• the groups ExtjJ(Qp)(H
i(Y ), ρ) are admissible representations of QY ×WE ,

• they vanish for almost all i, j ∈ Z≥0.

Thus, to each representation ρ as above we associate the virtual representation
of QY ×WE

H•(Y )ρ =
∑
i,j

(−1)i+jExtjJ(Qp)(H
i(Y ), ρ).

The main results proved in this paper are the following. (Sections 7, 8 and 9)

Theorem 1. The map on cohomology (Ξ∗)∨ is an isomorphism. In particular,
for any l-adic admissible representation ρ of J(Qp), we have an equality of virtual
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representations of P (Qp)×WE:

H•(F∞)ρ = H•(P∞)ρ.

Theorem 2. Let M (resp. F) be a space in the tower M∞ (resp. F∞) corre-
sponding to a choice of a maximal compact open subgroup U0 of G(Qp) (resp. to
U0 ∩ P (Qp) ⊂ P (Qp)). Then, the morphism j maps F to M, and we denote by
M∞ ×M F the pullback of the tower M∞ over F via j.

For any l-adic admissible representation ρ of J(Qp), we have an equality of
virtual representations of G(Qp)×WE:

H•(M∞ ×M F)ρ = Ind
G(Qp)

P (Qp) (H•(F∞)ρ) .

Theorem 3. Let M be as above. Then, there exists a closed rigid analytic subspace
X ⊂ M, which is invariant under the actions of J(Qp) and WE, and satisfies the
following conditions.

Let X∞ = M∞ ×M X denote the pullback of the tower M∞ over X . Then, for
any l-adic admissible representation ρ of J(Qp):

(1) there is an equality of virtual representations of G(Qp)×WE:

H•(X∞)ρ = H•(M∞ ×M F)ρ;

(2) there is an equality of virtual representations of WE:

H•(X∞)U0
ρ = H•(M∞)U0

ρ .

These results hold for any admissible pair (b, µ) and any Levi subgroup M of G
which contains Lb.

Finally, under the assumption that the admissible pair (b, µ) is of (HN) type and
for the associated Levi subgroup M ⊇Mb, we prove one last result. (Section 10)

Theorem 4. Assume (b, µ) is of (HN) type, and M ⊇Mb. Then, X = M.

We observe that the equality X = M holds in particular in the case of G = GLn,
µ = (0, . . . , 0, 1) and any µ-admissible b, as in the work of Boyer.

We also remark that for a general admissible pair (b, µ) (i.e. neither basic nor of
(HN) type), X is a proper subspace of M.

Under the assumptions of theorem 4, our results imply the corresponding in-
stances of the variant of Harris’ conjecture we discussed.

Corollary 5. Assume (b, µ) is of (HN) type, and M ⊇Mb. Then, for any l-adic
admissible representation ρ of J(Qp), we have an equality of virtual representations
of G(Qp)×WE:

H•(M∞)ρ = Ind
G(Qp)

P (Qp) (H•(P∞)ρ) .

Since the tower F∞ consists of moduli spaces of filtered Barsotti-Tate groups
with additional structures, many questions regarding its geometry (and how it
compares to the geometry of P∞ and M∞) are translated into questions regarding
the notion of a filtration on a Barsotti-Tate group. More precisely, we focus on the
notion of a slope filtration, which is the filtration corresponding to our choice of the
parabolic subgroup PL, for any µ-admissible b, and of a Hodge-Newton filtration,
which corresponds to the parabolic subgroup Pb = PMb

, for b of (HN) type. In
particular, we investigate some of their properties, such as existence, splitting and
behavior with respect to the additional structures on the Barsotti-Tate groups, both
in characteristic p and characteristic 0. (Sections 5 and 6)
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1.5. We conclude the paper with an application of these results to the theory of
Shimura varieties. More precisely, given a Shimura datum of (PEL) type (G, h)
over Q, which is unramified at p, there exists a natural stratification (the Newton
polygon stratification) of the reduction modulo p of the corresponding Shimura
varieties, by locally closed reduced subschemes which are stable under the action
of G(Af ) (for Af the finite adeles of Q). This stratification, which we denote by
{S̄∞b }b, is indexed by the set B(GQp

, µh) (where GQp
denotes the p-adic component

of the algebraic group G/Q and µh the conjugacy class of a cocharacters of GQp

corresponding to h).
For each b ∈ B(GQp

, µh), the cohomology groups of the corresponding Newton
polygon strata, with compact supports and coefficients in the vanishing cycles of
Ql, Hp

c (S̄∞b , RqΨη(Ql)) for all p, q ≥ 0, are closely related to the l-adic cohomology
of the associated systems of Rapoport-Zink spaces (see [22],[23]). In particular,
corollary 5 implies the following result. (Section 11)

Corollary 6. Let E denote the reflex field of the Shimura datum (G, h), Ev its
completion at a prime v|p and WEv its local Weil group. Let b ∈ B(GQp , µh).
Assume b is of (HN) type.

Then, the virtual representation of G(Af )×WEv

H•
c (S̄∞b , R•Ψη(Ql)) =

∑
p,q≥0

(−1)p+qHp
c (S̄∞b , RqΨη(Ql))

contains no supercuspidal representations of G(Qp).
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2. Rapoport-Zink spaces

In this section, we recall the definition of the moduli spaces of Barsotti-Tate
groups constructed by Rapoport and Zink in [31]. These are distinguished in two
types. The first type classifies Barsotti-Tate groups with given endomorphisms
and level structures, the second one classifies Barsotti-Tate groups with given en-
domorphisms, polarizations and level structures. Following [31], we refer to them
respectively as (EL) and (PEL).

Let p be an odd prime number. We introduce the data defining the moduli
problems.

2.1. Let B be a finite-dimensional semi-simple algebra over Qp and V a finite-
dimensional B-module. We denote by F the center of B. Then F is a finite product
of finite field extensions of Qp. In this paper, we only deal with the case of B (and
thus F ) unramified, i.e. B split over an unramified extension of Qp (containing all
factors of F ).

In the (PEL) case, we further require the data of:
(1) an involution ∗ on B,
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(2) a non degenerate alternating ∗-hermitian Qp-bilinear form (, ) on V ,

(bv, w) = (v, b∗w), for all v, w ∈ V, b ∈ B.
To the above data we associate an algebraic group G/Qp. In the (EL) case,

G = GLB(V ). In the (PEL) case, we define G = GUB(V, (, )), the group of the
B-linear automorphisms of V preserving the pairing (, ) up to a constant, i.e. for
any Qp-algebra R we set

G(R) = {g ∈ GLB(V⊗R)| there exists c(g) ∈ R× : (gv, gw) = c(g)(v, w) for all v, w ∈ V }.

2.2. Let k be an algebraic closure of Fp, W (k) its Witt vector ring, and K0 =
W (k)⊗Qp the fraction field of W (k). We write σ for the Frobenius on K0.

To any element b ∈ G(K0), we associate a structure of isocrystal on V , namely

N(V ) = Nb(V ) = (V ⊗K0,Φ = b(1V ⊗ σ)) .

The isocrystal is naturally endowed with an action of B and in the (PEL) case with
an alternating form

ψ : N(V )⊗N(V ) → K0(n),
where K0(n) denotes the isocrystal (K0, p

nσ), for n = valp(c(b)), which is defined
as ψ(v, w) = u−1 · (v, w), v, w ∈ N(V ), for u a unit in W (k) such that c(b) =
pnuσ(u)−1. By definition ψ is only determined up to a Q×

p -multiple.
The isocrystal Nb(V ), together with its additional structures, depends up to

isomorphism only on the σ-conjugacy class of b. In the following, we write B(G)
for the set G(K0)/ ∼σ. Thus, given the data (B, V ), the isocrystal Nb(V ) depends
on a choice of an element b ∈ B(G). To any b ∈ B(G) we also associate an algebraic
group J = Jb over Qp, with points in a Qp-algebra R

Jb(R) = {g ∈ G(R⊗Qp
K0)|gσ = b−1gb}.

In addition to the above data, we fix a conjugacy class of cocharacters µ : Gm →
G. To a cocharacter µ, defined over a finite extension K of K0, we associate the
filtration Vi of VK , given by the weight spaces with respect to µ. A pair (b, µ) is
said to be admissible if such is the associated filter isocrystal.

In the following, we always assume:
(1) the pair (b, µ) is admissible;
(2) the isocrystal Nb(V ) has slopes in the interval [0, 1];
(3) the weight decomposition of Nb(V ) with respect to µ contains only weights

0 and 1: VK = V0 ⊕ V1;
(4) in the PEL case, valp(c(b)) = 1.

2.3. Equivalently, let OB be a maximal order of B, and in the PEL case assume
that OB is fixed by the involution ∗ and that there exists a self-dual OB-lattice
Λ ⊂ V . (This is always possible for B unramified.)

Then, the filtered isocrystal N(V ) is the filtered isocrystal of a Barsotti-Tate
group Σ̂, defined over the ring of integers OK of K, where Σ̂ is endowed with an
action of OB and in the (PEL) case with a polarization ` satisfying the conditions
` ◦ b∗ = b∨ ◦ `, for all b ∈ OB (where b∨ denotes the isogeny dual to b). (By a
polarization of a Barsotti-Tate group Σ̂ we mean an antisymmetric isomorphism
` : Σ̂ → Σ̂∨.)

The filtered isocrystal N(V ) depends up to isomorphisms on the isogeny class of
the reduction Σ = Σ̂k of Σ̂ modulo the maximal ideal of OK ; and the group J(Qp)
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is the group of the self-quasi-isogenies of Σ. (By an isogeny between Barsotti-Tate
groups with additional structure we mean an isogeny of the underlying Barsotti-
Tate groups which commutes with the action of OB and in the (PEL) case preserves
the polarization ` up to a Q×

p -multiple.)

2.4. We remark that associated with the choice of a maximal order OB of B and
of a OB-lattice Λ in V as above, one can define

U0 = {g ∈ G(Qp)|gΛ = Λ},

Um = {g ∈ U0|g|Λ ≡ 1Λ mod pmΛ}, m ∈ Z>0,

where U0 is a maximal open compact subgroup of G(Qp), and the Um’s, as m varies,
form a basis of neighborhoods of the identity in G(Qp).

2.5. We now recall the definition of the moduli spaces of Barsotti-Tate groups
associated with the data (B, V, b, µ) as above. For simplicity, we introduce the
moduli problems in terms of a choice of a Barsotti-Tate group Σ/k with additional
structures of isocrystal Nb(V ) (via covariant Dieudonné theory). It is easy to see
that the corresponding moduli spaces depend up to isomorphism only on the isogeny
class of Σ/k.

Let E be the field of definition of the conjugacy class of µ, and E0 the max-
imal unramified extension of E with residue field k. (When the moduli data is
unramified, E is an unramified extension of Qp and we can identify E0 = K0.) We
write OE (resp. OE0) for the ring of integers of E (resp. E0), and NilpOE0

for the
category of OE0-schemes S where p is locally nilpotent. For any S ∈ NilpOE0

we
denote S̄ the closed subscheme of S defined by pOS . We consider S̄ as a k-scheme
via the natural map k → OE0/pOE0 .

The moduli spaces associated by Rapoport and Zink to the above data are rigid
analytic spaces over E0, indexed by the open compact subgroups U of G(Qp).
(For each space we call the corresponding subgroup U its level.) Without loss of
generality, we may assume U ⊆ U0.

Definition 7. ([31], Chapters 3 and 5) Let M be the contravariant functor on
NilpOE0

which to a scheme S associates the set of isomorphisms classes of pairs
(H,β), where H is a Barsotti-Tate groups over S, endowed with an action of OB
and in the (PEL) case with a polarization, and β : Σ×k S̄ → HS̄ is a quasi-isogeny
(of Barsotti-Tate groups with additional structure), satisfying the condition

detOS
(b, Lie(H)) = detK(b, V0), for all b ∈ OB .

Then, the functor M is represented by a formal scheme, which is formally locally
of finite type over Spf(OE0).

Let Mrig denote the rigid analytic fiber of M over E0, and T /Mrig be the
local system defined by the p-adic Tate module of the universal Barsotti-Tate group
on M. For any U ⊆ U0, we define MU to be the finite étale covering of Mrig

parameterizing the classes modulo U of OB-linear trivializations of T by Λ. In
the (PEL) case, we further require that the trivializations preserve the alternating
pairings up to a Q×

p -multiple.

We remark that Mrig = MU0 . The following facts are a direct consequence of
the above definitions.
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(1) The formal schemeM (and therefore also the spacesMU , for all U) depends
up to isomorphism only on the isogeny class of Σ/k.

(2) There is a non-effective descent datum onM over OE (and thus compatibly
also on each MU over E). More precisely, let k(E) ⊂ k be the residue field
of E, τ the Frobenius automorphism of k relative to k(E) (i.e. τ(x) = xq

for q = #k(E)), and FE : Σ → τ∗Σ the relative Frobenius morphism of
Barsotti-Tate groups. Then, the descent datum is defined as

(H,β) 7→ (H,β ◦ F−1
E ).

(3) The group J(Qp) = Jb(Qp) of the self-quasi-isogenies of Σ which are com-
patible with the additional structures acts on M (and thus also on the
MU ). For any γ ∈ J(Qp) we define its action as

(H,β) 7→ (H,β ◦ γ−1).

(4) As the level U varies, the rigid analytic spacesMU form a projective system,
naturally endowed with an action of G(Qp).

Finally, we recall that when the moduli data is unramified the formal scheme
M is known to be formally smooth and therefore the spaces MU are smooth rigid
analytic spaces. (This result is due to Kottwitz, in [17], Section 5.)

2.6. In the following, we study the l-adic étale cohomology groups of the Rapoport-
Zink spaces as representations of G(Qp)×WE and J(Qp). More precisely, let l be
a prime number, l 6= p, and ˆ̄E0 the completion of an algebraic closure of E0. For
any level U , we consider the cohomology groups

Hi(MU ) = Hi
c(MU ×E0

ˆ̄E0,Ql(DM)) = lim
−→ UH

i
c(U ×E0

ˆ̄E0,Ql(DM))

where U varies among the open subspaces ofMU of finite type, and DM = dimMU

(i ∈ N). On them, there is a natural action of the groups J(Qp) and WE , induced
by the action of J(Qp) and the descent data over E on the space MU .

As the level U varies, these cohomology groups form a direct limit which is
natural endowed with an action of G(Qp) induced by the action of G(Qp) on the
tower M∞. Moreover, the following result holds.

Theorem 8. ([22], section 8.2) Let ρ be an admissible l-adic representation of
J(Qp).

(1) The groups Hi,j(M∞)ρ = lim
−→ UExtjJ(Qp)(H

i(MU ), ρ) vanish for almost all
i, j ≥ 0.

