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29bDipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
30INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

31aINFN Sezione di Genova, I-16146 Genova, Italy;
31bDipartimento di Fisica, Università di Genova, I-16146 Genova, Italy
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35bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy

36aINFN Sezione di Pisa, I-56127 Pisa, Italy
36bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
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39aINFN Sezione di Trieste, I-34127 Trieste, Italy

39bDipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
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We present measurements of the CP-violation parameters S and C for the radiative decay B0 ! �K0
S�;

for B ! �K� we also measure the branching fractions and for Bþ ! �Kþ� the time-integrated charge

asymmetry Ach. The data, collected with the BABAR detector at the Stanford Linear Accelerator Center,

represent 465� 106 B �B pairs produced in eþe� annihilation. The results are S ¼ �0:18þ0:49
�0:46 � 0:12,

C ¼ �0:32þ0:40
�0:39 � 0:07, BðB0 ! �K0�Þ ¼ ð7:1þ2:1

�2:0 � 0:4Þ � 10�6, BðBþ ! �Kþ�Þ ¼ ð7:7� 1:0�
0:4Þ � 10�6, and Ach ¼ ð�9:0þ10:4

�9:8 � 1:4Þ � 10�2. The first error quoted is statistical and the second

systematic.

DOI: 10.1103/PhysRevD.79.011102 PACS numbers: 13.20.He, 11.30.Er, 12.15.Hh

Radiative Bmeson decays have long been recognized as
a sensitive probe to test the standard model (SM) and to
look for new physics (NP) [1]. In the SM, flavor-changing
neutral current processes, such as b ! s�, proceed via
radiative loop diagrams. The loop diagrams may also con-
tain new heavy particles, and therefore are sensitive to NP.
In the SM the photon polarization in radiative decays is
dominantly left (right) handed for b ( �b) decays, resulting in
the suppression of mixing-induced CP asymmetries [2].
There are however NP scenarios predicting large values of
mixing-induced CP asymmetries [3,4]. We search also for
direct CP asymmetry in charged B decays, measuring the
charge asymmetry Ach � ð�� � �þÞ=ð�� þ �þÞ, where
� is the partial decay width of the B meson, and the
superscript corresponds to its charge. Direct CP asymme-
try in the SM is expected to be very small [5]. Observation
of significant CP violation in these radiative decay modes
would provide a clear sign of NP [6].

In this paper, we present the first measurement of the
mixing-induced CP violation in the decay mode B0 !
�K0�. Branching fractions for the decay modes B0 !
�K0� and Bþ ! �Kþ� [7] and time-integrated charge
asymmetry for Bþ ! �Kþ� have been measured previ-
ously by the Belle [8] and BABAR [9] Collaborations. We
update our previous measurements with a data sample that
is twice as large.

The results presented here are based on data collected
with the BABAR detector [10] at the PEP-II asymmetric-
energy eþe� collider [11] located at the Stanford Linear
Accelerator Center. We use an integrated luminosity of
423 fb�1, corresponding to ð465� 5Þ � 106 B �B pairs, re-
corded at the �ð4SÞ resonance (at a center-of-mass energy
of

ffiffiffi
s

p ¼ 10:58 GeV).

Charged particles are detected by a combination of a
vertex tracker (SVT) consisting of five layers of double-
sided silicon microstrip detectors, and a 40-layer central
drift chamber (DCH), both operating in the 1.5 T magnetic
field. Photons and electrons are identified using a CsI(Tl)
electromagnetic calorimeter (EMC). Further charged-
particle identification is provided by the average energy
loss (dE=dx) in the tracking devices and by an internally
reflecting ring-imaging Cherenkov detector (DIRC) cover-
ing the central region. We reconstruct the primary photon
using an EMC shower not associated with a track. The
primary photon energy, calculated in the �ð4SÞ frame, is
required to be in the range 1:6–2:7 GeV. Charged K can-
didates are selected from tracks, by using particle identi-
fication from the DIRC and the dE=dx measured in the
SVT and DCH.
The B decay daughter candidates are reconstructed

through their decays �0 ! ��, � ! �� (���), and � !
�þ���0 (�3�). Here we require the laboratory energy of
the photons to be greater than 50 MeV. We impose the
following requirements on the invariant mass in MeV=c2

