Crystallographic Data

[2]H₂

Contents

Table 1. Crystal data

Figures Minimum overlap

Table 2. Atomic Coordinates

Table 3. Full bond distances and angles

Table 4. Anisotropic displacement parameters

Table 5. Hydrogen bond distances and angles

Table 6. Observed and calculated structure factors (available upon request)

[2]H₂

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 653538. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 653538."

Table 1. Crystal data and structure refinement for [2]H₂ (CCDC 653538).

Empirical formula	$C_{35}H_{35}N_3$
Formula weight	497.66
Crystallization Solvent	Not given
Crystal Habit	Blade
Crystal size	0.39 x 0.22 x 0.09 mm ³
Crystal color	Colorless
Ľ	Data Collection
Type of diffractometer	Bruker SMART 1000
Wavelength	0.71073 Å MoKα
Data Collection Temperature	100(2) K

θ range for 8568 reflections used in lattice determination	2.54 to 27.95°	
Unit cell dimensions	a = 12.1774(12) Å b = 8.3901(8) Å c = 27.039(3) Å $\beta = 93.803(2)^{\circ}$	
Volume	2756.5(5) Å ³	
Ζ	4	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Density (calculated)	1.199 Mg/m ³	
F(000)	1064	
Data collection program	Bruker SMART v5.630	
θ range for data collection	1.51 to 28.41°	
Completeness to $\theta = 28.41^{\circ}$	93.2 %	
Index ranges	$-15 \le h \le 16, -10 \le k \le 11, -36 \le l \le 35$	
Data collection scan type	ω scans at 5 ϕ settings	
Data reduction program	Bruker SAINT v6.45A	
Reflections collected	34841	
Independent reflections	6474 [R _{int} = 0.0831]	
Absorption coefficient	0.070 mm ⁻¹	
Absorption correction	None	
Max. and min. transmission	0.9937 and 0.9732	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 1990)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 1997)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	6474 / 0 / 349
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.579
Final R indices [I> 2σ (I), 4122 reflections]	R1 = 0.0554, wR2 = 0.0907
R indices (all data)	R1 = 0.0900, wR2 = 0.0939
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$

Max shift/error	0.000
Average shift/error	0.000
Largest diff. peak and hole	0.387 and -0.364 e.Å ⁻³

Special Refinement Details

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates $(x 10^4)$ and equivalent isotropic displacement parameters $(\mathring{A}^2x 10^3)$ for $[2]H_2$ (CCDC 653538). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U _{eq}
N(1)	1038(1)	3989(2)	1311(1)	39(1)
N(2)	3731(1)	5158(2)	1856(1)	21(1)
N(3)	4904(1)	2425(2)	1759(1)	24(1)
C(1)	1569(1)	5009(2)	998(1)	27(1)
C(2)	1265(1)	5049(2)	493(1)	33(1)
C(3)	1798(1)	6037(2)	181(1)	34(1)
C(4)	2639(1)	7005(2)	366(1)	36(1)
C(5)	2952(1)	6967(2)	866(1)	31(1)
C(6)	2434(1)	5978(2)	1186(1)	22(1)
C(7)	2781(1)	5934(2)	1727(1)	22(1)
C(8)	2159(1)	6639(2)	2073(1)	27(1)
C(9)	2504(1)	6534(2)	2570(1)	28(1)
C(10)	3462(1)	5726(2)	2705(1)	25(1)
$\dot{C(11)}$	4076(1)	5057(2)	2340(1)	21(1)
C(12)	5122(1)	4202(2)	2469(1)	20(1)
C(13)	5747(1)	4626(2)	2903(1)	25(1)
C(14)	6718(1)	3870(2)	3052(1)	30(1)
C(15)	7103(1)	2667(2)	2758(1)	29(1)
C(16)	6516(1)	2220(2)	2327(1)	26(1)
C(17)	5517(1)	2946(2)	2180(1)	22(1)
C(18)	458(2)	2616(2)	1119(1)	31(1)
C(19)	-685(2)	2578(2)	1105(1)	31(1)
C(20)	-1216(2)	1243(2)	903(1)	34(1)
C(21)	-652(2)	-34(2)	722(1)	33(1)
C(22)	485(1)	30(2)	744(1)	36(1)
C(23)	1059(1)	1350(2)	938(1)	34(1)
C(24)	-1328(2)	3938(2)	1312(1)	45(1)
C(25)	-1250(2)	-1478(2)	512(1)	49(1)
C(26)	2300(1)	1393(2)	948(1)	45(1)
C(27)	5218(1)	1155(2)	1452(1)	22(1)
C(28)	5264(1)	-416(2)	1626(1)	25(1)
C(29)	5539(1)	-1613(2)	1302(1)	27(1)
C(30)	5737(1)	-1313(2)	812(1)	$\frac{28(1)}{28(1)}$
C(31)	5673(1)	251(2)	649(1)	$\frac{20(1)}{30(1)}$
C(32)	5430(1)	1503(2)	963(1)	25(1)
C(33)	4974(1)	-839(2)	2143(1)	34(1)
C(34)	5955(1)	-2667(2)	464(1)	37(1)
C(35)	5391(1)	3205(2)	784(1)	34(1)

N(1)-C(1)	1.3935(19)	C(6)-C(5)-C(4)	121.31(16)
N(1)-C(18)	1.430(2)	C(5)-C(6)-C(1)	118.94(15)
N(2)-C(11)	1.3511(18)	C(5)-C(6)-C(7)	121.10(14)
N(2)-C(7)	1.3525(18)	C(1)-C(6)-C(7)	119.96(14)
N(3)-C(17)	1.3900(17)	N(2)-C(7)-C(8)	122.15(14)
N(3)-C(27)	1.4191(19)	N(2)-C(7)-C(6)	116.41(14)
C(1)-C(2)	1.390(2)	C(8)-C(7)-C(6)	121.44(14)
C(1)-C(6)	1.400(2)	C(7)-C(8)-C(9)	119.20(15)
C(2)-C(3)	1.376(2)	C(10)-C(9)-C(8)	119.07(15)
C(3)-C(4)	1.374(2)	C(9)-C(10)-C(11)	119.67(14)
C(4)-C(5)	1.383(2)	N(2)-C(11)-C(10)	120.90(14)
C(5)-C(6)	1.381(2)	N(2)-C(11)-C(12)	117.71(13)
C(6)-C(7)	1.496(2)	C(10)-C(11)-C(12)	121.39(14)
C(7)-C(8)	1.376(2)	C(13)-C(12)-C(17)	117.77(14)
C(8)-C(9)	1.383(2)	C(13)-C(12)-C(11)	118.97(14)
C(9)-C(10)	1.378(2)	C(17)-C(12)-C(11)	123.25(13)
C(10)-C(11)	1.395(2)	C(14)-C(13)-C(12)	122.38(15)
C(11)-C(12)	1.483(2)	C(13)-C(14)-C(15)	118.92(15)
C(12)-C(13)	1.4016(19)	C(16)-C(15)-C(14)	120.50(15)
C(12)-C(17)	1.416(2)	C(15)-C(16)-C(17)	121.12(15)
C(13)-C(14)	1.378(2)	N(3)-C(17)-C(16)	120.52(14)
C(14)-C(15)	1.386(2)	N(3)-C(17)-C(12)	120.20(13)
C(15)-C(16)	1.376(2)	C(16)-C(17)-C(12)	119.27(14)
C(16)-C(17)	1.395(2)	C(19)-C(18)-C(23)	121.33(16)
C(18)-C(19)	1.390(2)	C(19)-C(18)-N(1)	119.83(17)
C(18)-C(23)	1.396(2)	C(23)-C(18)-N(1)	118.83(16)
C(19)-C(20)	1.387(2)	C(20)-C(19)-C(18)	117.95(17)
C(19)-C(24)	1.512(2)	C(20)-C(19)-C(24)	121.01(16)
C(20)-C(21)	1.380(2)	C(18)-C(19)-C(24)	121.03(16)
C(21)-C(22)	1.384(2)	C(21)-C(20)-C(19)	122.48(17)
C(21)-C(25)	1.505(2)	C(20)-C(21)-C(22)	118.34(17)
C(22)-C(23)	1.393(2)	C(20)-C(21)-C(25)	121.32(17)
C(23)-C(26)	1.511(2)	C(22)-C(21)-C(25)	120.34(18)
C(27)-C(32)	1.394(2)	C(21)-C(22)-C(23)	121.50(18)
C(27)-C(28)	1.400(2)	C(22)-C(23)-C(18)	118.39(16)
C(28)-C(29)	1.390(2)	C(22)-C(23)-C(26)	120.14(18)
C(28)-C(33)	1.505(2)	C(18)-C(23)-C(26)	121.47(16)
C(29)-C(30)	1.385(2)	C(32)-C(27)-C(28)	120.76(15)
C(30)-C(31)	1.385(2)	C(32)-C(27)-N(3)	118.11(14)
C(30)-C(34)	1.509(2)	C(28)-C(27)-N(3)	121.06(14)
C(31)-C(32)	1.395(2)	C(29)-C(28)-C(27)	118.24(15)
C(32)-C(35)	1.507(2)	C(29)-C(28)-C(33)	119.80(15)
		C(27)-C(28)-C(33)	121.89(15)
C(1)-N(1)-C(18)	120.80(13)	C(30)-C(29)-C(28)	122.51(16)
C(11)-N(2)-C(7)	119.00(13)	C(29)-C(30)-C(31)	117.83(15)
C(17)-N(3)-C(27)	124.37(12)	C(29)-C(30)-C(34)	120.51(16)
C(2)-C(1)-N(1)	120.47(15)	C(31)-C(30)-C(34)	121.59(16)
C(2)-C(1)-C(6)	119.30(15)	C(30)-C(31)-C(32)	121.95(16)
N(1)-C(1)-C(6)	120.22(14)	C(27)-C(32)-C(31)	118.67(15)
C(3)-C(2)-C(1)	120.67(16)	C(27)-C(32)-C(35)	119.94(14)
C(4)-C(3)-C(2)	120.27(16)	C(31)-C(32)-C(35)	121.39(15)
C(3)-C(4)-C(5)	119.50(16)		