(2) There is a natural action of G(Qp)×WE on the Hi,j(M∞)ρ.
(3) The representations Hi,j(M∞)ρ are admissible.

Given any admissible l-adic representation ρ of J(Qp), we define a virtual rep-
resentation of G(Qp)×WE

H•(M∞)ρ =
∑
i,j≥0

(−1)i+jHi,j(M∞)ρ.
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3. Basic Rapoport-Zink spaces

We fix some moduli data (B, V ), and a maximal order OB of B with a OB-lattice
Λ of V as in the previous section.

For a minuscule class of cocharacters µ, we denote by B(G,µ) the subset of
B(G) consisting of all σ-conjugacy classes b such that the pair (b, µ) is admissible.
Under our hypothesis, the set B(G,µ) is in bijection with the set of the Newton
polygons of the associated isocrystals. Moreover, for all b ∈ B(G,µ) the associated
isocrystals share the same end-points and the same Hodge polygon, which are
uniquely determined by µ. The set B(G,µ) can therefore be endowed with the
partial ordering ”lies below” on the Newton polygons (which is called the Bruhat
ordering). There is a unique minimal element for such ordering, called basic, and
a unique maximal one, called µ-ordinary. It follows from results of Grothendieck
([10], p. 149; [15], Theorem 2.3.1, p. 143) and Oort ([28], Theorem 2.1, p. 422)
that the Bruhat ordering is equivalent to the ordering under specialization on the
corresponding isogenies classes of Barsotti-Tate groups, e.g. in the Zariski topology,
being µ-ordinary is an open condition while being basic is a closed condition. Also,
an equivalent condition for b ∈ B(G,µ) to be basic is that the algebraic group Jb
of automorphisms of the associated isocrystal Nb(V ) is an inner form of G ([18],
Section 5.2, p.215). The set B(G,µ) (resp. B(G)) can be described uniquely in
terms of the basic elements in B(L) as L varies among the Levi subgroups of G.
More precisely, to any admissible pair (b, µ) ofG, one can associate a choice of a Levi
subgroup L = Lb of G and a class of cocharacter wbµ of L such that b ∈ B(L,wbµ)
and is basic (see [18], Proposition 6.2, p. 219; [11], Proposition 4.1, p. 415). In the
following, we recall the details of this construction in the cases of our interest.

3.1. Given an admissible pair (b, µ) of G, let N = Nb(V ) be the filtered isocrystal
associated with the pair (b, µ), V1 ⊂ VK its filtration, for K a finite extension of
K0 (notations as in 2.2). We write Φ for the σ-linear Frobenius on N . Then, the
choice of b ∈ B(G) uniquely determines the Newton polygon of N , and viceversa the
Newton polygon of N uniquely determines b. On the other hand, while µ uniquely
determines the Hodge polygon of N , the viceversa does not hold in general. We
remark that under our hypothesis a simple refinement of the datum of the Hodge
polygon does. More precisely, let F be the unramified finite extension of Qp which
is the center of B, r = [F : Qp], and define I = HomQp

(F,K0). For convenience,
we fix j ∈ I and identify the set I with Z/rZ, via the map s 7→ σs ◦ j. Then,
we have a natural decomposition V = ⊕i∈IV (i), where V (i) = {v ∈ V |λ · v =
i(λ)v for all λ ∈ F}. This is not a decomposition of the σ-isocrystal N overlying
V , since it is not stable under the Frobenius endomorphism Φ. In fact, for each
i ∈ I, Φ maps the space V (i) to V (i+1). On the other hand, it follows from the
above observation that this decomposition is stable under Φr, and thus it can be
regarded as a decomposition of the σr-isocrystal (N,Φr). For each i ∈ I, we write
(N (i),Φr|N (i)), for the σr-isocrystal overlying V (i). It is a simple observation that
the N (i)’s are all isogenous, and that their (common) Newton polygon uniquely
determines the Newton polygon of (N,Φ). The analogous statement for the Hodge
polygons does not hold in general. On the other hand, the decomposition V =
⊕iV (i) gives rise to a decomposition of the Hodge polygon of N , and the datum
of the Hodge polygon together with this decomposition uniquely determines µ (see
[31], Section 3.23, Part b, pp.83-84; [32], Section 2.3, pp. 588–591).
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3.2. For an admissible pair (b, µ) of G, let us now consider the slope decomposition
of the associated isocrystal N(V ) = ⊕sN(W s), with N(W s) isoclinic of slope λs.
We number the slopes of N(V ) in decreasing order, 1 ≥ λ1 > · · · > λr ≥ 0. It is an
easy consequence of the uniqueness of the slope decomposition that it is preserved
under the additional structures. More precisely, the action of B preserves the
subspaces N(W s), for all s, and in the (PEL) case, the alternating form on N(V )
induces a perfect pairing on N(W s)⊗N(Wu), for all s, u such that s+ u = r + 1.

We write V = ⊕sW s for the corresponding decomposition of V into sub-B-
modules. We define L = Lb to be the stabilizer of this decomposition in G, b̄ the
element in B(L) corresponding to the Newton polygons of the isocrystals N(W s),
and wbµ the class of cocharacters of L corresponding to their refined Hodge polygons
(in the sense of section 3.1). It follows from the definition that L is a Levi subgroup
of G, and b̄ a wbµ-admissible element of B(L), which is sent to b ∈ B(G) under the
natural map B(L) → B(G). Moreover, L is an inner form of Jb (see [31], Corollary
1.14, p.11), thus b̄ ∈ B(L,wbµ) is basic. In the following, with abuse of notations,
we write b̄ = b.

Let M be any Levi subgroup of G containing L = Lb. Then M is the Levi
subgroup of G associated with a (in the (PEL) case symplectic) B-linear decompo-
sition of V , V = ⊕iV i, which is coarser than or equal to the slope decomposition
V = ⊕sW s. (In the (PEL) case, we say that a B-linear decomposition V = ⊕iV i
is symplectic if the alternating pairing on V induces perfect pairings between V i

and V t+1−i, for all i = 1, . . . , t.) Viceversa, for any partition (n1, . . . , nt) of r (in
the (PEL) case satisfying the conditions ni = nt+1−i, for all i), let M be the Levi
subgroup associated to the decomposition V = ⊕iV i defined as

V i = ⊕ni
ni−1+1W

s, for all i = 1, . . . , t and n0 = 0.

Then, M contains L. It follows from the definition that the image of b under
the natural map B(L) → B(M) is the element in B(M) corresponding to the
Newton polygons of the isocrystals N(V i) = ⊕ni

ni−1+1N(W s), and that the class of
cocharacters of M induced by wbµ is the one associated with their refined Hodge
polygons.

In the following, we write V i0 for the weight 0 subspace of V iK , for each i = 1, . . . , t.

3.3. Given the data (B, V, b, µ), we choose a decomposition V = ⊕iV i as above
(we call such a decomposition compatible with the data (b, µ)), and write M for the
associated Levi subgroup of G.

To these data we can associated a second tower of moduli spaces of Barsotti-Tate
groups, which we denote by P∞ = P∞M = {PU = PUM}U⊂M(Qp), which is the tower
of Rapoport-Zink spaces associated with the data (B,⊕iV i,M, b, wbµ). In this
paper, we investigate how, for any given admissible pair (b, µ), the geometry and
the cohomology of M∞ can be explained in terms of the geometry and cohomology
of the associated P∞M ’s.

3.4. As in section 2.6, by the cohomology of P∞ we mean the following data. Let
l be a prime number, l 6= p. We consider the cohomology groups (i ∈ N)

Hi(PU ) = Hi
c(PU ×E0

ˆ̄E0,Ql(DP)) = lim
−→ VH

i
c(V ×E0

ˆ̄E0,Ql(DP))

where V varies among the open subspaces of PU of finite type, and DP = dimPU ,
endowed with the actions of J(Qp) and WE induced by the action of J(Qp) and



14 ELENA MANTOVAN

the descent data over E on the space PU . As the level U varies, these cohomol-
ogy groups form a projective limit which is natural endowed with an action of
M(Qp) induced by the action of M(Qp) on P∞. Then, to any admissible l-adic
representation ρ of J(Qp), we associate a virtual representation of M(Qp)×WE

H•(P∞)ρ =
∑
i,j≥0

(−1)i+jHi,j(P∞)ρ.

In the following, we also consider the above groups as representations of P (Qp)×
WE , for P a parabolic subgroup with M as a Levi factor, by letting the unipotent
radical of P (Qp) act trivially on them.

3.5. We describe the construction of the spaces PU more explicitly. We choose the
lattice Λ of the form Λ = ⊕iΛi, for Λi ⊂ V i a OB-lattices, i = 1, . . . , t. In the (PEL)
case we further assume that the restriction of the pairing (, ) to Λ induces perfect
pairings between the sublattices Λi and Λj , for i, j satisfying i+j = t+1. Then, the
associated Barsotti-Tate group Σ/k is of the form Σ = ⊕iΣi, where Σi is a Barsotti-
Tate group with isocrystal V i, for each i = 1, . . . , t. It follows from the definition
that the action of OB on Σ preserves the above decomposition, and in the (PEL)
case, that the polarization ` of Σ induces isomorphisms `i : Σi → (Σ∨)i = (Σj)∨,
satisfying the conditions (`∨)i = c ·`j , c ∈ Z×p , for all i, j such that i+j = t+1. For
Σ of the form Σ = ⊕sXs, where for each s the Barsotti-Tate group Xs is isoclinic
of slope λs, 1 ≥ λ1 > · · · > λr ≥ 0, we have Σi = ⊕ni

ni−1+1Xs for all i (notations as
in 3.2).

Let U0 ⊂ M(Qp) be the maximal compact subgroup associated with our choice
of an integral lattice Λ = ⊕iΛi ⊂ V = ⊕iV i. For simplicity, we treat the (EL) and
(PEL) cases separately. (We maintain the notations introduced in section 2.5.)

3.6. In the (EL) case, let P be the formal scheme representing the contravariant
functor that to a scheme S ∈ NilpOE0

associates the set of isomorphism classes of
t pairs {(Hi, βi)}i=1,...,t where

(1) Hi are Barsotti-Tate groups over S with an action of OB ;
(2) βi : Σi

S̄
→ Hi

S̄
are quasi-isogeny, commuting with the action of OB ;

satisfying the conditions, for i = 1, . . . , t,

detOS
(b, Lie(Hi)) = detK(b, V i0 ) for all b ∈ OB .

Let T = ⊕iT i/Prig be the local system defined by the p-adic Tate module of
the universal Barsotti-Tate group on P. Then, for any U ⊆ U0, the space PU
is the finite étale covering over Prig parameterizing the classes modulo U of OB-
linear trivializations of T = ⊕iT i by Λ = ⊕iΛi, which are compatible with the
decompositions. (With these notations, PU0 = Prig.)

Equivalently, we can describe the system P∞ as follows. Let Gi denote the
algebraic group associated to the pair (B, V i) (i.e. the group of B-linear automor-
phisms of V i). Then, M = G1 × · · · × Gt. For all i = 1, . . . , t, we write (bi, µi)
for the restriction of (b, wbµ) to the factor Gi, and denote by M∞

i the tower of
Rapoport-Zink spaces associated with the data (B, V i, bi, µi).

Then, it follows from the above description that, for any level U of the form
U = U1 × · · · × Ut, we can identify

PU = MU1
1 × · · · ×MUt

t .
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Therefore, by the Künneth formula, for any l-adic admissible representation ρ =
⊗iρi of J(Qp) = Jb(Qp) = Jb1(Qp) × · · · × Jbt(Qp), there is an equality of virtual
representations of M(Qp)×WE

H•(P∞)ρ = H•(M∞
1 )ρ1 ⊗ · · · ⊗H•(M∞

t )ρt
.

3.7. In the (PEL) case, let P be the formal scheme representing the contravariant
functor that to a scheme S ∈ NilpOE0

associates the set of isomorphism classes of
t triples {(Hi, `Hi , βi)}i=1,...,t where

(1) Hi are Barsotti-Tate groups over S with an action of OB ;
(2) `Hi : Hi → (Hj)∨, j = t+ 1− i, are isomorphisms and `∨Hi = −`Hj ;
(3) βi : Σi

S̄
→ Hi

S̄
are quasi-isogenies, commuting with the action of OB ;

satisfying the conditions
(1) detOS

(b, Lie(Hi)) = detK(b, V i0 ), for all b ∈ OB and i = 1, . . . , t;
(2) there exists c ∈ Q×

p such that `Hi = c · (βj∨)−1 ◦ `i ◦ (βi)−1 for all i, j with
i+ j = t+ 1.

Let T = ⊕iT i/Prig be the local system defined by the p-adic Tate module
of the universal Barsotti-Tate group over P. Then, for any U ⊆ U0, the space
PU is the finite étale covering over Prig parameterizing the classes modulo U of
OB-linear trivializations of T = ⊕iT i by Λ = ⊕iΛi, which are compatible with
the decompositions and preserve the pairing up to a constant. (Again, with these
notations, PU0 = Prig.)

It follows from the above description that in the (PEL) case the first [ t+1
2 ]-triples

completely determine the remaining ones. More precisely, we have a description
analogous to the one in the (EL) case. We distinguish the cases of t even and t
odd.

For t odd, let i = 1, . . . , (t+ 1)/2, and write Gi for the algebraic group associated
to the pair (B, V i) (i.e. the group of B-linear automorphisms of V i if i 6= (t+ 1)/2,
and the group of B-linear automorphisms of V i preserving the pairing up to scalar
multiple if i = (t+ 1)/2). Then, M = G1×· · ·×G(t+1)/2. For all i = 1, . . . , (t+1)/2,
we write (bi, µi) for the restriction of (b, wbµ) to the factor Gi, and denote by M∞

i

the tower of Rapoport-Zink spaces associated with the data (B, V i, bi, µi). (These
spaces are of (EL) type for i 6= (t+ 1)/2 and of (PEL) type for i = (t+ 1)/2.)

Then, it follows from the above description that, for any level U of the form
U = U1 × · · · × U(t+1)/2 ⊂M(Qp), we can identify

PU = MU1
1 × · · · ×MU(t+1)/2

(t+1)/2 .

Therefore, using the Künneth formula, for any l-adic admissible representation
ρ = ⊗iρi of J(Qp) = J(Qp)b = Jb1(Qp)× · · · × Jb(t+1)/2(Qp), there is an equality of
virtual representations of M(Qp)×WE

H•(P∞)ρ = H•(M∞
1 )ρ1 ⊗ · · · ⊗H•(M∞

(t+1)/2)ρ(t+1)/2 .