of these particles’ final states: 120<mð��Þ< 150 for �0,
490<mð��Þ< 600 for ���, 520<mð�þ���0Þ< 570

for �3�. Secondary pions in � candidates are rejected if
their DIRC and dE=dx signatures satisfy tight requirements
for being consistent with protons, kaons, or electrons.
Neutral K candidates are formed from pairs of oppositely
charged tracks with a vertex �2 probability larger than
0.001, 486<mð�þ��Þ< 510 MeV=c2 and a recon-
structed decay length greater than 3 times its uncertainty.
The invariant mass of �K system is required to be less
than 3:25 GeV=c2. A B meson candidate is reconstructed
by combining an � candidate, a charged or neutral kaon,
and a primary photon candidate. It is characterized kine-
matically by the energy-substituted mass mES �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=2þ p0 � pBÞ2=E2

0 � p2
B

q
and energy difference �E �

E�
B � 1

2

ffiffiffi
s

p
, where the subscripts 0 and B refer to the initial

�ð4SÞ and to the B candidate in the lab frame, respectively,
and the asterisk denotes the �ð4SÞ rest frame. We require
5:25<mES < 5:29 GeV=c2 and j�Ej< 0:2 GeV.
From a candidate B �B pair we reconstruct a B0 decaying

into �K0
S� (Brec). We also reconstruct the decay point of
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the other B meson (Btag) and identify its flavor. The differ-

ence �t � trec � ttag of the proper decay times trec and ttag
of the reconstructed and tag B mesons, respectively, is
obtained from the measured distance between the Brec

and Btag decay vertices and from the boost (�� ¼ 0:56)

of the eþe� system. The �t distribution [12] is given by

Fð�tÞ ¼ e�j�tj=�

4�
½1� �w� ð1� 2wÞðS sinð�md�tÞ

� C cosð�md�tÞÞ�: (1)

The upper (lower) sign denotes a decay accompanied by a
B0 ( �B0) tag, � is the mean B0 lifetime, �md is the mixing
frequency, and the mistag parameters w and �w are the
average and difference, respectively, of the probabilities
that a true B0 is incorrectly tagged as a �B0 or vice versa. In
the flavor tagging algorithm [13] there are six mutually
exclusive tagging categories of different response purities
and untagged events with no tagging informations.

We reconstruct the B0 ! ���K
0
S� decay point, using the

knowledge of the K0
S trajectory and the average interaction

point in a geometric fit [12]. In about 70% of the selected
events the�t resolution is sufficient for the time-dependent
CP-violation measurement. For the remaining events the
�t information is not used. For both ���K

0
S� and �3�K

0
S�

modes we require j�tj< 20 ps and ��t < 2:5 ps, where
��t is the per-event error on �t.

We obtain signal event yields and CP-violation parame-
ters from unbinned extended maximum-likelihood (ML)
fits. We indicate with j the species of event: signal, q �q
continuum background, B �B peaking background (BP), and
B �B nonpeaking background (BNP). The input observables
are mES, �E, the output of a Neural Network (NN), the �
invariant mass m�, and �t. The NN combines four varia-

bles: the absolute values of the cosines of the polar angles
with respect to the beam axis in the �ð4SÞ frame of the B
candidate momentum and the B thrust axis, the ratio of the
second and zeroth Fox-Wolfram moments [14], and the
absolute value of the cosine of the angle �T between the
thrust axis of the B candidate and that of the rest of the
tracks and neutral clusters in the event, calculated in the
�ð4SÞ frame.

For each species j and tagging category c and with nj
defined to be the number of events of the species j and fj;c
the fraction of events of species j for each category c, we
write the extended likelihood function for all events be-
longing to category c as

Lc ¼ exp

�
�X

j

njfj;c

�YNc

i

ðnsigfsig;cP i
sig;c þ nq �qfq �q;cP i

q �q

þ nBNPfBNP;cP i
BNP þ nBPfBP;cP i

BPÞ; (2)

where P i
j;c is the total probability function (PDF) for event

i and Nc the number of events of category c in the sample.
We fix fsig;c, fBNP;c, and fBP;c to fBflav;c, the values mea-

sured with a large sample of B-decays to fully recon-
structed flavor eigenstates (Bflav) [15]. The total
likelihood function Ld for decay mode d is given as the
product over the seven tagging categories. Finally, when
combining decay modes we form the grand likelihoodL ¼Q