Table 3. Bond lengths [Å] and angles [°] for $[2]H_2$ (CCDC 653538).

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^4)$ for $[2]H_2$ (CCDC 653538). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	593(11)	397(10)	180(8)	18(7)	-34(7)	-245(8)
N(2)	217(7)	196(8)	224(7)	-9(6)	-9(6)	-26(6)
N(3)	187(7)	278(8)	235(7)	-60(6)	-24(6)	38(6)
C(1)	323(10)	259(10)	228(9)	37(8)	-17(8)	-39(8)
C(2)	405(11)	328(11)	254(10)	15(9)	-83(8)	-98(9)
C(3)	417(11)	379(11)	219(9)	44(9)	-32(8)	-28(9)
C(4)	364(11)	429(12)	276(10)	94(9)	44(8)	-89(9)
C(5)	239(9)	345(11)	331(10)	26(9)	0(8)	-44(8)
C(6)	207(9)	220(9)	234(9)	-1(8)	-2(7)	31(7)
C(7)	210(9)	188(9)	263(9)	3(7)	-9(7)	-34(7)
C(8)	214(9)	300(11)	291(10)	-40(8)	-10(7)	46(8)
C(9)	262(10)	310(11)	265(10)	-72(8)	51(8)	23(8)
C(10)	274(9)	267(10)	192(9)	-25(7)	1(7)	-27(8)
C(11)	218(9)	184(9)	212(9)	-6(7)	12(7)	-50(7)
C(12)	218(9)	224(10)	171(8)	17(7)	25(7)	-20(7)
C(13)	268(9)	254(10)	234(9)	-32(8)	11(7)	-18(8)
C(14)	276(10)	343(11)	257(10)	-28(8)	-58(8)	-19(8)
C(15)	241(9)	301(11)	306(10)	15(8)	-38(8)	4(8)
C(16)	249(9)	250(10)	275(9)	-43(8)	0(7)	7(8)
C(17)	216(9)	237(10)	192(8)	14(7)	4(7)	-29(7)
C(18)	469(12)	292(11)	163(9)	49(8)	-61(8)	-145(9)
C(19)	415(11)	311(11)	205(9)	87(8)	-51(8)	-48(9)
C(20)	318(10)	412(12)	270(10)	91(9)	-68(8)	-90(9)
C(21)	398(11)	353(12)	232(10)	28(9)	-33(8)	-131(9)
C(22)	400(12)	359(12)	330(11)	1(9)	12(9)	-74(9)
C(23)	367(11)	387(12)	252(10)	58(9)	-45(8)	-125(9)
C(24)	537(13)	407(12)	403(11)	58(10)	-16(10)	-23(11)
C(25)	511(13)	491(14)	459(12)	-65(10)	-1(10)	-207(11)
C(26)	393(12)	494(14)	448(12)	8(10)	-4(9)	-131(10)
C(27)	178(9)	236(10)	253(9)	-55(8)	-15(7)	-19(7)
C(28)	194(9)	280(10)	264(9)	-29(8)	-13(7)	-25(8)
C(29)	227(9)	227(10)	339(10)	-25(8)	-30(8)	-15(8)
C(30)	215(9)	277(11)	337(10)	-92(8)	33(8)	-41(8)
C(31)	310(10)	324(11)	281(10)	-46(8)	88(8)	-66(8)
C(32)	230(9)	248(10)	277(9)	-40(8)	38(7)	-38(8)
C(33)	374(11)	306(11)	327(10)	22(9)	8(8)	-9(9)
C(34)	377(11)	318(11)	418(11)	-116(9)	74(9)	-62(9)
C(35)	462(12)	302(11)	269(10)	-24(8)	101(8)	-42(9)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(3)-H(3)N(2)	0.88	2.06	2.7235(18)	130.9

Table 5. Hydrogen bonds for [2]H₂ (CCDC 653538) [Å and °].

Symmetry transformations used to generate equivalent atoms:

[**2**]Fe(THF)

Contents

Table 1. Crystal data Figures Minimum overlap Table 2. Atomic Coordinates Table 3. Selected bond distances and angles Table 4. Full bond distances and angles Table 5. Anisotropic displacement parameters

Table 6. Observed and calculated structure factors (available upon request)

[2]Fe(THF)

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 678268. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 678268."

Table 1. Crystal data and structure refinement for [2]Fe(THF) (CCDC 678268).

Empirical formula	$C_{39}H_{41}N_3OFe$
Formula weight	623.60
Crystallization Solvent	Toluene/petroleumether
Crystal Habit	Block

Crystal size	0.26 x 0.25 x 0.21 mm ³	
Crystal color	Dark red	
Data Coll	ection	
Type of diffractometer	Bruker KAPPA APEX II	
Wavelength	0.71073 Å MoKα	
Data Collection Temperature	100(2) K	
θ range for 9851 reflections used in lattice determination	2.48 to 35.69°	
Unit cell dimensions		
Volume	3240.3(2) Å ³	
Z	4	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Density (calculated)	1.278 Mg/m ³	
F(000)	1320	
Data collection program	Bruker APEX2 v2.1-0	
θ range for data collection	1.95 to 36.53°	
Completeness to $\theta = 36.53^{\circ}$	93.3 %	
Index ranges	$\text{-}24 \leq h \leq 22, \text{-}22 \leq k \leq 22, \text{-}26 \leq l \leq 27$	
Data collection scan type	ω scans; 17 settings	
Data reduction program	Bruker SAINT-Plus v7.34A	
Reflections collected	97719	
Independent reflections	14879 [R _{int} = 0.0486]	
Absorption coefficient	0.501 mm ⁻¹	
Absorption correction	None	

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²

Data / restraints / parameters	14879 / 0 / 403
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	2.823
Final R indices [I> 2σ (I), 10317 reflections]	R1 = 0.0501, wR2 = 0.0848
R indices (all data)	R1 = 0.0792, wR2 = 0.0860
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	2.279 and -1.067 e.Å-3

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K.

Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

х y z U_{eq} 8517(1) Fe(1) 2281(1)2168(1) 19(1) O(1) 2086(1) 2910(1) 7387(1) 24(1) N(1) 8316(1) 21(1) 1773(1) 860(1) N(2) 1160(1)2750(1) 8954(1) 17(1)N(3) 3188(1) 2847(1)9282(1) 19(1) C(1) 898(1) 889(1) 7846(1) 21(1)C(2) 640(1) 204(1)7222(1) 25(1) C(3) -198(1)6716(1) 30(1) 270(1) C(4) -809(1)1027(1)6800(1)30(1) C(5) -590(1)1696(1)7418(1) 27(1)C(6) 244(1)1635(1) 7966(1) 21(1)C(7) 329(1) 2301(1) 8682(1) 20(1)9065(1) C(8) -444(1)2470(1) 24(1) C(9) -365(1)3075(1) 9738(1) 26(1)C(10) 466(1)3530(1) 10008(1)23(1)C(11) 1234(1)18(1)3388(1)9596(1) C(12) 2101(1)3946(1) 9852(1) 19(1) C(13) 2009(1)4838(1) 10263(1)24(1)C(14) 5410(1) 10593(1) 29(1) 2748(1) C(15) 3637(1) 5083(1) 10530(1)29(1) C(16) 3769(1) 10121(1)24(1)4231(1)C(17) 3023(1) 3652(1) 9734(1) 19(1) C(18) -67(1)8422(1) 23(1)2226(1)1844(1) C(19) -829(1)8840(1) 28(1) 8933(1) C(20) 2299(1) -1734(1)34(1) C(21) 3133(1) -1905(1)8648(1) 36(1) 3521(1) C(22) 8274(1)31(1) -1128(1)C(23) 3089(1) -214(1)8148(1) 25(1)C(24) 955(1) -666(1)9191(1) 37(1) C(25) -2900(1)49(1) 3616(1) 8753(1) C(26) 3530(1) 588(1) 7708(1) 30(1) C(27) 4129(1) 2569(1) 9221(1) 22(1)C(28) 4607(1)3015(1) 8642(1) 25(1)C(29) 2647(1)8549(1) 31(1) 5484(1)C(30) 5884(1) 1864(1)9001(1) 35(1) C(31) 5406(1) 1449(1)9574(1) 35(1) C(32) 4530(1) 1782(1)9694(1) 28(1)C(33) 3870(1) 8130(1) 32(1) 4194(1)C(34) 6839(1) 1497(1)57(1) 8872(1) C(35) 4025(1)1312(1)10322(1) 38(1) C(36) 2090(1) 2548(1) 6570(1) 32(1) C(37) 1640(1)3365(1) 6009(1)33(1) C(38) 1787(1)6540(1)34(1) 4274(1)C(39) 1653(1) 3871(1) 7358(1) 31(1)

Table 2. Atomic coordinates ($x 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for [2]Fe(THF) (CCDC 678268). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

Fe(1)-N(3)	1.9278(10)	N(3)-Fe(1)-N(1)	139.52(4)
Fe(1)-N(1)	1.9319(10)	N(3)-Fe(1)-N(2)	94.97(4)
Fe(1)-N(2)	2.0356(10)	N(1)-Fe(1)-N(2)	96.44(4)
Fe(1)-O(1)	2.1126(9)	N(3)-Fe(1)-O(1)	110.45(4)
		N(1)-Fe(1)-O(1)	106.54(4)
		N(2)-Fe(1)-O(1)	96.85(4)

 Table 3. Selected bond lengths [Å] and angles [°] for [2]Fe(THF) (CCDC 678268).

Table 4. Bond lengths [Å] and angles [°] for [2]Fe(THF) (CCDC 678268).

Fe(1)-N(3)	1.9278(10)	C(27)-C(28)	1.4020(18)
Fe(1)-N(1)	1.9319(10)	C(28)-C(29)	1.3982(18)
Fe(1)-N(2)	2.0356(10)	C(28)-C(33)	1.5114(19)
Fe(1)-O(1)	2.1126(9)	C(29)-C(30)	1.380(2)
O(1)-C(36)	1.4435(15)	C(30)-C(31)	1.376(2)
O(1)-C(39)	1.4453(15)	C(30)-C(34)	1.5190(19)
N(1)-C(1)	1.3950(15)	C(31)-C(32)	1.3919(18)
N(1)-C(18)	1.4184(16)	C(32)-C(35)	1.502(2)
N(2)-C(11)	1.3654(15)	C(36)-C(37)	1.5311(19)
N(2)-C(7)	1.3706(14)	C(37)-C(38)	1.513(2)
N(3)-C(17)	1.3656(15)	C(38)-C(39)	1.5034(19)
N(3)-C(27)	1.4373(15)		
C(1)-C(2)	1.4027(17)	N(3)-Fe(1)-N(1)	139.52(4)
C(1)-C(6)	1.4218(17)	N(3)-Fe(1)-N(2)	94.97(4)
C(2)-C(3)	1.3797(18)	N(1)-Fe(1)-N(2)	96.44(4)
C(3)-C(4)	1.378(2)	N(3)-Fe(1)-O(1)	110.45(4)
C(4)-C(5)	1.3723(19)	N(1)-Fe(1)-O(1)	106.54(4)
C(5)-C(6)	1.4106(17)	N(2)-Fe(1)-O(1)	96.85(4)
C(6)-C(7)	1.4838(17)	C(36)-O(1)-C(39)	109.65(10)
C(7)-C(8)	1.3868(17)	C(36)-O(1)-Fe(1)	130.90(8)
C(8)-C(9)	1.3786(18)	C(39)-O(1)-Fe(1)	117.46(7)
C(9)-C(10)	1.3735(18)	C(1)-N(1)-C(18)	117.65(10)
C(10)-C(11)	1.4028(16)	C(1)-N(1)-Fe(1)	111.48(8)
C(11)-C(12)	1.4788(16)	C(18)-N(1)-Fe(1)	129.32(8)
C(12)-C(13)	1.4036(17)	C(11)-N(2)-C(7)	120.38(10)
C(12)-C(17)	1.4398(16)	C(11)-N(2)-Fe(1)	123.15(8)
C(13)-C(14)	1.3738(18)	C(7)-N(2)-Fe(1)	115.05(8)
C(14)-C(15)	1.3849(18)	C(17)-N(3)-C(27)	119.46(10)
C(15)-C(16)	1.3671(18)	C(17)-N(3)-Fe(1)	125.95(8)
C(16)-C(17)	1.4151(16)	C(27)-N(3)-Fe(1)	113.35(8)
C(18)-C(19)	1.4030(18)	N(1)-C(1)-C(2)	121.35(12)
C(18)-C(23)	1.4103(17)	N(1)-C(1)-C(6)	121.06(11)
C(19)-C(20)	1.3926(19)	C(2)-C(1)-C(6)	117.57(11)
C(19)-C(24)	1.5084(19)	C(3)-C(2)-C(1)	121.66(13)
C(20)-C(21)	1.382(2)	C(4)-C(3)-C(2)	120.85(13)
C(21)-C(22)	1.384(2)	C(5)-C(4)-C(3)	119.03(13)
C(21)-C(25)	1.520(2)	C(4)-C(5)-C(6)	121.93(13)
C(22)-C(23)	1.3905(19)	C(5)-C(6)-C(1)	118.76(12)
C(23)-C(26)	1.5049(18)	C(5)-C(6)-C(7)	116.50(12)
C(27)-C(32)	1.4007(18)	C(1)-C(6)-C(7)	124.43(11)

N(2)-C(7)-C(8)	120.67(11)	C(20)-C(21)-C(22)	117.34(14)
N(2)-C(7)-C(6)	120.17(10)	C(20)-C(21)-C(25)	121.52(15)
C(8)-C(7)-C(6)	119.16(11)	C(22)-C(21)-C(25)	121.13(14)
C(9)-C(8)-C(7)	119.39(12)	C(21)-C(22)-C(23)	122.83(13)
C(10)-C(9)-C(8)	119.92(12)	C(22)-C(23)-C(18)	118.77(13)
C(9)-C(10)-C(11)	120.29(12)	C(22)-C(23)-C(26)	120.19(12)
N(2)-C(11)-C(10)	119.20(11)	C(18)-C(23)-C(26)	121.02(12)
N(2)-C(11)-C(12)	121.14(10)	C(32)-C(27)-C(28)	120.32(11)
C(10)-C(11)-C(12)	119.64(11)	C(32)-C(27)-N(3)	119.01(11)
C(13)-C(12)-C(17)	117.37(11)	C(28)-C(27)-N(3)	120.39(12)
C(13)-C(12)-C(11)	116.38(11)	C(29)-C(28)-C(27)	118.17(13)
C(17)-C(12)-C(11)	126.24(11)	C(29)-C(28)-C(33)	120.43(13)
C(14)-C(13)-C(12)	123.88(12)	C(27)-C(28)-C(33)	121.40(11)
C(13)-C(14)-C(15)	118.24(12)	C(30)-C(29)-C(28)	122.26(14)
C(16)-C(15)-C(14)	120.50(12)	C(31)-C(30)-C(29)	118.40(13)
C(15)-C(16)-C(17)	122.76(12)	C(31)-C(30)-C(34)	121.75(15)
N(3)-C(17)-C(16)	120.67(11)	C(29)-C(30)-C(34)	119.83(15)
N(3)-C(17)-C(12)	122.43(11)	C(30)-C(31)-C(32)	121.93(14)
C(16)-C(17)-C(12)	116.89(11)	C(31)-C(32)-C(27)	118.90(13)
C(19)-C(18)-C(23)	119.24(12)	C(31)-C(32)-C(35)	120.65(13)
C(19)-C(18)-N(1)	120.38(11)	C(27)-C(32)-C(35)	120.45(12)
C(23)-C(18)-N(1)	120.30(12)	O(1)-C(36)-C(37)	105.45(11)
C(20)-C(19)-C(18)	119.27(13)	C(38)-C(37)-C(36)	102.94(11)
C(20)-C(19)-C(24)	120.45(13)	C(39)-C(38)-C(37)	101.77(11)
C(18)-C(19)-C(24)	120.28(12)	O(1)-C(39)-C(38)	104.19(11)
C(21)-C(20)-C(19)	122.43(14)		