For t even, let i = 1, . . . , t/2, and Gi as above. Then M = Gm×G1×· · ·×Gt/2,
and it follows from the above description that, for any level U of the form U =
K × U1 × · · · × Ut/2 ⊂M(Qp), we can identify

PU =
∐

Q×p /K

MU1
1 × · · · ×MUt/2

t/2 .
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Therefore, using the Künneth formula, for any l-adic admissible representation
ρ = χ⊗ (⊗iρi) of J(Qp) = Jb(Qp) = Q×

p × (Jb1(Qp)× · · · × Jbt/2(Qp)), there is an
equality of virtual representations of M(Qp)×WE

H•(P∞)ρ = (Ql)χ ⊗H•(M∞
1 )ρ1 ⊗ · · · ⊗H•(M∞

t/2)ρt/2 .

3.8. To the inclusion of the Levi subgroup M into G corresponds a system of
equivariant morphisms

Θ∞ : P∞ →M∞.

We first define a morphism of formal schemes over OE0 , Θ : P →M as

(EL) : {(Hi, βi)}i 7→ (H = ⊕iHi, β = ⊕iβi),

(PEL) : {(Hi, `Hi , βi)}i 7→ (H = ⊕iHi, `H = ⊕i`Hi , β = ⊕iβi),
Indeed, for any {(Hi, βi)}i ∈ P(S), S ∈ NilpOE0

, we may endow the Barsotti-
Tate group H = ⊕iHi with an action of OB defined from the action on the Hi. The
quasi-isogeny β is thusOB-equivariant. Furthermore, in the (PEL) case, it is easy to
check that the isomorphism `H : H → H∨ is antisymmetric (thus a polarization),
and that it is compatible with the polarization ` on Σ, via the quasi-isogeny β.
Finally, we have Lie(H) = ⊕iLie(Hi), V0 = ⊕iV i0 and

detOS
(b, Lie(H)) =

∏
i

detOS
(b, Lie(Hi)) =

∏
i

detK(b, V i0 ) = detK(b, V0).

For any U ⊂ G(Qp), we write PU = PU∩M(Qp). Then, by the universal properties
of the coversMU →MU0 , we see that the morphism Θ canonically lifts to a system
of morphisms of rigid analytic spaces ΘU : PU → MU , which are compatible
with the natural projections, as the level U varies. Moreover, they commute with
the descent data over E, with the action of J(Qp) = Jb(Qp), and with action of
M(Qp) ⊂ G(Qp) on the projective systems.

This system of morphisms is the starting point of our analysis.

4. Moduli spaces of filtered Barsotti-Tate groups

In this section, we introduce a third kind of moduli spaces of Barsotti-Tate groups
associated with the data (B, V, b, µ).

4.1. Let V = ⊕iV i be a decomposition of V compatible with the choice of the data
(b, µ) as in section 3.2. We define an increasing filtration V• of V ,

0 ⊂ V1 ⊂ · · · ⊂ Vt = V, as Vj = ⊕1≤i≤jV
i.

The above filtration is the filtration on the isocrystal Nb(V ) associated with the
following filtration of Σ,

0 ⊂ Σ1 ⊂ · · · ⊂ Σt = Σ, for Σj = ⊕1≤i≤jΣi,

where the components Σi of Σ are ordered according to the decreasing order of the
slopes, i.e. for each i = 1, . . . , t−1 all the slopes of Σi are strictly greater than those
of Σi+1. Thus, in the case of the slope decomposition V = ⊕iW i, the associated
filtration on Σ is the natural slope filtration.

Let P = PM be the parabolic subgroup of G associated with the above filtration
of V . Then it follows from the definition that M is a Levi factor of P .

To the data (B, V•, P, b, wbµ) we associate a projective system of moduli spaces of
Barsotti-Tate groups F∞ = {FU}U⊂P (Qp), indexed by the open compact subgroups
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of P (Qp). Similarly to the previous two cases, the moduli spaces FU we will define
satisfy the following requirements:

(1) for each level U , FU is a rigid analytic space (locally of finite type) defined
over E0, and to each inclusion U1 ⊆ U corresponds a transition map FU1 →
FU ;

(2) there is a non-effective descent datum on the FU ’s over E ⊂ E0, which is
compatible with the transition maps;

(3) the group J(Qp) = Jb(Qp) acts on the spaces FU ’s, compatibly with the
transition maps;

(4) as the level U varies, the spaces FU ’s form a projective system (which we
denote by F∞) which is endowed with an action of P (Qp).

4.2. Let OB be a maximal order of B, and Λ = ⊕iΛi an OB-lattice of V as in
section 3.5. We define an increasing filtration Λ• of Λ as

0 ⊂ Λ1 ⊂ · · · ⊂ Λt = Λ, for Λj = ⊕1≤i≤jΛi.

Thus, for all j = 1, . . . , t, Λj is a OB-lattice of Vj .
To the filtration Λ•, we associate a system of compact subgroups of P (Qp),

U0 = {g ∈ P (Qp)|gΛj = Λj for all j = 1, . . . , t},

Um = {g ∈ U0|g|Λ ≡ 1Λ mod pmΛ}, for m ∈ Z>0.

Then U0 is a maximal open compact subgroup of P (Qp), and the Um, as m varies,
form a basis of neighborhoods of the identity in P (Qp). Thus, without loss of
generality, we may always assume U ⊆ U0 (and U = Um, for some integer m ≥ 1).

Definition 9. Let F be the contravariant functor on NilpOE0
which to a scheme

S associate the set of isomorphisms classes of triples (H,H•, β), where
(1) H is a Barsotti-Tate groups over S; endowed with an action of OB and in

the (PEL) case with a polarization,
(2) H• is an increasing filtration of H by Barsotti-Tate groups over S, with

Barsotti-Tate subquotients, which is preserved by the action of OB and in
the (PEL) case by the polarization;

(3) β : ΣS̄ → HS̄ is a quasi-isogeny of Barsotti-Tate groups, compatible with
the additional structures, i.e. with the action of OB and in the (PEL)
case the polarization, and with the filtration, i.e. β(Σj,S̄) ⊆ Hj,S̄, for any
j = 1, . . . , t;

satisfying the conditions:
(1) the restrictions of β to the Barsotti-Tate subgroups defining the filtration

βj : Σj,S̄ → Hj,S̄ ,

are quasi-isogenies;
(2) for all j = 1, . . . , t,

detOS
(b, Lie(Hj)) = detK(b, V0,j), for all b ∈ Ob.

Let us assume for the moment the functor F is represented by a formal scheme,
which is formally locally of finite type over Spf(OE0). Let F rig denote the rigid
analytic fiber of F over E0, and T /F rig the local system defined by the p-adic
Tate module of the universal Barsotti-Tate group over F . Then, T has a natural
filtration T• associated with the filtration of the universal Barsotti-Tate group.
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Definition 10. For any U ⊆ U0, we define FU to be the finite étale covering
of F rig parameterizing the classes modulo U of OB-linear trivializations of T by
Λ, mapping the filtration Λ• of Λ onto the filtration T• of T . In the (PEL) case
we further require that the trivializations preserve the alternating pairings up to a
Q×
p -multiple.

Then, FU0 = F rig. It is an easy consequence of the definition that the spaces
FU satisfy the expected requirements. More precisely, let FE : Σ → τ∗Σ denote
the relative Frobenius morphism of Σ. It is clear that the morphism FE maps the
Barsotti-Tate subgroups Σj onto τ∗Σj , for all j. In fact the restriction FE|Σj

:
Σj → τ∗Σj is simply the relative Frobenius of the Barsotti-Tate groups Σj (in
particular, it is an isogeny). We define a non-effective descent datum on F over
OE (and thus compatibly on the FU ’s over E) as

(H,H•, β) 7→ (H,H•, β ◦ F−1
E ).

Similarly, let J(Qp) = Jb(Qp) be the group of the self-quasi-isogenies of Σ, which
are compatible with its additional structures. Each γ ∈ J(Qp) preserves the slope
filtration of Σ, and thus the filtration Σ•. More over, for all j = 1, . . . , t the
restrictions γj : Σj → Σj are self-quasi-isogenies. We define an action of J(Qp) on
F (and thus also on the FU ’s) as

(H,H•, β) 7→ (H,H•, β ◦ γ−1).

As the level U varies, the rigid analytic spaces FU ’s form a projective system
F∞, i.e. to each inclusion V ⊆ U we associate the natural projection FV → FU .
The projective system F∞ is naturally endowed with an action of P (Qp), defined
by composition on the right with the trivializations.

Finally, we remark that the spaces FU ’s only depend on the data (B, V•, P, b, wbµ),
i.e. on the isogeny class of Σ/k, and not on the choice of the Barsotti-Tate group
Σ/k.

Proposition 11. The functor F is represented by a formal scheme over OE,
formally locally of finite type.

Moreover, if we assume that the moduli data (B, V•, P, b, ν) is unramified, then
the formal scheme F is formally smooth, and the rigid analytic spaces FU ’s smooth,
for all U ⊂ P (Qp).

Proof. We prove that F is representable by proving that it is relatively representable
over some related Rapoport-Zink spaces.

For any j = 1, . . . , t, we consider the Rapoport-Zink moduli space Mj associated
with the Barsotti-Tate group Σj/k (see definition 7). Then, there exists an obvious
transformation of functors

F →
∏
j

Mj ,

which identify F with the subfunctor of
∏
jMj where the Barsotti-Tate groups

Hj fit together as increasing filtration of Ht and the quasi-isogenies βj agree with
the restrictions of βt, and in the (PEL) case the polarization of Ht preserves the
filtration. More precisely, for any j = 1, . . . , t − 1, let ιj : Σj → Σ denote the
natural inclusion and define

φj = βj+1 ◦ ιj ◦ β−1
j : Hj → Hj+1.
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Then, the φj are OB-linear quasi-morphisms and F is the subfunctor of
∏
jMj

where the φj are injective morphisms, which in the (PEL) case are compatible with
the polarization on Ht. It follows from Proposition 2.9 and Lemma 2.10 (p. 52,
in [31]) that the condition, that a quasi-morphism of Barsotti-Tate groups over
a scheme S is a morphism, is represented by a closed subscheme. Moreover, the
condition that a morphism is injective is represented by an open subscheme, and in
the (PEL) case the condition that the filtration is compatible with the polarization
by a closed subscheme. Thus, F is relatively representable and therefore represented
by a formal scheme over OE0 , which is formally locally of finite type since such are
the Mj ’s.

For (B, V ) unramified, the fact that the formal scheme F is formally smooth
can be proved using the deformation theory of Grothendieck-Messing, similarly to
the case of the moduli spaces considered by Rapoport and Zink, ([17], Section 5).
More precisely, one can use corollary 20 to describe deformations of filtered Barsotti-
Tate groups with additional structures as successive extensions of the corresponding
deformations of its Barsotti-Tate subquotients. Such observation reduces the proof
of formal smoothness to the cases considered in [17] (see also [12], Lemma II.1.9
and Corollary II.1.10, pp. 71–73).

Finally, if F is formally smooth, then F rig is a smooth rigid analytic space and
thus also its étale coverings FU , for all U ⊆ U0 ⊂ P (Qp). �

4.3. Similarly to the case of the moduli spaces introduced by Rapoport and Zink,
we are interested in studying the limit of the l-adic étale cohomology groups of the
rigid analytic spaces FU as representations of P (Qp)×WE and J(Qp).

More precisely, let l be a prime number, l 6= p, and ˆ̄E0 the completion of an
algebraic closure of E0. For any level U , we consider the cohomology groups

Hi(FU ) = Hi
c(FU ×E0

ˆ̄E0,Ql(DF )) = lim
−→ VH

i
c(V ×E0

ˆ̄E0,Ql(DF ))

where V varies among the open subspaces of FU of finite type, and DF = dimFU
(i ∈ N). On them, there is a natural action of J(Qp) and WE induced by the action
of J(Qp) and the descent data over E on the space FU .

As the level U varies, these cohomology groups form a projective limit which
is natural endowed with an action of P (Qp) induced by the action of P (Qp) on
the tower F∞. Moreover, as in the case of the cohomology of the Rapoport-Zink
spaces, the following result on the cohomology of the system F∞ holds.

Theorem 12. Let ρ be an admissible l-adic representation of J(Qp).

(1) The groups Hi,j(F∞)ρ = lim
−→ UExtjJ(Qp)(H

i(FU ), ρ) vanish for almost all
i, j ≥ 0.

(2) There is a natural action of P (Qp)×WE on the Hi,j(F∞)ρ.
(3) The representations Hi,j(F∞)ρ are admissible.

Proof. The same proof used in the case of the MU ’s in [22] (section 8.2) applies to
these new moduli spaces. �

We define a virtual representation of P (Qp)×WE

H•(F∞)ρ =
∑
i,j≥0

(−1)i+jHi,j(F∞)ρ.
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4.4. We are interested in investigating how these new moduli spaces of Barsotti-
Tate groups associated to the data (B, V, b, µ) (together with a choice of a compat-
ible filtration on V ) compare with the ones defined by Rapoport and Zink.

We already observed that there exists a natural morphism of OE0-formal scheme
j : F →M, corresponding to forgetting the filtration on the Barsotti-Tate groups.
It is clear from the definition that j is equivariant for the descent data over OE
and for the action of the group J(Qp). Moreover, for any level U ⊆ U0 ⊂ G(Qp),
by the universal properties of the spaces MU → MU0 , there exists a compatible
system of morphisms,

jU : FU = FU∩P (Qp) →MU ,

lifting j, which are equivariant for the descent data and the action of J(Qp), and
also for the action of P (Qp) ⊂ G(QP ), as the level U varies.

Furthermore, it is an easy consequence of the definition that the morphisms
ΘU : PU → MU (introduced in section 3.8) factors through the morphisms jU :
FU →MU , i.e. for all levels U

ΘU : PU → FU →MU ,

where the morphisms PU → FU , which for simplicity we also denote by ΘU , send

(EL) : {(Hi, βi, [αi])}i 7→ (H = ⊕iHi,H•, β = ⊕iβi, [α = ⊕iαi]),

(PEL) : {(Hi, `Hi , βi, [αi])}i 7→ (H,H•, `H = ⊕i`Hi , β, [α]),
where the filtration H• of H is defined as Hj = ⊕1≤i≤jH

i. Clearly, the above
morphisms are equivariant for the descent data over E, the action of J(Qp) and
the action of M(Qp) ⊂ P (Qp) on the projective systems.

Proposition 13. For any level U ⊆ U0 ⊂ P (Qp), there exist a morphism of
E0-rigid analytic spaces

ΞU : FU → PU = PU∩M(Qp)

which is J(Qp)-equivariant, commutes with the descent data and satisfies the equal-
ity ΞU ◦ΘU = 1PU .

Moreover, as the level U varies, the morphisms ΞU commute with the transition
morphisms and with the action of P (Qp) on the projective systems F∞ and P∞.