Ld.
The PDF P sigð�t; ��t; cÞ, for each category c, is the

convolution of Fð�t; cÞ [Eq. (1)] with the signal resolution
function (sum of three Gaussians) determined from the
Bflav sample. The other PDF forms are the sum of two
Gaussians for P sigðmESÞ, P sigð�EÞ, and P sigðm�Þ; the sum
of three Gaussians for P q �qð�tÞ, P BNPð�tÞ, and P BPð�tÞ; a
nonparametric step function for P jðNNÞ [16]; a linear

dependence for P q �qð�EÞ, P BNPð�EÞ, and P BPð�EÞ; a

first-order polynomial plus a Gaussian for P q �qðm�Þ,
P BNPðm�Þ, and P BPðm�Þ; and for P q �qðmESÞ,
P BNPðmESÞ, and P BPðmESÞ, the function x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
�

exp½�	ð1�x2Þ�, with x � 2mES=
ffiffiffi
s

p
[17], where for the

BP PDFs we add a Gaussian. We allow q �q background
PDF parameters to vary in the fit.
We determine the PDF parameters from Monte Carlo

(MC) simulation for the signal and B �B backgrounds, while
using sideband data (5:25<mES < 5:27 GeV=c2; 0:1<
j�Ej< 0:2 GeV) to model the PDFs of continuum back-
ground. Large control samples of B decays to charmed
final states with similar topology and a smearing procedure
applied to photons during the event reconstruction are used
to verify the simulated resolutions in mES and �E. The
largest shift in mES is 0:6 MeV=c2. Any bias in the fit is
determined from a large set of simulated experiments.
We compute the branching fractions and charge asym-

metry from fits made without �t and flavor tagging. The
free parameters in the fit are the signal, q �q, BNP and BP
background yields; the bin weights of the step function for
P q �qðNNÞ; the slopes of P q �qð�EÞ and P q �qðm�Þ; 	; and for
charged modes the signal and background Ach. As free
parameters we have also S, C, the parameters of the
P q �qð�tÞ PDF, and the fq �q;c fractions.

Table I lists the results of the fits. The corrected signal
yield is the fitted yield minus the fit bias which is in the
range 2%–4%. The efficiency is calculated as the ratio of
the number of signal MC events entering the ML fit to the
total generated. We compute the branching fractions from
the corrected signal yields, reconstruction efficiencies,
daughter branching fractions, and the number of produced
B mesons. We assume that the branching fractions of the
�ð4SÞ to BþB� and B0 �B0 are each equal to 50%. We
combine results from different channels by adding the
values of�2 lnL (parameterized in terms of the branching
fractions), taking into account the correlated and uncorre-
lated systematic errors.
The statistical error on the signal yield, S, C and the

signal charge asymmetry is taken as the change in the
central value when the quantity �2 lnL increases by one
unit from its minimum value. The significance S (�) is the
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square root of the difference between the value of �2 lnL
(with systematic uncertainties included) for zero signal and
the value at its minimum.

Figure 1 shows, as representative fits, the projections
onto mES and �E while Fig. 2 shows the projections onto
�t and the raw asymmetry between B0 and �B0 tags. In
these projections a subset of the data is used for when the
signal likelihood (computed without the variable plotted)
exceeds a threshold that optimizes the sensitivity.

Figure 3 shows the distribution of the �K invariant mass
for signal events obtained by the event-weighting tech-
nique (sPlot) described in Ref. [18]. There is some evi-
dence of a structure near 1:5 GeV=c2.

The main sources of systematic uncertainties for the
time-dependent measurements come from the variation of
the signal PDF shape parameters within their errors (0.08
for S, 0.04 for C), and from B �B backgrounds (0.09 for S,
0.06 for C). Other minor sources are SVT alignment, beam
spot position and size, and interference between the CKM-
suppressed �b ! �uc �d amplitude and the favored b ! c �ud
amplitude for some tag-side B decays [19]. The Bflav

sample is used to determine the errors associated with
the signal �t resolutions, tagging efficiencies, and mistag

rates. We use specific signal MC samples to evaluate the
systematic uncertainty associated with the appropriateness
of using Bflav parameters for the signal �t resolution (0.02
for S, 0.01 for C). Published measurements [20] for � and
�md are used to determine the errors associated with them.
Summing all systematic errors in quadrature, we obtain
�0:12 for S and �0:07 for C.
The main sources of systematic uncertainties for the