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for [2]Fe(THF) (CCDC 678268). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	173(1)	212(1)	203(1)	-40(1)	40(1)	-35(1)
O(1)	294(5)	220(5)	199(5)	-29(4)	43(4)	7(4)
N(1)	200(5)	194(6)	223(6)	-27(4)	35(4)	-29(4)
N(2)	170(4)	193(6)	160(5)	9(4)	25(4)	-11(4)
N(3)	150(4)	181(5)	228(5)	-43(5)	15(4)	-3(4)
C(1)	227(6)	218(7)	185(6)	21(5)	51(5)	-74(5)
C(2)	300(7)	238(7)	217(7)	-4(6)	68(6)	-71(6)
C(3)	412(8)	299(8)	181(7)	-6(6)	21(6)	-161(7)
C(4)	294(7)	370(9)	221(7)	63(6)	-48(6)	-129(7)
C(5)	248(6)	295(8)	248(7)	53(6)	2(5)	-45(6)
C(6)	182(6)	238(7)	196(6)	13(5)	20(5)	-61(5)
C(7)	184(5)	212(7)	198(6)	29(5)	20(5)	-5(5)
C(8)	173(6)	263(7)	283(7)	47(6)	52(5)	-23(5)
C(9)	228(6)	258(8)	323(8)	49(6)	137(6)	25(5)
C(10)	285(7)	222(7)	205(7)	2(5)	94(5)	24(6)
C(11)	207(6)	179(6)	166(6)	28(5)	40(5)	21(5)
C(12)	211(6)	190(7)	153(6)	5(5)	19(5)	2(5)
C(13)	257(6)	229(7)	235(7)	-9(6)	49(5)	39(6)

C(14)	353(7)	226(8)	300(8)	-94(6)	36(6)	8(6)
C(15)	290(7)	258(8)	309(8)	-69(6)	-20(6)	-50(6)
C(16)	207(6)	242(7)	259(7)	-32(6)	4(5)	-19(5)
C(17)	222(6)	179(7)	168(6)	16(5)	19(5)	-11(5)
C(18)	247(6)	210(7)	222(7)	-45(5)	17(5)	-25(5)
C(19)	289(7)	249(8)	284(8)	0(6)	29(6)	-46(6)
C(20)	402(8)	242(8)	373(9)	49(7)	21(7)	-75(7)
C(21)	419(8)	257(8)	368(9)	-27(7)	-21(7)	35(7)
C(22)	296(7)	287(8)	336(8)	-75(6)	43(6)	32(6)
C(23)	267(6)	251(7)	226(7)	-56(6)	35(5)	-17(6)
C(24)	356(8)	383(9)	380(9)	114(7)	96(7)	-60(7)
C(25)	574(10)	278(9)	595(12)	4(8)	-6(9)	80(8)
C(26)	275(7)	295(8)	366(8)	-65(7)	134(6)	-3(6)
C(27)	169(6)	222(7)	262(7)	-77(6)	13(5)	-23(5)
C(28)	200(6)	272(8)	284(7)	-85(6)	25(5)	-31(5)
C(29)	236(6)	377(9)	344(8)	-122(7)	99(6)	-66(6)
C(30)	233(7)	329(9)	496(10)	-137(7)	53(7)	59(6)
C(31)	291(7)	269(8)	471(10)	-43(7)	14(7)	79(6)
C(32)	238(6)	251(8)	337(8)	-49(6)	15(6)	17(6)
C(33)	229(6)	384(9)	339(8)	46(7)	59(6)	-66(6)
C(34)	350(9)	522(12)	877(15)	-138(11)	214(9)	147(8)
C(35)	357(8)	337(9)	443(10)	92(7)	46(7)	59(7)
C(36)	393(8)	362(9)	203(7)	-29(6)	73(6)	40(7)
C(37)	370(8)	377(9)	239(8)	15(7)	44(6)	-4(7)
C(38)	381(8)	277(8)	358(9)	56(7)	34(7)	-33(7)
C(39)	370(8)	257(8)	287(8)	-26(6)	39(6)	39(6)

[**2**]FeI

Contents

Table 1. Crystal data

Figures Minimum overlap

Table 2. Atomic Coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Hydrogen atomic coordinates

Table 7. Observed and calculated structure factors (available upon request)

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 695390. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 695390."

Table 1. Crystal data and structure refinement for [2]FeI (CCDC 695390).

Empirical formula	$2(C_{35}H_{33}N_3FeI)$ 1.5(C ₆ H ₆)		
Formula weight	1473.98		
Crystallization Solvent	Benzene/petroleumether	and the second second	
Crystal Habit	Flake	-	
Crystal size	0.16 x 0.10 x 0.06 mm ³		
Crystal color	Dark brown		
Data	a Collection		
Type of diffractometer	Bruker KAPPA APEX II		
Wavelength	0.71073 Å MoKα		
Data Collection Temperature	100(2) K		
θ range for 9935 reflections used in lattice determination	2.54 to 31.80°		
Unit cell dimensions	a = 14.8740(7) Å b = 14.9489(7) Å c = 16.9750(8) Å	$\alpha = 69.528(3)^{\circ}$ $\beta = 72.061(3)^{\circ}$ $\gamma = 76.207(3)^{\circ}$	
Volume	3327.7(3) Å ³		
Z	4		
Crystal system	Triclinic		
Space group	P-1		
Density (calculated)	1.471 Mg/m ³		
F(000)	1498		
Data collection program	Bruker APEX2 v2.1-0		

θ range for data collection	1.66 to 32.13°
Completeness to $\theta = 32.13^{\circ}$	94.8 %
Index ranges	$-21 \le h \le 20, \ -22 \le k \le 21, \ -25 \le l \le 24$
Data collection scan type	ω scans; 17 settings
Data reduction program	Bruker SAINT-Plus v7.34A
Reflections collected	85468
Independent reflections	22141 [$R_{int} = 0.0607$]
Absorption coefficient	1.413 mm ⁻¹
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.4344 and 0.3722

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Difference Fourier map
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	22141 / 0 / 1102
Treatment of hydrogen atoms	Unrestrained
Goodness-of-fit on F ²	1.524
Final R indices [I> 2σ (I), 13476 reflections]	R1 = 0.0507, wR2 = 0.0602
R indices (all data)	R1 = 0.1132, wR2 = 0.0647
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.003
Average shift/error	0.000
Largest diff. peak and hole	1.916 and -1.795 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a

nitrogen stream at 100K. Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for [2]FeI (CCDC 695390). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