Proof. We define the morphisms ΞU by considering the graded pieces of the filtra-
tion on the Barsotti-Tate groups, together with the induced structures.

More precisely, given a triple (H,H•, β) ∈ F(S), S ∈ NilpOE0
, the subquotients

Hi = Hi/Hi−1 of H, for any i = 1, . . . , t, inherit an action of OB (since this
action preserves the filtration), and in the (PEL) case a compatible system of
isomorphisms `Hi induced on the subquotients by the restrictions of the polarization
`H of H to the filtering subgroups. Similarly, the quasi-isogeny β induces some
quasi-morphisms βi : Σi

S̄
→ Hi

S̄
. By induction on the length t of the filtration

of Σ, it is easy to check that, after multiplying by a sufficiently large power of p,
the βi are well-defined morphisms which are surjective and have finite flat kernels.
Thus, the subquotients Hi are Barsotti-Tate groups and the quasi-morphisms βi

quasi-isogenies. It is then easy to check that the pairs (Hi, βi), i = 1, . . . , t, satisfy
the required properties. Finally, any trivialization by Λ of the local system T which
preserves the filtrations Λ• and T• induces trivializations of the subquotients T i by
Λi.
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It follows from the definition that the morphisms ΞU are equivariant for the
descent data over E and for the action of J(Qp), and that are also compatible with
the natural projections, and with the action of P (Qp) on F∞ and P∞, as the level
U varies. Finally, it is easy to see that they satisfy the equalities ΞU ◦ΘU = 1PU ,
for all levels U . �

Proposition 14. For each level U , the morphism ΘU : PU → FU is a closed
immersion.

Proof. We first consider the case of level U = U0. Let ιi : Σi → Σ denote the natural
inclusions of the direct summands of Σ, and (H,H•, β) denote the universal object
over F . Then, the image of the morphism ΘU0 can be identified with the closed
locus in FU0 where the quasi-morphisms ξi = β ◦ ιi ◦ (βi)−1 : Hi = Hi/Hi−1 → H
are morphisms, for all i = 1, . . . , t.

In the case of level U ⊆ U0, let si : Λi → Λ (resp. ti : T i → T ) denote
the natural inclusions corresponding to ιi (resp. ξi), and write α• : Λ• → T• for
the universal level structure over FU . Then, the image of the morphisms ΘU is
determined by the above conditions and by the further request that the morphisms
α◦si−ti◦αi : Λi → Ti−1 vanish, for all i. The latter conditions are also represented
by a unique closed subspace. Thus, the morphisms ΘU are closed and it follows
from proposition 13 that they are actually closed immersions. �

5. Properties of the slope filtration

It follows from the definitions of the three systems of moduli spaces associated
to the data (B, V, b, µ) that understanding the differences among them amounts to
understanding certain questions regarding the slope filtration (and coarser ones) of
a Barsotti-Tate group, e.g. when it exists, when it is split.

For clarity, we address all the pertinent questions on the properties of the slope
filtration of Barsotti-Tate groups in this section, postponing the study of the moduli
spaces of Barsotti-Tate groups we have introduced to later sections. (For more
details on the notion of a slope filtration of a Barsotti-Tate group, we refer to [10],
[15],[33],[29].)

In the following, we consider the case of a general admissible pair (b, µ). We
postpone to section 6 the discussion of stronger properties which are known to hold
for pairs of (HN) type.

5.1. We start by considering the case of a Barsotti-Tate group over a scheme S
of characteristic p. We remark that the following results hold for any filtration by
Barsotti-Tate subgroups with subquotients of distinct slopes, i.e. for any choice of
an order on the slopes.

Our first result regards the existence of a filtration.

Proposition 15. We fix a Barsotti-Tate group over k, Σ = ⊕iΣi as in section
3.5, and write Σj = ⊕0≤i≤jΣi (j = 1, . . . , t) for its filtration as in 4.1.

Let G be a Barsotti-Tate group over a noetherian k-scheme S, together with a
quasi-isogeny β : ΣS → G.

Then there exists a stratification of S by closed subschemes

S = S0 ⊇ S1 ⊇ · · · ⊇ Sr ⊃ Sr+1 = ∅, S◦s = Ss − Ss+1,

such that:
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(1) for each s, the restriction of G to the locally closed subscheme S◦s admits an
increasing filtration G• satisfying the condition: for each j = 1, . . . , t, the
restriction of β to the subgroup Σj induce a quasi-isogeny βj : Σj → Gj ;

(2) for any connected scheme Z and any morphism f : Z → S, f∗G admits a
filtration by Barsotti-Tate subgroups with the above property if and only if
the morphism f factors via the inclusion S◦s ↪→ S, for some s ≥ 0.

Proof. It is an easy observation that if a filtration G• of G satisfying the required
properties exists, then it is unique. In fact, each subgroup Gj can be identified with
the image of Σj ⊂ Σ via pnβ, for n a sufficiently large integer (namely, n large
enough for pnβ to be an isogeny). On the other hand, a sufficient condition for
the image of Σj ⊂ Σ to be a Barsotti-Tate subgroup of G is that the finite group
scheme ker(pnβ) ∩ Σj is flat, for n as above. (We remark that this condition does
not depend on the choice of n� 0). Furthermore, if we require that the restrictions
of β to the subquotients Σj are quasi-isogenies then the above conditions are also
necessary.

Thus, the existence of a stratification of S as in the statement is a special
case of Mumford’s construction of the flattening stratification for a coherent sheaf
over a noetherian scheme S, applied to the push forward of the structure sheaf of
ker(pnβ) ∩ Σj (for each j). We recall this construction in the next lemma. �

Lemma 16. ([27]; [16], Proposition 6.4.3, p. 163) Let F be a coherent sheaf over
a noetherian scheme S (not necessarily reduced). Then there exists a stratification
of S by closed subschemes (not necessarily distinct)

S = S0 ⊇ S1 ⊇ · · · ⊇ Sr ⊃ Sr+1 = ∅

with the universal property that for any scheme Z and morphism f : Z → S, f∗F
is locally free of rank i if and only if the morphism f factors via the inclusion
S◦i = Si − Si+1 ↪→ S.

When S is reduced scheme, Si is simply the closed reduced subscheme of S whose
underling space is the locus where the sheaf F has rank greater than or equal to i.

We remark that it follows from the conditions satisfied by the filtration G• of G,
that the groups Gi = Gi/Gi−1 are Barsotti-Tate groups and the quasi-isogenies βj
induce quasi-isogenies among the subquotients βi : Σi → Gi, for all i. Thus, the Gi
have all distinct slopes, and in particular, in the case when Σ• is the slope filtration
of Σ, the induced filtration G• of G is its (unique) slope filtration. Finally, in the
case of a Barsotti-Tate group endowed with additional structures, it follows from
the fact the subquotients have distinct slopes that the filtration is compatible with
the additional structures (i.e. the subgroups Gj and the subquotients Gi inherits
a OB-action and in the (PEL) case the polarization induces some isomorphisms
Gi ' (Gj)∨).

In the following, we always assume that a filtration of a Barsotti-Tate group and a
quasi-isogeny between filtered Barsotti-Tate groups to satisfy the above conditions,
namely that the filtration has Barsotti-Tate subquotients with distinct slopes and
that the quasi-isogeny preserves the filtration and induces quasi-isogenies between
the corresponding subquotients. We point out that the assumption on the filtra-
tion implies that a quasi-isogeny between filtered Barsotti-Tate groups is uniquely
determined by the induced quasi-isogenies between the corresponding subquotients.
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5.2. Our next result regards the existence of a splitting of the induced filtration.
We call a filtered Barsotti-Tate group split if its filtration is canonically split, i.e.
G = ⊕iGi.
Proposition 17. Let G be a filtered Barsotti-Tate group (with additional struc-
tures) defined over a noetherian k-scheme S, together with a quasi-isogeny β : ΣS →
G.

There exist some positive integers 0 = r1 ≤ r2 ≤ · · · ≤ rt (which in the (PEL)
case are chosen satisfying the relations ri + rj = rt for all i, j with i + j = t + 1)
such that the pullback of G by the isogenies pri on the subquotients Gi is a filtered
Barsotti-Tate group with additional structures and is split.

Proof. We start by observing that for any positive integers ri satisfying the above
conditions, the Barsotti-Tate group H, obtained from G via pullbacks, canonically
inherits additional structures, as well as a quasi-isogeny of Barsotti-Tate groups
with additional structures β̃ : ΣS → H. For simplicity, we prove this only in the
case of when the length of the filtration of G is 2, i.e. 0 → G1 → G → G2 → 0.
(The essential ideas of the proof are well represented by this case.) In general, the
statement can be proved by induction on the length of the filtration t. (The case
t = 1 is obvious.)

For t = 2, we haveH = G×G2G2 the pullback of G via the morphism pr : G2 → G2,
for some r ≥ 1. Using the universal property of products, for each γ ∈ OB we define
γH = (γG , γG2), where γG and γG2 denote the action of γ on G and G2, respectively.
In order to check that the morphism is well-defined it is enough to remark that
the projection G → G2 and pr : G2 → G2 are OB-linear morphisms. Finally, we
need to verify that this construction indeed defines an action of OB on H, and this
follows from the analogous properties for G together the equalities of quasi-isogenies
γH = π−1 ◦ γG ◦ π, for all γ ∈ OB , where π : H → G denotes the natural projection
(which is a isogeny).

In the (PEL) case, we define the polarization `H as follows. For t = 2, we have
H∨ = (G2)∨

∐
(G2)∨ G∨ the pushforward of G∨ via multiplication by pr on (G2)∨.

(This follows from the definition ofH and the fact that the dual of the multiplication
by pr is the multiplication by pr on the dual). Equivalently, given the short exact
sequence 0 → (G2)∨ → G∨ → G∨1 → 0, H∨ can also be realized as H∨ = G∨×G∨1 G

∨
1

the pushforward of G via multiplication by pr on G∨1 . We define `H = (`G , `2), for
`G the polarization of G and `2 : G2 → G∨1 the isomorphism induced by `G on the
quotients. The fact that `H is a OB-linear polarization follows for the analogous
properties of `G and the equality `H = c · (π∨ ◦ `G ◦ π), for some c ∈ Q×

p .
Finally, we define the quasi-isogeny β̃ : ΣS → H as β̃ = π−1 ◦ β. It follows

from its definition that it is a quasi-isogeny of Barsotti-Tate groups with additional
structures.

We are now left with the task of verifying that, for some integers ri as above,
the Barsotti-Tate group H is split. We prove the statement by induction on t, the
length of the filtration. For t = 1 the statement is obvious (r1 = 0). For t > 1, we
treat the (EL) and (PEL) cases separately.

In the (EL) case, we consider the short exact sequence

0 → G1 → G → G′ → 0,

where the Barsotti-Tate group G′ is endowed with a filtration of length t − 1, of
subquotients Gi, i = 2, . . . , t.



24 ELENA MANTOVAN

By induction, there exists some integers 0 = r′2 ≤ r′3 ≤ · · · ≤ r′t such that the
pullback ψ′ : H′ → G′ of G′, by the isogenies pr

′
i on the subquotients Gi, is split,

i.e. H′ = ⊕i≥2Gi.
We define ψ : H̃ → G the pullback of G via the isogeny ψ′ : H′ → G′, regarded as

an extension of H′ by G1. Then, in order to conclude it suffices to prove that there
exists an integer r ≥ 0 such that the pullback Ψ : H → H̃ of H̃ by the isogeny pr on
H′ is split. (This is equivalent to the statement for integers 0 = r1 ≤ r2 ≤ · · · ≤ rt,
rj = r′j + r for all j = 2, . . . , t.)

0 // G1
// G // G′ // 0

0 // G1
// H̃

ψ

OO

π
// H′

ψ′

OO

// 0

0 // G1
// H

Ψ

OO

Π
// H′ //

pr

OO

s
uu

0

We write β̃ = ψ−1 ◦ β : ΣS → H̃, and β̃′ : Σ′S = ⊕i≥2ΣiS → H′ for the quasi-
isogeny induced by β̃ between the quotients. Without loss of generality, we may
assume β̃ is an isogeny.

We choose r ≥ deg β̃′, i.e. such that the quasi-isogeny pr(β̃′)−1 : H′ → Σ′ is an
isogeny. We claim that H = (1, pr)∗H̃ is split. Indeed, let ι′ : Σ′ → Σ denote the
inclusion corresponding to the splitting Σ = Σ1 ⊕ Σ′. We define a morphism

φ = β̃ ◦ ι′ ◦ pr(β̃′)−1 : H′ → H̃.
Then, the pair (φ, IH′) satisfies the equality π◦φ = pr, and thus defines a morphism
s : H′ → H which it is easy to check is a section of Π.

Finally, the (PEL) case follows from the (EL) case, by remarking that it is pos-
sible to enlarge the differences ri+1−ri so that the integers ri satisfy the additional
property ri + rj = rt for all i, j with i+ j = t+ 1. �

We remark that in the case when the filtration of Σ is associated to the increasing
order on the slopes, it is possible to choose the integers ri independently of the
degree of β (see [31], Lemma 2.19, p. 56). On the other hand, for any field
extension K of k and any Barsotti-Tate group G/K, there always exists an isogeny
β : ΣK → G of degree less than or equal to a uniform bound r depending only on
the height of Σ (see [21], Sections (3.4) and (3.5), p. 44).

5.3. We now move our focus to the existence and properties of a filtration lifting
the slope filtration to characteristic zero.

We start by remarking the following weak analogue of proposition 17 for a filtered
Barsotti-Tate group over a general base.

Proposition 18. Let G be a filtered Barsotti-Tate group (with additional struc-
tures) over a scheme S. Then, for any integer m ≥ 0, let H = Hm be the pullback
of G under the isogeny p(i−1)m of Gi, for all i = 1, . . . , t. Then, H is also a filtered
Barsotti-Tate group with additional structures and moreover there exists a canonical
isomorphism

H[pm] ' ⊕iGi[pm],
i.e. the induced filtration of the pm-torsion subgroups is split.
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Proof. We remark that it follows from the same arguments at the beginning of the
proof of proposition 17 that the pullback H = Hm inherits the additional structures
on G. Thus, it suffices to check that the induced filtration on H[pm] is split.

We prove the statement by induction on the length of the filtration. For t = 1
the statement is trivial.

For t > 1, let us consider the short exact sequence

0 → G1 → G → G′ → 0.