branching fraction measurements include uncertainties in
the PDF parameterization and ML fit bias. For the signal,
the uncertainties in PDF parameters are estimated by com-
paring MC and data in control samples. Varying the signal
PDF parameters within these errors, we estimate yield
uncertainties of 3–23 events, depending on the mode.
The uncertainty (1–3 events) from fit bias is taken as half
the correction itself. Systematic uncertainties due to lack of
knowledge of the primary photon spectrum are estimated
to be in the range 2%–3% depending on the decay mode.
Uncertainties in our knowledge of the efficiency, found
from auxiliary studies [21], include 0:4%� Nt and
1:8%� N�, where Nt and N� are the numbers of tracks
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FIG. 1 (color online). The B candidate mES and �E projec-
tions (see text) for �Kþ� (a, b), �K0� (c, d). Points with error
bars (statistical only) represent the data, the solid line the full fit
function, and the dashed line its background component.
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FIG. 2 (color online). Projections (see text) onto �t of the data
(points with error bars), fit function (solid line), and background
function (dashed line), for (a) B0 and (b) �B0 tagged events, and
(c) the raw asymmetry ðNB0 � N �B0 Þ=ðNB0 þ N �B0 Þ between B0

and �B0 tags.

TABLE I. Number of events N in the sample, corrected signal yield, detection efficiency 
, daughter branching fraction productQ
Bi, significance S (�) (including systematic uncertainties), and measured branching fraction B with statistical error for each decay

mode. For the combined measurements we give S (�) and the branching fraction with statistical and systematic uncertainty. For the
neutral mode we give the S and C parameters for each decay mode and for their combination. For the charged modes we also give the
measured signal charge asymmetry Ach.

Mode N Yield 
 (%)
Q

Bið%Þ Sð�Þ Bð10�6Þ Ach (10�2) S C

���K
0� 3690 58þ19

�18 12 13:6 3:3 7:4þ2:5
�2:3 �0:04� 0:62 �0:24� 0:44

�3�K
0� 2282 24þ13

�12 10 7:8 2:1 6:6þ3:6
�3:2 �0:45� 0:81 �0:71� 0:87

�K0� 3:9 7:1þ2:1
�2:0 � 0:4 �0:18þ0:49

�0:46 � 0:12 �0:32þ0:40
�0:39 � 0:07

���K
þ� 11620 266þ37

�36 19 39.4 6.5 7:8þ1:1�1:0 �4� 12
�3�K

þ� 10738 111þ26
�24 14 22.4 4.5 7:4þ1:7

�1:6 �24� 20
�Kþ� 8:0 7:7� 1:0� 0:4 �9:0þ10:4

�9:8 � 1:4
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and photons, respectively, in the B candidate. There is a
systematic error of 2.1% in the efficiency of K0

S reconstruc-

tion. The uncertainty in the total number of B �B pairs in the
data sample is 1.1%. Published data [20] provide the un-
certainties in the B daughter branching fraction products
(0.7%–1.8%).

A systematic uncertainty of 0.014 is assigned to Ach.
This uncertainty is estimated from studies with signal MC
events and data control samples and from calculation of the
asymmetry due to particles interacting in the detector.

In conclusion, we measure the time-dependent CP vio-
lation parameters in the decay mode B0 ! �K0

S�: S ¼
�0:18þ0:49

�0:46 � 0:12 and C ¼ �0:32þ0:40
�0:39 � 0:07. We also

measure the branching fractions, in units of 10�6, BðB0!
�K0�Þ¼7:1þ2:1

�2:0�0:4 and BðBþ!�Kþ�Þ¼7:7�1:0�
0:4, in agreement with the results from Belle [8] and the
previous BABAR results [9]. The measured charge asym-
metry in the decay Bþ ! �Kþ� is consistent with zero. Its
confidence interval at 90% confidence level is [� 0:25,
0.08]. All the results are consistent with SM expectations.
Because of the large statistical uncertainties, interesting
constraints on NP in these decay modes need a data sample
available only at higher luminosity B factories (as pro-
posed at KEK [22] and Frascati [23]).
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FIG. 3. Plot of �K invariant mass for signal for the combined
subdecay modes: (a) Bþ ! �Kþ�, (b) B0 ! �K0�. Errors are
statistical only.
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