<u> </u>	X	у	Z	U _{eq}
$\overline{F_{e}(1\Lambda)}$	7733(1)	6707(1)	0504(1)	14(1)
Fe(IA)	7733(1) 0034(1)	6902(1)	9394(1) 10204(1)	14(1) 22(1)
I(1A) N(1A)	9034(1)	0003(1)	10304(1)	$\frac{22(1)}{15(1)}$
N(1A) N(2A)	7104(2)	5785(2)	9000(1)	13(1) 14(1)
N(2A)	6991(2)	5/85(2)	10103(1) 8400(1)	14(1) 15(1)
N(3A)	8373(2)	0424(2)	8490(1)	15(1)
C(IA)	7828(2)	8566(2)	8359(2)	10(1)
C(2A)	//85(2)	9546(2)	8240(2)	18(1)
C(3A)	8485(2)	10070(2)	7659(2)	23(1)
C(4A)	9263(2)	9626(2)	7158(2)	24(1)
C(5A)	9303(2)	8677(2)	7232(2)	22(1)
C(6A)	8601(2)	8124(2)	7809(2)	17(1)
C(7A)	8641(2)	7147(2)	7758(2)	17(1)
C(8A)	8926(2)	6978(2)	6952(2)	21(1)
C(9A)	8919(2)	6077(2)	6911(2)	24(1)
C(10A)	8649(2)	5360(2)	7654(2)	20(1)
C(11A)	8382(2)	5522(2)	8472(2)	16(1)
C(12A)	8097(2)	4739(2)	9261(2)	16(1)
C(13A)	8492(2)	3790(2)	9268(2)	19(1)
C(14A)	8181(2)	2995(2)	9922(2)	21(1)
C(15A)	7410(2)	3130(2)	10613(2)	17(1)
C(16A)	7027(2)	4047(2)	10647(2)	16(1)
C(17A)	7357(2)	4873(2)	10015(2)	14(1)
C(18A)	6176(2)	8444(2)	9186(2)	16(1)
C(19A)	5661(2)	8661(2)	8566(2)	18(1)
C(20A)	4674(2)	8922(2)	8799(2)	21(1)
C(21A)	4192(2)	8966(2)	9634(2)	22(1)
C(22A)	4737(2)	8802(2)	10216(2)	20(1)
C(23A)	5719(2)	8542(2)	10017(2)	17(1)
C(24A)	6135(3)	8585(3)	7663(2)	25(1)
C(25A)	3117(2)	9170(4)	9891(3)	35(1)
C(26A)	6268(2)	8374(3)	10677(2)	22(1)
C(27A)	6023(2)	5936(2)	10621(2)	13(1)
C(28A)	5287(2)	6171(2)	10211(2)	15(1)
C(29A)	4355(2)	6369(2)	10683(2)	19(1)
C(30A)	4150(2)	6325(2)	11550(2)	20(1)
C(31A)	4900(2)	6079(2)	11942(2)	18(1)
C(32A)	5846(2)	5879(2)	11494(2)	14(1)
C(33A)	5483(2)	6220(3)	9275(2)	20(1)
C(34A)	3127(2)	6531(4)	12043(3)	$\frac{20(1)}{38(1)}$
C(35A)	6631(2)	5585(3)	12015(3) 11954(2)	21(1)
C(3311)	0031(2)	5565(5)	11994(2)	21(1)
Fe(2B)	2563(1)	7908(1)	5601(1)	15(1)
I(1B)	1359(1)	9349(1)	5034(1)	25(1)
N(1B)	3345(2)	8156(2)	6179(1)	15(1)
N(2B)	3089(2)	6942(2)	5040(1)	16(1)
N(3B)	1832(2)	7032(2)	6682(1)	15(1)
C(1B)	2814(2)	8512(2)	6866(2)	15(1)

C(2B)	3128(2)	9216(2)	7047(2)	19(1)
C(3B)	2569(2)	9650(2)	7667(2)	21(1)
C(4B)	1679(2)	9394(2)	8131(2)	21(1)
C(5B)	1375(2)	8680(2)	7996(2)	19(1)
C(6B)	1930(2)	8195(2)	7384(2)	16(1)
C(7B)	1617(2)	7311(2)	7417(2)	17(1)
C(8B)	1126(2)	6738(2)	8196(2)	19(1)
C(9B)	895(2)	5884(2)	8233(2)	21(1)
C(10B)	1162(2)	5596(2)	7496(2)	20(1)
C(11B)	1613(2)	6185(2)	6707(2)	16(1)
C(12B)	1870(2)	5893(2)	5899(2)	17(1)
C(13B)	1373(2)	5194(2)	5910(2)	22(1)
C(14B)	1617(2)	4758(2)	5258(2)	25(1)
C(15B)	2389(2)	5023(2)	4563(2)	23(1)
C(16B)	2868(2)	5723(2)	4517(2)	19(1)
C(17B)	2615(2)	6199(2)	5156(2)	17(1)
C(18B)	4357(2)	8138(2)	5915(2)	15(1)
C(19B)	4925(2)	7499(2)	6459(2)	15(1)
C(20B)	5915(2)	7440(2)	6167(2)	20(1)
C(21B)	6348(2)	7993(2)	5361(2)	20(1) 21(1)
C(22B)	5776(2)	8625(2)	4835(2)	21(1) 21(1)
C(22B)	4783(2)	8722(2)	5090(2)	17(1)
C(24B)	4486(2)	6884(3)	7340(2)	23(1)
C(25B)	7428(2)	7925(3)	5055(3)	36(1)
C(26B)	4198(2)	9436(2)	4505(2)	23(1)
C(27B)	4033(2)	7003(2)	4305(2) 4476(2)	15(1)
C(28B)	4033(2) 4814(2)	6468(2)	4871(2)	16(1)
C(20B)	5733(2)	6607(2)	4304(2)	20(1)
C(2)D)	5755(2) 5894(2)	7239(2)	4304(2) 3474(2)	20(1)
C(31B)	5094(2) 5110(2)	7239(2) 7738(2)	3474(2) 3144(2)	20(1) 21(1)
C(31B)	$\frac{5110(2)}{4177(2)}$	7629(2)	3620(2)	10(1)
C(32B)	4177(2)	5779(2)	5029(2) 5710(2)	$\frac{1}{21(1)}$
C(33B)	4002(2)	$\frac{3779(2)}{7403(3)}$	2065(2)	21(1) 31(1)
C(34B)	3340(2)	7403(3) 8101(3)	2303(2) 3241(2)	26(1)
C(33B)	5549(2)	8191(3)	5241(2)	20(1)
C(41)	9959(2)	8043(2)	3955(2)	31(1)
C(42)	10483(3)	7138(3)	4013(2)	31(1)
C(43)	10445(2)	6636(3)	3490(2)	37(1)
C(44)	9886(2)	7032(3)	2909(2)	36(1)
C(45)	9370(2)	7937(3)	2841(2)	30(1)
C(46)	9411(2)	8439(2)	3367(2)	29(1)
0(51)	500(0)	401/0		2 (1)
C(51)	588(2)	421(2)	206(2)	26(1)
C(52)	117(2)	952(2)	-423(2)	25(1)
C(53)	488(2)	-534(3)	629(2)	26(1)

Fe(1A)-N(2A)	1.883(2)	N(2A)-Fe(1A)-N(1A)	118.30(10)
Fe(1A)-N(1A)	1.899(2)	N(2A)-Fe(1A)-N(3A)	94.66(9)
Fe(1A)-N(3A)	2.0274(19)	N(1A)-Fe(1A)-N(3A)	93.44(9)
Fe(1A)-I(1A)	2.5784(4)	N(2A)-Fe(1A)-I(1A)	118.77(7)
Fe(2B)-N(2B)	1.888(2)	N(1A)-Fe(1A)-I(1A)	115.77(7)
Fe(2B)-N(1B)	1.902(2)	N(3A)-Fe(1A)-I(1A)	108.74(6)
Fe(2B)-N(3B)	2.008(2)	N(2B)-Fe(2B)-N(1B)	116.72(9)
Fe(2B)-I(1B)	2.5576(5)	N(2B)-Fe(2B)-N(3B)	94.66(9)
		N(1B)-Fe(2B)-N(3B)	94.36(9)
		N(2B)-Fe(2B)-I(1B)	121.38(7)
		N(1B)-Fe(2B)-I(1B)	115.03(7)
		N(3B)-Fe(2B)-I(1B)	107.04(6)

 Table 3. Selected bond lengths [Å] and angles [°] for [2]FeI (CCDC 695390).

 Table 4. Bond lengths [Å] and angles [°] for [2]FeI (CCDC 695390).