Then G′ is a Barsotti-Tate group with a filtration of length t− 1, and by inductive
hypothesis the pm-torsion subgroup of its pullback by the isogenies p(i−2)m on the
subquotients Gi (i = 2, . . . , t) is split. Let us denote this pullback by φ : H′ → G′
and replace G by its pullback by φ, φ∗G. Then, H = (1, pm)∗(φ∗G), the pullback of
φ∗G by the isogeny pm on H′. We denote by Π : H → φ∗G the associated isogeny.
It is straight forward that the projection Ψ : H → H′ induces an isomorphism
ker Π ' H′[pm], and thus a splitting

H[pm] ' G1[pm]⊕H′[pm] ' ⊕iGi[pm].

�

Finally, in the next results, we address the questions regarding the possibility of
lifting a filtration from characteristic p to characteristic zero, and the uniqueness
of such a lifting.

Let us first recall a result of Drinfeld on lifting quasi-isogenies of Barsotti-Tate
groups. (This result originally appeared in [7]).

Proposition 19. Let G,H be two Barsotti-Tate groups over a scheme S, with p
locally nilpotent. Let S0 ⊂ S be a nilpotent immersion.

Then
HomS(G,H)⊗Zp Qp → HomS0(GS0 ,HS0)⊗Zp Qp

is bijective.

The following two results are an immediate consequence of the above proposition.

Corollary 20. Let G be a Barsotti-Tate group defined over a scheme S, and
S0 ⊂ S a nilpotent immersion.

Suppose G is endowed with two filtrations G• and H• whose restriction to S0

agree.
Then the two filtration agree, i.e. G• = H•.

Proof. We prove the statement by induction on the length of the filtration, t. The
case t = 1 is trivial. For t > 1, we consider the two short exact sequences

0 → G1 → G → G′ → 0 and 0 → H1 → G → H′ → 0,

associated with the first subgroups in the filtrations G• and H•, respectively.
Then, the identities of G1,S0 = H1,S0 and G′S0

= H′S0
lift uniquely to some quasi-

isogenies G1 → H1 and G′ → H′, commuting with the identity on G. It follows that
the quasi-isogeny G1 → H1 is an isogeny, thus an isomorphism, and that the same
holds for G′ → H′.

It is clear that, in the case of Barsotti-Tate groups with additional structures, the
fact that the underlying filtration of Barsotti-Tate groups agree suffices to deduce
that the induced additional structures on the subgroups also agree. �
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Corollary 21. Let G be a Barsotti-Tate group with additional structures over a
scheme S, and S0 ⊂ S a nilpotent immersion.

Assume GS0 is also endowed with a filtration and that this filtration is compatible
with the additional structures (in the usual sense).

Then, if there exists a filtration on G lifting that on GS0 , then it is compatible
with the additional structures.

Proof. The proof of this corollary is analogous to the previous one (here in place of
the identity we consider the isogenies associated with the additional structures). �

Finally, we consider the problem of lifting the slope filtration (and coarser ones)
from characteristic p to characteristic 0.

Proposition 22. Let S be a p-adic formal scheme (resp. S = SpecA for A a
noetherian ring with J an ideal of A with contains some power of p and which
satisfies J2 = (0)), and write S̄ = V (p) (resp. S̄ = SpecA/J). Let G be a Barsotti-
Tate group over S and suppose G = GS̄ is endowed with a filtration.

Then there exists a unique closed formal subscheme (resp. closed subscheme) W
of S, W ⊃ S̄, such that for any p-adic formal scheme (resp. any scheme Z) and
any morphism f : Z → S, f∗G admits a filtration by Barsotti-Tate groups lifting
the given filtration of f̄∗G (for f̄ = f|S̄) if and only if the morphism f factors via
the inclusion W ↪→ S.

Proof. We prove the statement by induction on the length of the filtration, t. For
t = 1, the statement is trivial. For t > 1, we consider the short exact sequence

0 → Gt−1 → G→ Gt → 0

corresponding to the last step in the filtration. For simplicity, we rewrite Gt−1 =
G1, Gt = G2 and regard G as an extension of G2 by G1.

Since the inclusion S̄ ⊂ S has a canonical divided power structure, we may apply
the theory of Grothendieck-Messing. Let M (resp. M1,M2) denote the crystal of
the Barsotti-Tate group G (resp. G1, G2), it is a locally free OS-module of finite
rank, its rank equal to the height of the Barsotti-Tate group. Moreover, there is a
short exact sequence of OS-modules

0 →M1 →M →M2 → 0.

Let L = Lie(G) (resp. L1 = Lie(G1), L2 = Lie(G2)) denote the Lie algebra of
G (resp. G1, G2). For any ∗ = ∅, 1, 2, L∗ is a locally free OS̄-module, of rank
equal to the dimension of the Barsotti-Tate group, equipped with an epimorphism
of OS̄-modules, π∗ : M∗ ⊗OS

OS̄ → L∗. Moreover, there is a short exact sequence
of OS̄-modules

0 → L1 → L→ L2 → 0,
which is compatible under the epimorphisms π∗, with the short exact sequence of
crystals.

Then, the datum of a Barsotti-Tate group G/S lifting G is equivalent to the
datum of a locally free OS-quotient $ : M → L lifting π : M ⊗OS̄ → L (namely,
L = Lie(G)). Moreover, choosing a lifting of the sequence 0 → G1 → G→ G2 → 0
to G is equivalent to choosing a lifting of the sequence 0 → L1 → L → L2 → 0 to
L, compatible with the short exact sequence of crystals.

We define L2 to be the OS-module L/$(M1), regarded as quotient of M2. Then,
L2 = L2 ⊗OS

OS̄ and in particular L2 has rank less than or equal to r = rk(L2).
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Following lemma 16, we define W = Sr the closed subscheme of S where L2 is
locally free of rank r = rkL2. In particular, W ⊃ S̄.

For any scheme Z and any morphism f : Z → S, the existence of a filtration on
f∗G lifting the filtration of f̄∗G implies that f∗L2 = L2 ⊗OS

OZ is locally free, of
rank equal to rk(L2). Thus in particular, f factors via the inclusion W ⊂ S, and
this condition is also sufficient for the existence of a filtration.

In the case of Barsotti-Tate groups with additional structure (and S a OE-
scheme), the hypothesis that the moduli data are unramified implies that the asso-
ciated (polarized) filtered crystal are locally freeOS⊗OE

OB-modules. In particular,
one defines W according to the OS ⊗OE

OB-rank of L2. �

6. Properties of the Hodge-Newton filtration

In this section, we focus on those decompositions V = ⊕iV i of V which arise from
Hodge-Newton decompositions of the associated isocrystals Nb(V ), i.e. associated
with admissible pairs of (HN) type. For these decompositions, many of the results
of section 5 can be improved.

6.1. In the general context of F -crystals (not necessarily arising from Barsotti-Tate
groups), results on the existence of Hodge-Newton decompositions and filtrations
are due to Katz. In the case over a perfect field of positive characteristic, in [15]
(Theorem 1.6.1, p. 133) Katz proves that if a F -crystal has a break-point of its
Newton polygon which lies on its Hodge polygon, then it decomposes uniquely
as direct sum of two F -crystals, its Hodge (resp. Newton) polygon formed by
joining end-to-end the Hodge (resp. Newton) polygons of its constituents, with
the break-point as the joining point. When specialized to the case of crystals of
Barsotti-Tate groups, Katz’s result recovers the existence of the multiplicative-
bilocal-étale decomposition for Barsotti-Tate groups ([6], Section IV.8, Proposition
p. 92). Indeed, in the case of a crystal of a Barsotti-Tate groups the Newton
polygon has slopes between 0 and 1, while the possible values for the slopes of
the Hodge polygon are only 0 and 1. Therefore, if a break-point of the Newton
polygon of a Barsotti-Tate group lies on the Hodge polygon, then the two polygons
necessarily share a side, of slope either 0 or 1. We remark that since in this case
the Hodge polygon coincides with the ordinary Newton polygon, it follows that a
break-point of the Newton polygon lies on the Hodge polygon if and only if it is of
(HN) type. Moreover, in this context, in [25] (Proposition 4.9, p.69) Messing proved
that the multiplicative-bilocal-étale decomposition lifts uniquely to a filtration in
characteristic zero.

More recently, in [20], Kottwitz has extended Katz’s theorem to the case of
F -crystals over a perfect field, which are endowed with additional structures by
an unramified group. (We remark that the results in [20] are not stated in full
generality, but the same ideas lead to more comprehensive statements, see [24].) In
the following, we recall this result in the case of crystals associated with Barsotti-
Tate groups with additional structures, and also report on a result on the existence
of a lifting of the Hodge-Newton filtration to characteristic zero that is proved in
[24], which generalizes Messing’s theorem to this context.

Finally, we point out that in the case of µ-ordinary Barsotti-Tate groups, the
existence of the Hodge-Newton decomposition and filtration was already known due
to the work of Moonen in [26] (Corollary 1.3.12 and Proposition 2.1.9). In that case,
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similarly to the classical ordinary case, the Hodge-Newton decomposition coincides
with the slope decomposition.

6.2. We maintain the notations we introduced in section 1.2. Given the moduli
data (B, V ), for any admissible pair (b, µ), let V = ⊕sW s be the decomposition of V
underlying to the slope decomposition of the isocrystal Nb(V ), ordered accordingly
to the increasing order on the slopes. Then, for each break-point x of the Newton
polygon νb of Nb(V ) (which is not an end-point), the associated (non-trivial) B-
linear decomposition V = V 1 ⊕ V 2 can be described as follows. If x is the N -th
break-point after the origin (N ≥ 1), then

V 1 = ⊕i≤NW i, and V 2 = ⊕i>NW i.

Similarly, in the (PEL) case, the (non-trivial) symplectic B-linear decomposition
V = V1 ⊕ V2 ⊕ V3 associated with a symmetrical pair of break-points (x, x̂) (not
necessarily distinct) of νb (which are not the end-points), can be described as follows.
If x, x̂ are the N -th and t + 1 − N -th break-points after the origin, 1 ≤ N ≤ t/2,
then

V 1 = ⊕1≤i≤NW
i, V 2 = ⊕N+1≤i≤t−NW

i, and V 3 = ⊕t+1−N≤i≤tW
i.

We remark that, in the (PEL) case, a break-point x of νb lies on the µ-ordinary
polygon if and only if its symmetric one x̂ does.

Finally, we recall the following definition.

Definition 23. We say that b ∈ B(G,µ) (or the corresponding pair (b, µ)) is of
(HN) type if there exists a break-point x of the Newton polygon of the isocrystal
Nb(V ) which lies on the µ-ordinary polygon, and the two polygons coincide up to x
or from x on. We call such a break-point x of (HN) type.

We remark that, in the (PEL) case, a break-point x is of (HN) type if and only
if its symmetric one x̂ is. Indeed the two polygons coincide up to x (resp. from x
on) if and only if they coincide from x̂ on (resp. up to x̂).

Theorem 24. ([20], Theorem 4.1, p. 1442; [24], Corollary 7, p.5) Let G =
ResF/Qp

G0 for F/Qp a finite unramified field extension and G0 = GLn or GSp2n,
n ≥ 1.

Let k be a perfect field, of characteristic p, and H/k a Barsotti-Tate group with
G-structures .

Suppose that there exists a break-point x of the Newton polygon of H which lies
on the associated µ-ordinary polygon.

Then, there exists a unique decomposition of H as direct sum

H = H1 ⊕H2, resp. in the (PEL) case H = H1 ⊕H2 ⊕H3,

with H1 and H2, resp. H1, H2 and H3, Barsotti-Tate groups with additional struc-
tures, such that the corresponding decomposition of the isocrystal of H, N(H) =
N(H1) ⊕ N(H2), resp. N(H) = N(H1) ⊕ N(H2) ⊕ N(H3), is the decomposition
associated with x, resp. in the (PEL) case with the symmetric pair (x, x̂).

Theorem 25. (see [24], Theorem 10, p.5) Let G as in 24. Let R be a complete
local ring over OE with perfect residue field k, of characteristic p, and H/R a
Barsotti-Tate group with G-structures.

Suppose that there exists a break-point x of the Newton polygon of H which is of
(HN) type.
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Then, there exists a unique filtration of H by Barsotti-Tate subgroups

H1 ⊂ H, resp. in the (PEL) case H1 ⊂ H2 ⊂ H,

with H1 = H1 and H2 = H/H1, resp. H1 = H1, H2 = H2/H1 and H3 = H/H2

Barsotti-Tate groups with additional structures, such that its restriction to the spe-
cial fiber H = Hk is canonically split and agrees with decomposition associated with
x (resp. with (x, x̂)) by theorem 24.

6.3. In the following, to any admissible pair (b, µ) of (HN) type we associate the
unique decomposition (and corresponding filtration) of V which is the common
refinement of the decompositions (resp. filtrations) associated with the breakpoints
of (HN) type of νb. We call the corresponding decomposition of Nb(V ) its Hodge-
Newton decomposition. In the cases when all the break-points of νb are of (HN)
type (e.g. when b is µ-ordinary) it coincides with the slope decomposition.

7. From the Levi subgroup to the associated parabolic

In this section we compare the two tower of moduli spaces P∞ and F∞. Our
goal is the proof of the following theorem.

Theorem 26. For any l-adic admissible representation ρ of J(Qp), we have an
equality of virtual representations of P (Qp)×WE:

H•(F∞)ρ = H•(P∞)ρ.

In particular, we focus on the study of the morphism Ξ : F∞ → P∞ (which
we introduced in proposition 13) and on the map that it induces between the
cohomology groups, (Ξ∗)∨.

7.1. We start by considering the morphisms of formal OE0-schemes Ξ : F → P
and Θ : P → F , satisfying the condition Ξ ◦Θ = IP .

In the following, for any formal scheme X over OE0 (resp. morphism f : X → Y
of formal OE0-scheme) we write X0 = V (IX), for IX a maximal ideal of definition
of X containing p, regarded as a k-scheme (resp. f0 : X0 → Y0 for the morphism
of k-scheme obtained by restriction, for f∗IY ⊂ IX), and Xη (resp. fη) for its rigid
analytic fiber, regarded as a E0-space (resp. as a morphism of E0-spaces).

Let Y be the formal completion of F along Y0 = Θ(P0) ⊂ F0. Then, the
morphism Θ : P → F factors via the inclusion j : Y ↪→ F . We write ΞY for the
restriction of Ξ to Y

Proposition 27. There exist some integers 0 = r1 ≤ r2 ≤ · · · ≤ rt (in the (PEL)
case satisfying the conditions ri+rj = rt for all i, j with i+j = t+1) and a morphism
δ : F → Y, which is equivariant for the action of J(Qp) and for the descent data,
such that the following diagram commutes, for γ = (1, p−r2 , . . . , p−rt) ∈ P (Qp) and
U ′ ⊆ Urt

.

FU ′

fU′

��

γ // Fη δ // Yη

j

��
Fη Fη
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Proof. We define a morphism δ : F → Y as follows.
Let Z0 ⊂ F0 be a closed subscheme of finite type such that F0 = ∪t∈J(Qp)tZ0.

E.g. we can choose Z0 to be the locus where the quasi-isogeny β is an isogeny of
degree less than or equal to n, for some integer n sufficiently large. We write Z for
the formal completion of F along Z0 (thus F = ∪t∈J(Qp)tZ).

We first define a morphism δ : Z → Y, and we then remark that it extends (in
a unique way) to a J(Qp)×WE-equivariant morphism δ : F → Y which makes the
above diagram commute.

Let H denote the universal filtered Barsotti-Tate group over F restricted to Z,
and β : ΣZ0 → HZ0 the associated quasi-isogeny. Then, by proposition 17, there
exists some integers 0 = r1 ≤ r2 ≤ · · · ≤ rt (as in the statement) such that the
pullback of H by the isogenies pri of the subquotients Hi is a filtered Barsotti-Tate
group (with additional structures) which is split over Z0. This defines a morphism
δ : Z → Y, and it is easy to see that it extends uniquely to a J(Qp)-equivariant
morphism δ : F → Y. Moreover, it is also obvious from the definition that δ
commutes with the descent data over E.

Finally, it is not hard to see that the diagram in the statement commutes. We
verify the statement in the (EL) case, for t = 2. (Similarly to proposition 17, one
can reduce the proof to this case.)

LetH be the universal Barsotti-Tate group defined over F , αU ′ its level structure
over FU ′ , and for simplicity write r = rt. Then, αU ′ gives rise to an isomorphism
α : p−rΛ/Λ → Hη[pr], compatible with the induced filtrations (U ′ ⊆ Ur). We
define K = α

(
γ−1Λ/Λ

)
⊂ Hη. It follows from the definition of γ that the natural

projection Hη → H2
η induces an isomorphism K ' H2

η[p
r] and that γ∗Hη = Hη/K.

On the other hand, δ∗(γ∗Hη) is by definition the pullback of γ∗Hη under multi-
plication by pr on H2

η. Thus, by construction, there is a natural quasi-isogeny

Φ : δ∗(γ∗Hη) → γ∗Hη → Hη.

Finally, we remark that Φ induces the identity on each subquotient of the filtrations
and it is therefore an isomorphism. �

Proposition 28. The morphism ΞYη : Yη → Pη is smooth. Moreover, the associ-
ated map on the cohomology

(ΞYη )∗∨ : RΓc(Yη ×E0
ˆ̄E0,Ql) → RΓc(Pη ×E0

ˆ̄E0,Ql(−d))[−2d]

is a quasi-isomorphism (d = DF −DP).

Proof. We work locally on Pη, and in particular we consider a cover of opens of
the form Sη = Spm(B⊗E0), where S = SpfB is a p-adic formal scheme equipped
with a morphism f : S → P (see [31], section 5.5, p. 231).

Let M i → Li denote the filtered Dieudonné crystals associated to the Barsotti-
Tate groups f∗Hi/S, and E i = ker(M i → Li), for all i = 1, . . . , t. We write
M = ⊕iM i. Then, Y|S → S parameterizes all locally free quotients π : M → L
compatible with filtrations on the subquotients M i → Li such that L|S0 = ⊕iLi|S0

.
Thus, we can identify

Y|S = Hom(Et, pLt−1)× · · · ×Hom(E2, pL1),

for Lj the locally free quotients of Mj = ⊕1≤i≤jM
i defined as follows, for all

j = 1, . . . , t. For j = 1 we set L1 = L1. For j > 1 we define Lj by induction, as the
universal extension of Lj by Lj−1 over Hom(Ej , pLj−1).
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In particular, locally on Pη, Yη is an open disk of relative dimension d, and thus
(ΞYη )∗∨ an isomorphism.

�

Corollary 29. The morphism

(Ξ∗η)
∨ : RΓc(Fη ×E0

ˆ̄E0,Ql) → RΓc(Pη ×E0
ˆ̄E0,Ql(−d))[−2d]

is a quasi-isomorphism.

Proof. It follows from proposition 28 and the equality (ΞYη )∗∨ = (Ξ∗η)
∨ ◦ (j∗)∨ that

it suffices to show that

(j∗)∨ = j! : Hi
c(Yη ×E0

ˆ̄E0,Ql) → Hi
c(Fη ×E0

ˆ̄E0,Ql)

is an isomorphism, for all i ≥ 0. In fact, it suffices to show it is surjective since
injectivity also follows from the previous result and the above equality.

The surjectivity of j! follows from the commutativity of the diagram in proposi-
tion 27, i.e. from the equality (fU )! = j! ◦ δ! ◦ γ!. �

7.2. We proceed to prove the analogue of corollary 29 in the case of smaller levels
U ⊆ U0 (e.g. U = Um, for m ≥ 1). We remark that the above argument does
not extend directly to the general case. In fact, as U ⊆ U0 varies, the fibers of the
morphism

ΞU|YU : YU = FU ×F Y → PU

change.

Proposition 30. For any positive integer m, there exists a formal scheme Ym
over Y satisfying the following properties.

(1) Let H denote the universal Barsotti-Tate group over Y. For any morphism
of formal schemes f : S → Y, the pm-torsion subgroup f∗H[pm] is split if
and only if f factors via jm : Ym → Y.

(2) Let ΞYm : Ym → P denote the morphism ΞY ◦ jm. As a formal P-scheme,
Ym is isomorphic to Y (ΞY : Y → P).

(3) The morphism ΞYm induces a quasi-isomorphism (for d = DF −DP)

(ΞYm
η )∗∨ : RΓc(Ym,η ×E0

ˆ̄E0,Ql) → RΓc(Pη ×E0
ˆ̄E0,Ql(−d))[−2d].

Proof. We construct Ym by induction on t the length of the filtration, as follows.
For t = 1, Ym = Y. For t > 1, let Y ′ ⊂ Y be the locus where Ht−1[pm] is split,
and consider the formal scheme over Y ′ classifying finite flat subgroups K of H[pm],
of rank pmht , which are stable under the action of OB . Inside it, there is the
open subspace W where the morphism K ⊂ H[pm] → Ht[pm] is an isomorphism.
Finally, we consider the closed locus Z0 of W0, W0 → Y0, where the two subgroups
of HW0 = (Ht−1 ⊕ Ht)W0 , KW0 and Ht[pm]W0 , coincide. We define Ym as the
formal completion of W along Z0.

Given the construction of Ym, part 2 in the statement can be proved by induction
on the length of the filtration, t. For simplicity, we prove this result in the case t = 2.
Let H, 0 → H1 → H → H2 → 0, (resp. H′, 0 → H′1 → H′ → H′2 → 0) denote
the universal Barsotti-Tate group over Y (resp. over Ym). We write [pm]H2 for the
multiplication by pm on H2. Then, the pullback of H under [pm]H2 is a Barsotti-
Tate group with additional structures over Y, with split pm-torsion subgroup. Thus,
associated with it there is a unique morphism φ : Y → Ym. It follows from the
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definition that φ commutes with the structural morphisms of formal P-schemes.
On the other hand, let K ⊂ H′[pm] denote the finite flat subgroup corresponding to
the splitting (as defined above). The quotient H′/K is a Barsotti-Tate group over
Ym which inherits the additional structures of H′. Thus, associated with it there is
a unique morphism ψ : Ym → Y, and ψ commutes with the structural morphisms
of formal P-schemes. It is easy to check that these two morphisms are inverse of
each other.

Part 3 is an immediate consequence of part 2 and proposition 28. �

For each m ≥ 1, we consider the level U = Um ⊂ P (Qp). We define two distinct
covers of level U of the rigid analytic fiber Ym,η of Ym as follows.

First, we regard the formal scheme Ym as a F-scheme via the morphism jYm
=

j ◦ jm. We define YUm → Ym,η as the pullback of the cover FU → Fη, i.e.

YUm = FU ×Fη,jYm,η
Ym,η.

We write jYU
m

= IFU × jYm
: YUm → FU for the natural projection.

Secondly, we regard Ym as a P-scheme via the morphism ΞYm = ΞY ◦ jm. We
define Y(U)

m → Ym,η as the pullback of the cover PU → Pη (here, with abuse of
notations, we write PU in place of PU∩L(Qp)), i.e.

Y(U)
m = PU ×Pη,Ξ

Ym
η

Ym,η.

We write ΞYm

PU = IPU
× ΞYm : Y(U)

m → PU for the natural projection.
It follows from part 3 of the above proposition that ΞYm

PU induces a quasi-
isomorphism

(ΞYm

PU )∗∨η : RΓc(Y(U)
m,η×E0

ˆ̄E0,Ql) → RΓc(PUη ×E0
ˆ̄E0,Ql(−d))[−2d], d = DF−DP .

Lemma 31. (1) There exists a morphism πU : YUm → Y(U)
m satisfying the

condition ΞYm

PU ◦ πU = ΞU ◦ jYU
m
.

(2) There exists a morphism sU : Y(U)
m → YUm such that πU ◦ sU = IY(U) .

Proof. The first part is an immediate consequence of the definitions. For the second
part, we observe that the existence of a splitting H[pm] ' ⊕iHi[pm] over Ym allows
us to define a structure of level U on H starting from the level structures on the
subquotients Hi. The existence of such a level structure is equivalent to the datum
of a section sU : Y(U)

m → YUm of πU . �

The following proposition is an analogue of proposition 27.

Proposition 32. For a given integer m ≥ 0, let U = Um.
Then, there exist some integers 0 = r1 ≤ r2 ≤ · · · ≤ rt (in the (PEL) case

satisfying the conditions ri + rj = rt for all i, j with i+ j = t+ 1) and a morphism
δUm,r : FU → YUm such that

(1) δm,r is equivariant for the action of J(Qp) and the descent data,
(2) δm,r factors through the map sU : Y(U)

m → YUm,
(3) for a level U ′ ⊆ U sufficiently small, we have the equality

fU
′

U = jYU
m
◦ δUm,r ◦ γm,r,

where γm,r = (1, p−m−r2 , p−2m−r3 , . . . , p(1−t)m−rt) ∈ P (Qp).
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Proof. It follows from proposition 18 that the map that to a filtered Barsotti-Tate
group with additional structure G/S associates its pullback by the isogenies p(i−1)m

on the subquotients Gi/S defines a J(Qp)×WE-equivariant morphism

δm : Y → Ym

such that fU
′

|Y = jm ◦ δm ◦ γm, for γm = (1, p−m, p−2m, . . . , p(1−t)m) ∈ P (Qp) and
U ′ a sufficiently small level.

By composing δm with the morphism δ defined in proposition 27, we obtain a
morphism

δm,r : F → Ym

satisfying the equation fU
′

= jYm
◦ δm,r ◦ γm,r, for γm,r = γm ◦ γ and γ =

(1, p−r2 , p−r3 , . . . , p−rt) ∈ P (Qp) and U ′ sufficiently small, as in proposition 27.
We claim that for U = Um the morphism δm,r : F → Ym lifts uniquely to a

morphism δUm,r : FU → YUm. In fact, to a level structure onHη one can associate the
level structure on δ∗m,rHη defined by the induced level structure on the subquotients
Hi
η together with the datum of a splitting of Hη[pm]. Moreover, δUm,r factors via

the section sU : Y(U)
m → YUm.

Finally, for a sufficiently small level U ′ ⊆ U = Um, we obtain the equality
fU

′

U = jYU
m
◦ δUm,r ◦ γm,r. �

By arguing as in corollary 29 proposition 32 implies the following result.

Proposition 33. The morphism ΞU : FU → PU induces is a quasi-isomorphism

(ΞUη )∗∨ : RΓc(FUη ×E0
ˆ̄E0,Ql) → RΓc(PUη ×E0

ˆ̄E0,Ql(−d))[−2d], d = DF −DP ,

equivariant for the action of J(Qp) and WE.

As the level U varies, the above isomorphisms form a projective system, compat-
ible with the action of J(Qp), WE and P (Qp). This observation suffices to deduce
theorem 26 from the above results.

7.3. We conclude this section by observing that for a pair (b, µ) of (HN) type and
M ⊇Mb, the geometry of the corresponding space F = FPM

is simpler than in the
general case we just considered. In fact, under this hypothesis, theorem 24 implies
that the morphism Θ : P0 → F0 is actually an isomorphism, i.e. that Y0 = F0 and
thus Y = F .

8. Geometric realization of parabolic induction

In this section we proceed to compare the projective system of moduli spaces F∞,
regarded as a tower over FU0 , with the pullback over FU0 of the tower M∞/MU0 .
We denote the latter byM∞×MU0FU0 . The first system classifies filtered Barsotti-
Tate group endowed with a level structure which preserves the filtration, while the
second classifies filtered Barsotti-Tate group endowed with any level structure (not
necessarily preserving the filtration).
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8.1. Similarly to the case of M∞, when studying the tower M∞ ×MU0 FU0 , we
are interested in studying the limit of the l-adic étale cohomology groups of the
rigid analytic spaces MU ×MU0 FU0 , U ⊆ U0, as representations of G(Qp) ×WE

and J(Qp).
More precisely, let l be a prime number, l 6= p, and ˆ̄E0 the completion of an

algebraic closure of E0. For any level U ⊆ U0, we consider the cohomology groups

Hi(MU ×MU0 FU0) = Hi
c((MU ×MU0 FU0)×E0

ˆ̄E0,Ql(DF )) =

= lim
−→ VH

i
c(V ×E0

ˆ̄E0,Ql(DF ))

where V varies among the open subspaces of MU ×MU0 FU0 of finite type, and
DF = dimFU = dim(MU ×MU0 FU0) (i ∈ N). On them, there is a natural action
of J(Qp) and WE induced by the action of J(Qp) and the descent data over E on
the spaces MU ×MU0 FU0 .

As the level U varies, these cohomology groups form a projective limit which is
natural endowed with an action of G(Qp) induced by the action of G(Qp) on the
tower M∞ ×MU0 FU0 .

Moreover, as in the case of the cohomology of F∞, for any l-adic admissible
representation ρ of J(Qp), the groups

Hi,j(M∞ ×MU0 FU0)ρ = lim
−→ UExtjJ(Qp)(H

i(MU ×MU0 FU0), ρ)

vanish for almost all i, j ≥ 0, and the following equalities define a virtual represen-
tation of G(Qp)×WE

H•(M∞ ×MU0 FU0)ρ =
∑
i,j≥0

(−1)i+jHi,j(M∞ ×MU0 FU0)ρ.

The goal of this section is to prove the following theorem.

Theorem 34. For any l-adic admissible representation ρ of J(Qp), we have an
equality of virtual representations of G(Qp)×WE:

H•(M∞ ×MU0 FU0)ρ = Ind
G(Qp)

P (Qp) (H•(F∞)ρ) .