Fe(1A)-N(2A)	1.883(2)	C(14A)-H(14A)	1.00(3)
Fe(1A)-N(1A)	1.899(2)	C(15A)-C(16A)	1.368(4)
Fe(1A)-N(3A)	2.0274(19)	C(15A)-H(15A)	0.97(2)
Fe(1A)-I(1A)	2.5784(4)	C(16A)-C(17A)	1.399(4)
N(1A)-C(1A)	1.381(3)	C(16A)-H(16A)	0.90(2)
N(1A)-C(18A)	1.435(3)	C(18A)-C(19A)	1.393(4)
N(2A)-C(17A)	1.385(3)	C(18A)-C(23A)	1.406(3)
N(2A)-C(27A)	1.449(3)	C(19A)-C(20A)	1.394(4)
N(3A)-C(7A)	1.354(3)	C(19A)-C(24A)	1.508(4)
N(3A)-C(11A)	1.356(3)	C(20A)-C(21A)	1.395(4)
C(1A)-C(2A)	1.396(4)	C(20A)-H(20A)	0.96(2)
C(1A)-C(6A)	1.426(3)	C(21A)-C(22A)	1.386(4)
C(2A)-C(3A)	1.373(4)	C(21A)-C(25A)	1.508(4)
C(2A)-H(2A)	0.85(2)	C(22A)-C(23A)	1.384(4)
C(3A)-C(4A)	1.388(4)	C(22A)-H(22A)	0.92(2)
C(3A)-H(3A)	0.89(2)	C(23A)-C(26A)	1.502(4)
C(4A)-C(5A)	1.369(4)	C(24A)-H(24A)	1.01(3)
C(4A)-H(4A)	0.91(3)	C(24A)-H(24B)	0.94(3)
C(5A)-C(6A)	1.396(4)	C(24A)-H(24C)	0.86(3)
C(5A)-H(5A)	0.82(3)	C(25A)-H(25A)	0.88(3)
C(6A)-C(7A)	1.479(4)	C(25A)-H(25B)	0.80(4)
C(7A)-C(8A)	1.398(3)	C(25A)-H(25C)	0.97(5)
C(8A)-C(9A)	1.374(4)	C(26A)-H(26A)	0.96(2)
C(8A)-H(8A)	0.87(2)	C(26A)-H(26B)	0.95(3)
C(9A)-C(10A)	1.359(4)	C(26A)-H(26C)	0.94(3)
C(9A)-H(9A)	0.90(2)	C(27A)-C(28A)	1.386(4)
C(10A)-C(11A)	1.412(3)	C(27A)-C(32A)	1.398(3)
C(10A)-H(10A)	0.90(2)	C(28A)-C(29A)	1.392(4)
C(11A)-C(12A)	1.462(4)	C(28A)-C(33A)	1.502(4)
C(12A)-C(13A)	1.396(4)	C(29A)-C(30A)	1.388(4)
C(12A)-C(17A)	1.448(3)	C(29A)-H(29A)	0.87(3)
C(13A)-C(14A)	1.372(4)	C(30A)-C(31A)	1.384(4)
С(13А)-Н(13А)	0.86(2)	C(30A)-C(34A)	1.511(4)
C(14A)-C(15A)	1.399(4)	C(31A)-C(32A)	1.395(3)