Our argument follows [4] (see also [12], p.115).

8.2. We fix a level U . For convenience we choose U of the form U = Um, m ≥ 1.
For any point x of MU ×MU0 FU0 , we denote by (G,αU) the data of a filtered

Barsotti-Tate group with level structure, corresponding to x. Then, the image un-
der α of the filtration on G uniquely determines a filtration N(x)• on p−mΛ/Λ
by OB/pm-submodules (with Z/pmZ-free subquotients). In the (PEL) case, this
filtration is symplectic, i.e. compatible with the alternating pairing on p−mΛ/Λ.
Moreover, the filtration N(x)• is obviously the reduction modulo pm of a (sym-
plectic) OB-linear filtration of Λ, with Zp-free subquotients of rank hi = ht(Σi),
i = 1, . . . , t.

For any (in the (PEL) case symplectic) OB-linear filtration N• of p−mΛ/Λ,
with Z/pmZ-free subquotients, we consider the subspace FUN• of MU ×MU0 FU0

consisting of all points x such that N(x)• = N•. The subspaces FUN• are both open
and closed, and therefore define a decomposition

MU ×MU0 FU0 =
∐

N•⊂p−mΛ/Λ

FUN• ,
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indexed by the reduction modulo pm of all (symplectic) OB-linear filtrations of Λ,
with Zp-free subquotients of rank hi (i = 1, . . . , t). It is easy to see that the action
of G(Zp) on the moduli space MU ×MU0 FU0 preserves the above decomposition,
and that the stabilizer of the filtration N• stabilizes the associated subspace FUN• .

Furthermore, after the choice of a (symplectic) OB-linear automorphism of Λ,
mapping N• onto the canonical filtration p−mΛ•/Λ• of p−mΛ/Λ, we can identify
the subspace FUN• with the moduli space FU = FUp−mΛ•/Λ•

(and the action of the
stabilizer of N• on FUN• with the action of P (Zp) on FU ). Therefore, it is possible
to rewrite the above decomposition as

MU ×MU0 FU0 =
∐

P (Qp)\G(Qp)/U

FU ,

and compute the cohomology groups of MU ×MU0 FU0 , regarded as l-adic repre-
sentations of G(Qp)× J(Qp)×WE , as

Hi
c((MU×MU0FU0)×E0

ˆ̄E0,Ql) = ⊕P (Qp)\G(Qp)/UH
i
c(FU×E0

ˆ̄E0,Ql) for all i ≥ 0.

As we let the level U vary, these decompositions are preserved under the natural
projections and the group action, thus they imply theorem 34.

9. Forgetting the filtration: the general case

We are now left with a last task: comparing the towers of moduli spaces M∞

and M∞ ×MU0 FU0 .
For a general admissible pair (b, µ), the Barsotti-Tate groups classified by the

Rapoport-Zink spaces do not always admit a slope decomposition or filtration (nor
coarser ones), and as a consequence of this fact our results are quite weak in this
generality. On the other hand, for pairs (b, µ) of (HN) type, our analysis leads to
stronger results. We postpone the discussion of these favorable cases to section 10.
In this section, we simply try to shed some light on the image of the morphism
j : F → M, in the case of a general admissible pair and for any choice of a Levi
subgroup M , Lb ⊆M ⊂ G.

9.1. As in section 7, let M0 = V (I) and F0 = V (J), for I and J ideals of definition
of M and F respectively (j∗I ⊂ J).

Let Z0 be a closed k-subscheme of finite type such that M0 = ∪t∈J(Qp)tZ0. We
write Z for the formal completion of M along Z0. Thus Zrig = sp−1(Z0) (for
sp : Mrig → M0 the specialization map) is an open subspace of Mrig satisfying
Mrig = ∪t∈J(Qp)tZ

rig. We remark that it is possible to choose Z0 such that it is
stable under the action of a maximal compact Γ ⊂ J(Qp), i.e. M0 = ∪t∈J(Qp)/ΓtZ0.
For such Z0, we have that Zrig is also stable under the action of Γ and Mrig =
∪t∈J(Qp)/ΓtZ

rig.
Let {Vα}α denote the locally closed stratification of Z0 as in proposition 15, and

{Vα}α be the locally closed stratification of Z obtained as the formal completion
of M along the strata Vα (for all α, Vrig

α = sp−1(Vα)). We remark that, when Z0

is stable under the action of Γ , the above strata are also stable under this action.

Lemma 35. For each α, we write Uα = j−1Vα and jα : Uα → Vα for the restriction
of j to Uα.

Then, the jα are closed immersions and their reduced fibers jredUα
: Uredα → Vredα

isomorphisms, for all α.
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Proof. We recall that, by construction, the restriction of the universal Barsotti-
Tate group G to each Vα = (Vα)0 admits a (unique) filtration. In particular, the
morphism between reduced fibers jredα : Uredα → Vredα admits a section, which is in
fact an inverse because of the uniqueness of the filtration.

Moreover, it follows from proposition 22 that the jα are closed immersions, for
all α. �

The main result of this section is the following theorem.

Theorem 36. There exists a closed formal subscheme, formally locally of finite
type,

i : X = XP ↪→M,

defined over OE0 , which is invariant under the action of J(Qp) and the descent
data to E, and satisfies the following conditions:

(1) its reduced fiber X red = Mred;
(2) its rigid analytic fiber X rig is smooth of dimension DX = DF ;
(3) the morphism j : F → M factors through the inclusion i : X ↪→ M, and

moreover, for a stratification {Vα} of M defined as in 9.1, the restrictions
of j to the strata

jα : Uα = j−1(Vα) → X ∩ Vα
are isomorphisms.

In particular, X is the image of j.

9.2. We assume for the moment that such an X exists, and write X∞ for the
projective system {MU ×MU0 X rig}U⊆U0 , obtained as the pullback of M∞ via the
inclusion i : X →M. Then X∞ is naturally endowed with an action of J(Qp), WE

and G(Qp).
Similarly to the case of the projective system M∞ ×MU0 X rig, for l a prime

number, l 6= p, and for any l-adic admissible representation ρ of J(Qp), we define a
virtual representation of G(Qp)×WE

H•(X∞)ρ =
∑
i,j≥0

(−1)i+jHi,j(X∞)ρ,

where, for all i, j ≥ 0,

Hi,j(X∞)ρ = lim
−→ UExtjJ(Qp)(H

i(XU ), ρ)

are some admissible representations of G(Qp)×WE (almost all vanishing), and

Hi(XU ) = Hi
c(XU ×E0

ˆ̄E0,Ql(DX ))

the (twisted) l-adic cohomology with compact support of the rigid analytic space
XU .

Then, the above theorem implies the following result.

Theorem 37. For any l-adic admissible representation ρ of J(Qp), we have an
equality of virtual representations of G(Qp)×WE:

H•(X∞)ρ = H•(M∞ ×MU0 FU0)ρ,

and moreover
H•(X∞)U0

ρ = H•(M∞)U0
ρ .
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Proof. Let j′ : F → X be the morphism corresponding to the factorization of
j : F →M via i : X →M.

Let Zrig ⊂ Mrig be an open subspace, stable under the action of a maximal
subgroup Γ of J(Qp), satisfying the condition Mrig = ∪t∈J(Qp)/ΓZ

rig, as in section
9.1. For any level U ⊆ U0, let ZU = MU × Zrig.

It is possible to compute the cohomology of the tower of Rapoport-Zink spaces
in terms of the cohomology of certain subspaces, associated with the ZU ’s (see [22],
Section 8.2, and [8], Section 4.3.). More precisely, the following holds.

For U ⊆ U0, there exists a spectral sequence of l-adic representations of J(Qp)×
WE

Ep,q1 = ⊕ε∈Γ\(J(Qp)/Γ)p
6=
c− Ind

J(Qp)
Γε

Hq
c (Z

U
ε ,Ql) ⇒ Hp+q

c (MU ,Ql),

where

(1) for p ≥ 1, (J(Qp)/Γ)p6= is the subset of (J(Qp)/Γ)p consisting of all the
elements ε = (ε1, . . . , εp) such that εiΓ 6= εjΓ 6= Γ, for all i 6= j, and
Γ\(J(Qp)/Γ)p6= is its quotient by the action of Γ via multiplication on the
left (for p = 0, Γ\(J(Qp)/Γ)p6= = {1});

(2) for p ≥ 1 and ε ∈ Γ\(J(Qp)/Γ)p6=, Γε = Γ∩ ε1Γε−1
1 ∩ · · · ∩ εpΓε−1

p a compact
subgroup of J(Qp) (for p = 0, Γ{1} = Γ);

(3) for p ≥ 1 and ε ∈ Γ\(J(Qp)/Γ)p6=, ZUε = ZU ∩ ε1ZU ∩ · · · ∩ εpZU an open
subset of MU , stable under the action of Γε (for p = 0, ZU{1} = ZU ).

Moreover, for any p ≥ 1, the set {ε ∈ Γ\(J(Qp)/Γ)p6= | ZUε 6= ∅} is finite, and it is
empty for p sufficiently large.

In particular, for any l-adic admissible representation ρ of J(Qp), we have an
equality of virtual admissible representations of G(Qp)×WE

H•(M∞)ρ =
∑
p≥1

(−1)p
∑

ε∈Γ\(J(Qp)/Γ)p
6=

(c− Ind
J(Qp)
Γε

H•(Z∞ε ))ρ

where, for each ε, (c− Ind
J(Qp)
Γε

H•(Z∞ε ))ρ denotes the virtual representation∑
i,j

(−1)i+j lim
−→ U⊆U0ExtiJ(Qp)(c− Ind

J(Qp)
Γε

Hj
c (Z

U
ε ×E0

ˆ̄E0,Ql(DM)), ρ).

Similar computations can be carried out for the cohomology of the projective
systems X∞ and M∞ ×MU0 FU0 .

In fact, let us consider C = Z ∩ X . Then Crig is an open subspace of X rig,
which is stable under the action of Γ ⊂ J(Qp) and satisfies the condition X rig =
∪t∈J(Qp)C

rig. For any level U ⊆ U0, we write CU = MU × Crig ⊂ XU (and
CUε = ZUε ∩ XU , for all ε as above).

Then, one can apply the same arguments use in [22] and [8], to deduce that, for
any level U , there exist a spectral sequence analogous to the one above, computing
the l-adic cohomology of the rigid analytic space XU in terms of the cohomol-
ogy of the subspaces CUε . In particular, there is an equality of virtual admissible
representations of G(Qp)×WE

H•(X∞)ρ =
∑
p≥1

(−1)p
∑

ε∈Γ\(J(Qp)/Γ)p
6=

(c− Ind
J(Qp)
Γε

H•(C∞ε ))ρ
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where, for each ε, (c− Ind
J(Qp)
Γε

H•(C∞ε ))ρ denotes the representation∑
i,j

(−1)i+j lim
−→ U⊆U0ExtiJ(Qp)(c− Ind

J(Qp)
Γε

Hj
c (C

U
ε ×E0

ˆ̄E0,Ql(DX )), ρ).

Similarly, for the case of the system M∞×MU0 FU0 , let us consider the subspace
D = j−1(Zrig) of F rig. Again, it is an open subspace, which is stable under the
action of Γ ⊂ J(Qp) and satisfies the condition F rig = ∪t∈J(Qp)D. For any level
U ⊆ U0, we write DU = MU × j−1(Zrig) (and DU

ε = MU × j−1(Zrig
ε )).

Then, for each levels U , there exists a spectral sequence analogous to the one
above computing the l-adic cohomology of the rigid analytic space MU ×Mrig F rig

in terms of the cohomology of the subspaces DU
ε . In particular, there is an equality

of virtual admissible representations of G(Qp)×WE

H•(F∞)ρ =
∑
p≥1

(−1)p
∑

ε∈Γ\(J(Qp)/Γ)p
6=

(c− Ind
J(Qp)
Γε

H•(D∞
ε ))ρ

where, for each ε, (c− Ind
J(Qp)
Γε

H•(D∞
ε ))ρ denotes the representation∑

i,j

(−1)i+j lim
−→ U⊆U0ExtiJ(Qp)(c− Ind

J(Qp)
Γε

Hj
c (D

U
ε ×E0

ˆ̄E0,Ql(DF )), ρ).

We now fix a level U , and consider the Γ-invariant stratification of ZU introduced
in section 9.1. Let {Wc

α}α, α = 0, . . . , r, denote the filtration of ZU by increasing
closed subspaces, associated with the stratification by locally closed {Wα = MU ×
Vrig
α }α (i.e. ZU = Wr and, for all α, Wα ⊂ Wc

α is open and Wα = Wc
α −Wc

α−1).
Then, Wc

α∩XU (resp.{j−1Wc
α}α) is a Γ-invariant filtration of CU = ZU ∩XU (resp.

DU = j−1ZU ) by increasing closed subspaces, associated with the stratification by
locally closed Wα ∩ XU (resp. {j−1Wα = MU × U rig

α }α). Moreover, for any
p ≥ 1 and ε ∈ Γ\(J(Qp)/Γ)p6=, these stratifications give rise to corresponding Γε-
invariant stratifications of CUε (resp. DU

ε ), with locally closed strata Wε,α ∩ XU

(resp. j−1Wε,α), where Wε,α = Wα ∩ ε1Wα ∩ · · · ∩ εpWα.
For any set of indexes p, ε and α, the cohomologies with compact support of

Wc
ε,α∩XU , Wc

ε,α−1∩XU and Wε,α∩XU (resp. j−1Wc
ε,α, j−1Wc

ε,α−1 and j−1Wε,α)
fit in an exact triangle. Therefore, for each l-adic admissible representation ρ of
J(Qp), we obtain the following equalities of virtual representations (with notations
analogous to the one introduced above):

(c− Ind
J(Qp)
Γε

H•(C∞ε ))ρ =
∑
α

(c− Ind
J(Qp)
Γε

H•(W∞
ε,α) ∩ X∞)ρ

and

(c− Ind
J(Qp)
Γε

H•(D∞
ε ))ρ =

∑
α

(c− Ind
J(Qp)
Γε

H•(j−1W∞
ε,α))ρ.

Thus, in order establish the first equality in the statement, it suffices to check
that for all indexes p,ε and α, the maps

(jUε,α)! : RΓc(j−1(Wε,α)×E0
ˆ̄E0,Ql) → RΓc((Wε,α ∩ XU )×E0

ˆ̄E0,Ql)

are quasi-isomorphisms, and this follows from part (3) of theorem 36.
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We now focus on the second equality. In this case U = U0 and we write Cε = CU0
ε .

In order to conclude it suffices to check that the maps on compact supported coho-
mology, induced by the inclusions iε = i|Cε

: Cε → Zε (under Poincarré duality),

(i∗ε )
∨ : RΓc((Cε ×E0

ˆ̄E0,Ql(DX ))[2DX ] → RΓc(Zε ×E0
ˆ̄E0,Ql(DM))[2DM],

are quasi-isomorphisms, or equivalently that the maps i∗ε on cohomology are quasi-
isomorphisms, for all ε.

We recall that we chose the subspace Z of MU0 = Mrig as the rigid analytic
fiber of the formal completion of M along a closed subscheme Z0 of Mred, i.e.
Z = sp−1

M (Z0). Thus, analogous descriptions also hold for the subspaces Zε and
Cε. I.e., for all ε, Zε = sp−1

M (Zredε ) and Cε = sp−1
X (Credε ), for Zredε (resp. Credε ) the

closed k-subschemes of Mred (resp. X red), defined as Zredε = Z0 ∩ ε1Z0 ∩ · · · ∩ εpZ0

(resp. Credε = Zredε ∩X red)). In particular, the Zredε ’s and the Credε ’s are projective
k-schemes since such are all the irreducible components of Mred ([31], Theorem
2.32, p. 63) and thus also those of X red . Therefore, we may apply Berkovich’s
theory of vanishing cycles for formal schemes ([2], Corollary 2.5, p. 373) to compute
the l-adic cohomology of Zε and Cε, in terms of the cohomology of their reduced
fiber, with coefficient in the vanishing cycle sheaves of Ql. Since Zε = sp−1

M (Zredε )
(resp. Cε = sp−1

X (Credε )), the vanishing cycles sheaves of Ql for Zε (resp. Cε)
are simply the restrictions of the vanishing cycles sheaves of Ql for M (resp. X ).
Therefore, we have

RΓ(Zε ×E0
ˆ̄E0,Ql) ' RΓ(Zredε , RΨM

η (Ql)|Zred
ε

)

and
RΓ(Cε ×E0

ˆ̄E0,Ql) ' RΓ(Credε , RΨX
η (Ql)|Xred

ε
).

In the case of level U0, the formal smoothness of M implies that the vanish-
ing cycle sheaves RqΨM

η (Ql) over Mred are trivial, i.e. R0ΨM
η (Ql) = Ql, and

RqΨM
η (Ql) = 0, for q > 0. Therefore, for all index q ≥ 0, we have

H2DM−q
c (Zε ×E0

ˆ̄E0,Ql(DM)) ' Hq(Zε ×E0
ˆ̄E0,Ql)∗ ' Hq(Zredε ,Ql)∗.

Similarly, it follows from property (3) in theorem 36 that for each x ∈ X red

RqΨX
η (Ql)x ' RqΨF

η (Ql)x.

Since F is formal smooth this implies that the vanishing cycles sheaves of Ql for X
are also trivial, i.e. R0ΨX

η (Ql) = Ql, and RqΨX
η (Ql) = 0, for q > 0. Therefore, for

all q ≥ 0, we have

H2DX−q
c (Cε ×E0

ˆ̄E0,Ql(DX )) ' Hq(Cε ×E0
ˆ̄E0,Ql)∗ ' Hq(Credε ,Ql)∗.

Finally, property (1) in theorem 36 implies that Zredε = Credε . Therefore, the
induced morphism iredε : Credε → Zredε is simply the identity, and we conclude. �

9.3. Before presenting the construction of the space X , we recall Rapoport and
Zink’s period morphism ([31], Chapter 5).

Let G denote the universal Barsotti-Tate group over M, together with a quasi-
isogeny β : ΣM0 → GM0 , defined over M0 = Z(p) ⊂M.

We denote by MG the Lie algebra of the universal extension of G (i.e. the crystal
of G in the case when we may apply the theory of Grothendieck-Messing), by
LG = Lie(G) the Lie algebra of G, and by πG : MG → LG the natural epimorphism
of locally free OM-modules.



40 ELENA MANTOVAN

Then, the quasi-isogeny β induces a canonical isomorphism of locally free OMrig -
modules of finite rank,

N(V )⊗E0 OMrig = (MΣ ⊗OE0
E0)⊗E0 OMrig 'M rig

G = MG ⊗OM OMrig

(see [31], Proposition 5.15). In particular, we may regard LG as a quotient of
V = N(V ), and more precisely, as a locally free OMrig -quotient by a B-invariant
(and, in the (PEL) case, totally isotropic) subspace of V in the isomorphism class
of V1, the weight 1 subspace of V (see section 2).

Equivalently, let Gr = Gr(V, V0)) = Gr(G,µ) denote the Grassmanian variety
over E parameterizing the B-invariant (and, in the (PEL) case, totally isotropic)
subspaces of V in the isomorphism class of V1 (see[31], Chapter 1). Then, the above
construction describes a morphism

π : Mrig → Gr ⊗E E0

which is called (the first component of) the period morphism of the moduli problem.
It follows immediately from the construction that π is J(Qp)-equivariant (for the
natural action of J(Qp) = Aut(N(V )) ⊂ GL(V ) on Gr) and moreover it is étale
(see [31], Proposition 5.17).

It is a consequence of Fontaine’s theory (see [9], [5]) that the image of the period
morphism is the (weakly) admissible open subspace Grwa of Gr (see [31], sections
1.31 and ff.).

9.4. We now consider a decomposition of V , V = ⊕iV i, as in section 3.2, and write
(n1, . . . , nt) for the associated partition of r, the number of isoclinic components of
V . I.e., for each i, V i = ⊕ni

ni−1+1W
s, for V = ⊕sW s the slope decomposition.

We also write V• for the associated filtration of V , as in section 4.1. For ε = 0, 1,
we write V iε (resp. Vε,j) the weight decomposition on V iK (resp. Vj,K) induced from
the weight decomposition on VK .

To any point x of Gr, corresponding to a quotient V → L, we associate the
filtration on L, L•, induced from the filtration V• on V , and its associated graded
pieces, Li (i = 1, . . . , t).

The following conditions of Schubert type

for all i : rk(Li) ≥ di =
ni∑

ni−1+1

λshs,

for λs and hs respectively the slope of W s and its dimension, define a closed sub-
scheme of Gr (called the Schubert cell), which we denote by S.

We remark that S is stable under the action of J(Qp) on Gr. Moreover, by com-
paring the above inequalities with the ones defining the weakly admissible subspace
Grwa of Gr (see [31], p. 30), it is immediate to realize that the proper closed subset
of the Schubert cell S which is defined by strict inequalities, does not intersect
Grwa ⊂ Gr.

We define S ′ to be the closed subset of S parameterizing the B-invariant (and,
in the (PEL) case, totally isotropic) filtered subspaces of (V, V•) in the isomorphism
class of (V1, V1,•). Then, S ′ is closed in Gr and stable under the action of J(Qp).
Moreover, it follows immediately from the construction that the image of F , under
the composition of the period morphism with j : F →M, is S ′ ∩ Grwa ⊂ Grwa.

We define X = π−1S ′ ⊂ Mrig. Then, X is a smooth closed rigid analytic
subspace of Mrig, and clearly the morphism jrig : F rig → Mrig factors via the
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inclusion X ⊂ Mrig. Furthermore, for {Vα}α a stratification of M defined as in
section 9.1 (and Uα = j−1(Vα) ⊂ F), it follows from the construction that

jα(Uα)rig = X ∩ Vrig
α , for all α.

Lemma 38. There exists a (unique) closed formal subscheme, formally locally of
finite type,

i : X ↪→M,

defined over OE0 , which is invariant under the action of J(Qp) and the descent
data to E, and such that

(1) X rig = X ⊂Mrig;
(2) X ∩ Vα = jα(Uα), for all α.

Proof. For Z as in section 9.1 (i.e. M = ∪t∈J(Qp)/ΓZ and Z =
∐
α Vα), we construct

X as X = ∪t∈J(Qp)/ΓXZ , for XZ ⊂ Z the unique closed formal subscheme of Z
satisfying the conditions X rig

Z = X∩Zrig ⊂ Zrig, and X∩Vα = jα(Uα), for all α. The
existence of a closed formal subscheme XZ of Z, with the above properties, is due to
a result of De Jong on rigid descent for closed formal subschemes ([14], Proposition
7.5.2). More precisely, we apply De Jong’s result to the data ({jα(Uα)}α, X ∩Zrig),
where, for each α, we regard the formal scheme jα(Uα) as closed formal subscheme
of Vα, after lemma 35. �

It is an easy remark that all the remaining properties of X stated in theorem 36
are an immediate consequence of the above construction of X . In particular, the
equality X red = Mred follows from the equalities jredα (Uredα ) = Vredα , for all α, in
lemma 35.

10. Forgetting the filtration: the case of (HN) type

In this section, we restrict our discussion to the cases when the admissible pair
(b, µ) is of (HN) type, M ⊇ Mb and P ⊇ Pb. Our analysis strongly relays on
properties specific of the filtrations which are coarser than or equal to the Hodge-
Newton filtration.

Under these hypotheses, we establish the variant of Harris’ conjecture discussed
in the introduction, section 1.3. More precisely, we establish the following result.

Theorem 39. Assume the admissible pair is of (HN) type, M ⊇Mb and P ⊇ Pb.
Then, for any l−adic admissible representation ρ of J(Qp), we have an equality

of virtual admissible representations of G(Qp)×WE:

H•(M∞)ρ = Ind
G(Qp)

P (Qp)H
•(P∞M )ρ.

This results implies in particular that the cohomology of the tower of Rapoport-
Zink spaces associated with a pair (b, µ) of (HN) type contains no supercuspidal
representations of G(Qp).

In the case when all break-points of νb are of (HN) type, Mb = Lb, and the
corresponding Rapoport-Zink spaces PLb

are basic. Thus, in these case, the above
theorem reduces the computation of the cohomology of non-basic Rapoport-Zink
spaces to that of the associated basic ones.

Lemma 40. Maintaining the notations of section 9.1.
Assume that the admissible pair (b, µ) is of (HN) type, M ⊇Mb and P ⊇ Pb.
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Then, for all indexes α, the corresponding restriction of the map j, jα : Uα =
j−1Vα → Vα, are isomorphisms.

Equivalently, with the notations of theorem 36, X = XP = M.

Proof. Since we already know that the jα are closed embeddings, it suffices to check
that they are bijective on points. Let x be a point ofM. Then, x corresponds to the
data of a Barsotti-Tate group G with additional structures, defined over a complete
local ring R, with residue field k, and an isogeny β : Σk → G = Gk. Under our
hypotheses, theorem 25 implies that G/R admits a unique filtration G•, which is
canonically split over k, G = ⊕iGi, associated with the parabolic subgroup P .
(This is because we chose P ⊇ Pb, where Pb is the parabolic subgroup associated
with the Hodge-Newton filtration on Nb(V ).) For any i = 1, . . . , t, the constituent
Σi of Σ maps surjectively onto the corresponding constituent Gi of G and trivially
to the others. (This is because the decomposition is compatible with the slope
filtration.) Thus, the isogeny β : Σ → G is of the form β = ⊕iβi, for some isogenies
βi : Σi → Gi, i = 1, . . . , t. Thus, the data (G,G•, β) defines a (unique) point x′ of
F = FP mapping to x. �

Theorem 41. Assume the admissible pair (b, µ) is of (HN) type, M ⊇ Mb and
P ⊇ Pb.

Then, for any l−adic admissible representation ρ of J(Qp), we have an equality
of virtual admissible representations of G(Qp)×WE:

H•(M∞)ρ = H•(M∞ ×MU0 FU0
P )ρ.

Proof. We are simply restating theorem 37 using the result of lemma 40. �

The above theorem combined with theorems 26 and 34 implies theorem 39.

11. Application to the study of the cohomology of Shimura varieties

We conclude our discussion with the an application of theorem 39 to the study of
the l-adic cohomology of certain Shimura varieties. More precisely, in [23] (Theorem
22), we established an explicit formula expressing the l-adic cohomology of certain
Shimura varieties in terms of the cohomology of the corresponding Rapoport-Zink
spaces and of some other varieties, the Igusa varieties. Using those formulas, it is
possible to translate theorem 39 into information about the absence of supercuspidal
representations inside some specified subrepresentations of the l-adic cohomology
of certain Shimura varieties. (In the following, we recall very briefly the context
and pertinent results and refer to [23] for precise definitions and statements.)

11.1. Let S∞ be a tower of (PEL)-type Shimura varieties, associated to a Shimura
datum (G, h) over Q which is unramified at p. These are smooth quasi-projective
varieties defined over a number field E, called the reflex field, which is unramified
at all primes v above p. Let v be such a prime, we denote by Ev (resp. OEv

, kv
and Ēv) the completion of E at v (resp. its ring of integers, its residue field and
the completion of an algebraic closure of Ev), and by S̄ the special fibers at v of
the Shimura varieties S.

There exists a natural stratification of S̄, by locally closed reduced subschemes,
{S̄b}b, called the Newton polygon stratification, which is indexed by the elements
b ∈ B(GQp

, µh) (for GQp
the restriction of G over Qp and µh the conjugacy class

of cocharacters of GQp
corresponding to h) and is stable under the action of G(Af )
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(for Af the finite adeles of Q). Namely, for any b ∈ B(GQp
, µh) (regarded as an

isogeny class of Barsotti-Tate groups with additional structures), the associated
stratum is defined by

S̄b = {x ∈ S̄ |Ax[p∞] ∈ b}.
Conjecturally, the Newton polygon strata are all non-empty. In the case of b µ-
ordinary the corresponding stratum is known to be open and dense ([32], Theorem
1.6.2, p. 584).

Let RqΨη(Ql), q ≥ 0, denote the l-adic vanishing cycles of the Shimura varieties
S, and for each b ∈ B(GQp , µh) consider the virtual representation of G(Af )×WEv

H•
c (S̄∞b , R•Ψη(Ql)) =

∑
p,q≥0

(−1)p+qHp
c (S̄∞b , RqΨη(Ql)).

In the case when the Shimura varieties are proper, their l-adic cohomology is nat-
urally the sum of the above representations, as b varies. I.e., there is an equality of
virtual representations of G(Af )×WEv∑

i

(−1)iHi(S∞ ×E Ēv,Ql) =
∑

b∈B(GQp ,µh)

H•
c (S̄∞b , R•Ψη(Ql)) (S proper).

In [23], we showed how these representations associated with the Newton poly-
gon stratification of the Shimura varieties can be computed in terms of the l-adic
cohomology of the corresponding Rapoport-Zink spaces and Igusa varieties. In
particular, via those formulas, theorem 39 implies the following result.

Corollary 42. Let b ∈ B(GQp
, µh) be an element of (HN) type.

Then, the virtual representation H•
c (S̄∞b , R•Ψη(Ql)) contains no supercuspidal

representations of G(Qp).
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