C(31A)-H(31A)	0.91(2)	C(20B)-C(21B)	1.375(4)
C(32A)-C(35A)	1.499(4)	C(20B)-H(20B)	0.96(3)
C(33A)-H(33A)	0.93(3)	C(21B)-C(22B)	1.381(4)
C(33A)-H(33B)	0.92(4)	C(21B)-C(25B)	1.519(4)
C(33A)-H(33C)	0.92(3)	C(22B)-C(23B)	1.393(4)
C(34A)-H(34A)	0.76(3)	C(22B)-H(22B)	0.95(3)
C(34A)-H(34B)	0.79(3)	C(23B)-C(26B)	1.493(4)
C(34A)-H(34C)	1.04(6)	C(24B)-H(24D)	0.94(2)
C(35A)-H(35A)	0.93(3)	C(24B)-H(24E)	0.94(3)
C(35A)-H(35B)	0.86(3)	C(24B)-H(24F)	0.93(3)
C(35A)-H(35C)	0.97(3)	C(25B)-H(25D)	0.89(4)
Fe(2B)-N(2B)	1.888(2)	C(25B)-H(25E)	0.05(1)
Fe(2B)-N(1B)	1.000(2) 1.902(2)	C(25B)-H(25E)	0.93(5)
Fe(2B)-N(3B)	2.008(2)	C(26B)-H(26D)	0.91(3) 0.93(4)
Fe(2B) - I(1B)	2.000(2) 2.5576(5)	$C(26B)_{-}H(26E)$	0.99(4)
N(1B) - C(1B)	1.301(3)	C(26B) H(26E)	0.07(3)
N(1B)-C(1B)	1.391(3) 1.430(3)	C(27B) C(32B)	1.308(A)
N(1D)-C(17D) N(2P) C(17P)	1.430(3) 1.281(3)	C(27B) - C(32B)	1.396(4) 1.406(4)
N(2D) - C(17D) N(2D) - C(27D)	1.301(3) 1.429(2)	C(28D) - C(28D)	1.400(4) 1.207(4)
N(2D) - C(2/D) N(2D) - C(11D)	1.436(3) 1.264(2)	C(28B) - C(29B)	1.397(4) 1.405(4)
N(3D)-C(11D) N(2D)-C(7D)	1.304(3) 1.274(2)	C(20B) - C(20B)	1.493(4) 1.270(4)
N(3D)-C(7D)	1.3/4(3) 1.402(4)	C(29B) - C(30B)	1.3/9(4)
C(1B) - C(2B)	1.403(4)	C(29B)- $H(29B)$	0.91(3)
C(1B)-C(6B)	1.422(4)	C(30B) - C(31B)	1.388(4)
C(2B)-C(3B)	1.379(3)	C(30B)-C(34B)	1.508(4)
C(2B)-H(2B)	0.93(2)	C(31B)-C(32B)	1.394(4)
C(3B)-C(4B)	1.381(4)	C(31B)-H(31B)	0.91(3)
C(3B)-H(3B)	0.95(2)	C(32B)-C(35B)	1.508(4)
C(4B)-C(5B)	1.364(4)	C(33B)-H(33D)	0.93(2)
C(4B)-H(4B)	0.96(2)	C(33B)-H(33E)	0.96(3)
C(5B)-C(6B)	1.414(3)	C(33B)-H(33F)	1.06(4)
C(5B)-H(5B)	0.88(3)	C(34B)-H(34D)	0.88(4)
C(6B)-C(7B)	1.480(4)	C(34B)-H(34E)	0.92(4)
C(7B)-C(8B)	1.388(4)	C(34B)-H(34F)	0.91(3)
C(8B)-C(9B)	1.375(4)	C(35B)-H(35D)	0.87(3)
C(8B)-H(8B)	0.87(2)	C(35B)-H(35E)	0.98(3)
C(9B)-C(10B)	1.378(4)	C(35B)-H(35F)	0.94(3)
C(9B)-H(9B)	0.98(3)	C(41)-C(46)	1.367(4)
C(10B)-C(11B)	1.386(4)	C(41)-C(42)	1.378(4)
C(10B)-H(10B)	0.88(2)	C(41)-H(41)	0.86(2)
C(11B)-C(12B)	1.495(3)	C(42)-C(43)	1.368(4)
C(12B)-C(13B)	1.410(4)	C(42)-H(42)	0.88(3)
C(12B)-C(17B)	1.417(4)	C(43)-C(44)	1.371(5)
C(13B)-C(14B)	1.387(4)	C(43)-H(43)	1.00(3)
C(13B)-H(13B)	0.89(3)	C(44)-C(45)	1.372(5)
C(14B)-C(15B)	1.386(4)	C(44)-H(44)	0.93(3)
C(14B)-H(14B)	0.84(2)	C(45)-C(46)	1.373(4)
C(15B)-C(16B)	1.368(4)	C(45)-H(45)	0.97(3)
C(15B)-H(15B)	0.92(2)	C(46)-H(46)	0.90(2)
C(16B)-C(17B)	1.408(3)	C(51)-C(52)	1.364(4)
С(16В)-Н(16В)	0.97(2)	C(51)-C(53)	1.377(4)
C(18B)-C(19B)	1.399(4)	C(51)-H(51)	0.93(3)
C(18B)-C(23B)	1.409(4)	C(52)-C(53)#1	1.392(4)
C(19B)-C(20B)	1.393(4)	C(52)-H(52)	0.91(2)
C(19B)-C(24B)	1.494(4)	C(53)-C(52)#1	1.392(4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9) 7) 7) 3) 7) 7) 7) 7) 7) 7) 7) 7
$\begin{array}{llllllllllllllllllllllllllllllllllll$	() $()$ $()$ $()$ $()$ $()$ $()$ $()$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(7) (7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(7) (3) (7) (
$\begin{array}{llllllllllllllllllllllllllllllllllll$) 3) 3) 7) 7)))))))))))
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>(3) (3) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7</pre>
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(3) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) 7) 7)))))))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 7) 7)))))))))))))))))))))))))))))))))
$\begin{array}{ccccccc} C(18A)-N(1A)-Fe(1A) & 127.38(18) & C(17A)-C(16A)-H(16A) & 115.3(120, 112, 112, 112, 112, 112, 112, 112, $	7))))))))))))))))))))))))))))))))))))
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)))))))))))))))))))))))))))))))))))))))
$\begin{array}{ccccc} C(17A)-N(2A)-Fe(1A) & 121.37(17) & N(2A)-C(17A)-C(12A) & 121.2(2)\\ C(27A)-N(2A)-Fe(1A) & 120.59(16) & C(16A)-C(17A)-C(12A) & 117.4(2)\\ C(7A)-N(3A)-C(11A) & 122.0(2) & C(19A)-C(18A)-C(23A) & 120.7(2)\\ C(7A)-N(3A)-Fe(1A) & 116.75(17) & C(19A)-C(18A)-N(1A) & 119.3(2)\\ C(11A)-N(3A)-Fe(1A) & 120.33(18) & C(23A)-C(18A)-N(1A) & 119.8(2)\\ \end{array}$	
$\begin{array}{cccc} C(27A)-N(2A)-Fe(1A) & 120.59(16) & C(16A)-C(17A)-C(12A) & 117.4(2 \\ C(7A)-N(3A)-C(11A) & 122.0(2) & C(19A)-C(18A)-C(23A) & 120.7(2 \\ C(7A)-N(3A)-Fe(1A) & 116.75(17) & C(19A)-C(18A)-N(1A) & 119.3(2 \\ C(11A)-N(3A)-Fe(1A) & 120.33(18) & C(23A)-C(18A)-N(1A) & 119.8(2 \\ \end{array}$	·)))))))))
$\begin{array}{cccc} C(7A)-N(3A)-C(11A) & 122.0(2) & C(19A)-C(18A)-C(23A) & 120.7(2) \\ C(7A)-N(3A)-Fe(1A) & 116.75(17) & C(19A)-C(18A)-N(1A) & 119.3(2) \\ C(11A)-N(3A)-Fe(1A) & 120.33(18) & C(23A)-C(18A)-N(1A) & 119.8(2) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) \\ N(1A)-N(2A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) \\ N(1A)-N(1A)-Fe(1A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) & N(1A) \\ N(1A)-N(1A)-Fe(1A)-Fe(1A)-Fe(1A)-Fe(1A) & N(1A)-Fe(1A) & N(1A) \\ N(1A)-Fe(1A$	·)))))))
$\begin{array}{cccc} C(7A)-N(3A)-Fe(1A) & 116.75(17) & C(19A)-C(18A)-N(1A) & 119.3(2 \\ C(11A)-N(3A)-Fe(1A) & 120.33(18) & C(23A)-C(18A)-N(1A) & 119.8(2 \\ N(1A)-N(2A)-N(2A)-N(2A) & N(2A)-N(2A)$))))))
C(11A)-N(3A)-Fe(1A) 120.33(18) C(23A)-C(18A)-N(1A) 119.8(2))))
)))
N(1A)-C(1A)-C(2A) 121.6(2) C(18A)-C(19A)-C(20A) 118.8(2)))
N(1A)-C(1A)-C(6A) 120 7(2) $C(18A)-C(19A)-C(24A)$ 122 0(3)
C(2A)-C(1A)-C(6A) 117 7(3) $C(20A)-C(19A)-C(24A)$ 119 2(3	<u>,</u>
C(3A)-C(2A)-C(1A) 122 4(3) $C(19A)-C(21A)$ 121 7(3	1
C(3A)-C(2A)-H(2A) 117 3(18) $C(19A)-C(20A)-H(20A)$ 117 1(1	, 5)
C(1A)-C(2A)-H(2A) 120 3(18) $C(21A)-C(20A)-H(20A)$ 121 2(1	5)
C(2A)-C(3A)-C(4A) 1198(3) $C(22A)-C(21A)-C(20A)$ 1177(3)
C(2A)-C(3A)-H(3A) 118 4(16) $C(22A)-C(21A)-C(25A)$ 121 7(3	ì
C(4A)-C(3A)-H(3A) 121 8(16) $C(20A)-C(21A)-C(25A)$ 120 7(3)
C(5A)-C(4A)-C(3A) 1191(3) $C(23A)-C(21A)$ 122.7(3)
C(5A)-C(4A)-H(4A) 123 2(16) $C(23A)-C(22A) = H(22A)$ 115 3(1	, 7)
C(3A)-C(4A)-H(4A) 117 6(16) $C(21A)-C(22A)-H(22A)$ 121 9(1	7)
C(4A)-C(5A)-C(6A) 122 6(3) $C(22A)-C(18A)$ 118 2(3)	$\hat{)}$
C(4A)-C(5A)-H(5A) 121(2) $C(22A)-C(23A)-C(26A)$ 1201(2	ì
C(6A)-C(5A)-H(5A) 117(2) $C(18A)-C(23A)-C(26A)$ 121 7(3	ì
C(5A)-C(6A)-C(1A) 118 2(3) $C(19A)-C(24A)-H(24A)$ 114 5(1	, 6)
C(5A)-C(6A)-C(7A) 118 4(2) $C(19A)-C(24A)-H(24B)$ 108 2(1	6)
C(1A)-C(6A)-C(7A) 123 1(2) $H(24A)-C(24A)-H(24B)$ 106(2)	0)
N(3A)-C(7A)-C(8A) 1199(3) $C(19A)-C(24A)-H(24C)$ 1084(1	8)
N(3A)-C(7A)-C(6A) 120 1(2) $H(24A)-C(24A)-H(24C)$ 107(3)	0)
C(8A)-C(7A)-C(6A) 120.0(3) $H(24B)-C(24A)-H(24C)$ 113(3)	
C(9A)-C(8A)-C(7A) 119 3(3) $C(21A)-C(25A)-H(25A)$ 115(2)	
C(9A)-C(8A)-H(8A) 122 2(14) $C(21A)-C(25A)-H(25B)$ 115(3)	
C(7A)-C(8A)-H(8A) 118 4(14) $H(25A)-C(25A)-H(25B)$ 107(4)	
C(10A)-C(9A)-C(8A) 1198(3) $C(21A)-C(25A)-H(25C)$ 114(3)	
C(10A)-C(9A)-H(9A) 120 9(16) $H(25A)-C(25A)-H(25C)$ 105(4)	
C(8A)-C(9A)-H(9A) 119 1(16) $H(25B)-C(25A)-H(25C)$ 99(4)	
C(9A)-C(10A)-C(11A) 121 0(3) $C(23A)-C(26A)-H(26A)$ 114 4(1	6)
C(9A)-C(10A)-H(10A) 122.4(15) $C(23A)-C(26A)-H(26B)$ 110(2)	0)
C(11A)-C(10A)-H(10A) 116 6(15) $H(26A)-C(26A)-H(26B)$ 109(2)	
N(3A)-C(11A)-C(10A) 117.9(3) $C(23A)-C(26A)-H(26C)$ 113.7(1	9)
N(3A)-C(11A)-C(12A) 122 2(2) $H(26A)-C(26A)-H(26C)$ 105(2)	-)
C(10A)-C(11A)-C(12A) 119.9(3) $H(26B)-C(26A)-H(26C)$ 105(3)	
C(13A)-C(12A)-C(17A) 117.1(3) $C(28A)-C(27A)-C(32A)$ 121.5(2))
C(13A)-C(12A)-C(11A) 118.7(2) $C(28A)-C(27A)-N(2A)$ 117.6(2	ý
C(17A)-C(12A)-C(11A) 123.9(2) $C(32A)-C(27A)-N(2A)$ 120.9(2)	ý
C(14A)-C(13A)-C(12A) 123.6(3) $C(27A)-C(28A)-C(29A)$ 118.6(2))

C(27A)-C(28A)-C(33A)	121.1(2)	C(2B)-C(3B)-H(3B)	117.4(14)
C(29A)-C(28A)-C(33A)	120.2(3)	C(4B)-C(3B)-H(3B)	122.4(14)
C(30A)-C(29A)-C(28A)	121.6(3)	C(5B)-C(4B)-C(3B)	119.4(3)
C(30A)-C(29A)-H(29A)	121.1(17)	C(5B)-C(4B)-H(4B)	118.7(15)
C(28A)-C(29A)-H(29A)	117.2(17)	C(3B)-C(4B)-H(4B)	121.7(15)
C(31A)-C(30A)-C(29A)	118.3(3)	C(4B)-C(5B)-C(6B)	122.6(3)
C(31A)-C(30A)-C(34A)	121.7(3)	C(4B)-C(5B)-H(5B)	122.4(16)
C(29A)-C(30A)-C(34A)	120.0(3)	C(6B)-C(5B)-H(5B)	115.0(16)
C(30A)-C(31A)-C(32A)	122.1(2)	C(5B)-C(6B)-C(1B)	117.5(2)
C(30A)-C(31A)-H(31A)	119.4(15)	C(5B)-C(6B)-C(7B)	117.4(2)
C(32A)-C(31A)-H(31A)	118.5(15)	C(1B)-C(6B)-C(7B)	124.5(2)
C(31A)-C(32A)-C(27A)	117.8(3)	N(3B)-C(7B)-C(8B)	119.1(3)
C(31A)-C(32A)-C(35A)	120.2(2)	N(3B)-C(7B)-C(6B)	120.4(2)
C(27A)-C(32A)-C(35A)	122.0(2)	C(8B)-C(7B)-C(6B)	120.4(2)
C(28A)-C(33A)-H(33A)	110.7(16)	C(9B)-C(8B)-C(7B)	120.1(3)
C(28A)-C(33A)-H(33B)	116(2)	C(9B)-C(8B)-H(8B)	122.6(17)
H(33A)-C(33A)-H(33B)	106(3)	C(7B)-C(8B)-H(8B)	117.0(17)
C(28A)-C(33A)-H(33C)	108.1(17)	C(8B)-C(9B)-C(10B)	119.6(3)
H(33A)-C(33A)-H(33C)	106(2)	C(8B)-C(9B)-H(9B)	119.3(14)
H(33B)-C(33A)-H(33C)	110(3)	C(10B)-C(9B)-H(9B)	120.5(14)
C(30A)-C(34A)-H(34A)	116(3)	C(9B)-C(10B)-C(11B)	120.6(3)
C(30A)-C(34A)-H(34B)	113(2)	C(9B)-C(10B)-H(10B)	119 2(16)
H(34A)-C(34A)-H(34B)	129(4)	C(11B)-C(10B)-H(10B)	1202(15)
C(30A)-C(34A)-H(34C)	108(3)	N(3B)-C(11B)-C(10B)	118 9(2)
H(34A)-C(34A)-H(34C)	98(4)	N(3B)-C(11B)-C(12B)	1204(2)
H(34B)-C(34A)-H(34C)	78(4)	C(10B)-C(11B)-C(12B)	120.8(3)
C(32A)-C(35A)-H(35A)	114 9(19)	C(13B)-C(12B)-C(17B)	1174(2)
C(32A)-C(35A)-H(35B)	109(2)	C(13B)-C(12B)-C(11B)	116.6(2)
H(35A)-C(35A)-H(35B)	105(2) 106(2)	C(17B)-C(12B)-C(11B)	125.8(2)
C(32A)-C(35A)-H(35C)	1119(17)	C(14B)-C(13B)-C(12B)	123.2(3)
H(35A)-C(35A)-H(35C)	105(3)	C(14B)-C(13B)-H(13B)	1174(17)
H(35B)-C(35A)-H(35C)	109(2)	C(12B)-C(13B)-H(13B)	119 3(16)
N(2B)-Fe(2B)-N(1B)	11672(9)	C(15B)-C(14B)-C(13B)	118 3(3)
N(2B)-Fe(2B)-N(3B)	94 66(9)	C(15B)-C(14B)-H(14B)	121.7(17)
N(1B)-Fe(2B)-N(3B)	94.36(9)	C(13B)-C(14B)-H(14B)	119.8(18)
N(2B)-Fe(2B)-I(1B)	121 38(7)	C(16B)-C(15B)-C(14B)	120 1(3)
N(1B)-Fe(2B)-I(1B)	115.03(7)	C(16B)-C(15B)-H(15B)	122.5(18)
N(3B)-Fe(2B)-I(1B)	107 04(6)	C(14B)-C(15B)-H(15B)	117 4(18)
C(1B)-N(1B)-C(18B)	119 3(2)	C(15B)-C(16B)-C(17B)	122 8(3)
C(1B)-N(1B)-Fe(2B)	112.61(17)	C(15B)-C(16B)-H(16B)	117 8(13)
C(18B)-N(1B)-Fe(2B)	127.48(15)	C(17B)-C(16B)-H(16B)	119.2(13)
C(17B)-N(2B)-C(27B)	120.1(2)	N(2B)-C(17B)-C(16B)	119.7(2)
C(17B)-N(2B)-Fe(2B)	123.15(17)	N(2B)-C(17B)-C(12B)	122.3(2)
C(27B)-N(2B)-Fe(2B)	116.77(17)	C(16B)-C(17B)-C(12B)	118.0(3)
C(11B)-N(3B)-C(7B)	121.5(2)	C(19B)-C(18B)-C(23B)	120.3(2)
C(11B)-N(3B)-Fe(2B)	122.99(16)	C(19B)-C(18B)-N(1B)	119.6(2)
C(7B)-N(3B)-Fe(2B)	115.34(18)	C(23B)-C(18B)-N(1B)	120.0(3)
N(1B)-C(1B)-C(2B)	120.6(2)	C(20B)-C(19B)-C(18B)	118.9(3)
N(1B)-C(1B)-C(6B)	120.9(2)	C(20B)-C(19B)-C(24B)	120.0(3)
C(2B)-C(1B)-C(6B)	118.5(2)	C(18B)-C(19B)-C(24B)	121.1(3)
C(3B)-C(2B)-C(1B)	121.5(3)	C(21B)-C(20B)-C(19B)	121.9(3)
C(3B)-C(2B)-H(2B)	117.2(13)	C(21B)-C(20B)-H(20B)	118.0(17)
C(1B)-C(2B)-H(2B)	121.2(13)	C(19B)-C(20B)-H(20B)	120.1(17)
C(2B)-C(3B)-C(4B)	120.2(3)	C(20B)-C(21B)-C(22B)	118.4(3)
<pre></pre>	(-)		(-)

C(20B)-C(21B)-C(25B)	121.2(3)	C(28B)-C(33B)-H(33E)	111.9(17)
C(22B)-C(21B)-C(25B)	120.4(3)	H(33D)-C(33B)-H(33E)	106(2)
C(21B)-C(22B)-C(23B)	122.5(3)	C(28B)-C(33B)-H(33F)	114(2)
C(21B)-C(22B)-H(22B)	118.3(18)	H(33D)-C(33B)-H(33F)	109(2)
C(23B)-C(22B)-H(22B)	119.2(18)	H(33E)-C(33B)-H(33F)	101(2)
C(22B)-C(23B)-C(18B)	117.9(3)	C(30B)-C(34B)-H(34D)	111(2)
C(22B)-C(23B)-C(26B)	120.3(3)	C(30B)-C(34B)-H(34E)	107(3)
C(18B)-C(23B)-C(26B)	121.7(3)	H(34D)-C(34B)-H(34E)	109(3)
C(19B)-C(24B)-H(24D)	111.5(17)	C(30B)-C(34B)-H(34F)	111.0(19)
C(19B)-C(24B)-H(24E)	114.8(18)	H(34D)-C(34B)-H(34F)	102(3)
H(24D)-C(24B)-H(24E)	109(2)	H(34E)-C(34B)-H(34F)	117(3)
C(19B)-C(24B)-H(24F)	110(2)	C(32B)-C(35B)-H(35D)	112(2)
H(24D)-C(24B)-H(24F)	110(2)	C(32B)-C(35B)-H(35E)	108.9(19)
H(24E)-C(24B)-H(24F)	101(3)	H(35D)-C(35B)-H(35E)	115(3)
C(21B)-C(25B)-H(25D)	113(2)	C(32B)-C(35B)-H(35F)	111(2)
C(21B)-C(25B)-H(25E)	114(2)	H(35D)-C(35B)-H(35F)	102(3)
H(25D)-C(25B)-H(25E)	112(3)	H(35E)-C(35B)-H(35F)	109(3)
C(21B)-C(25B)-H(25F)	113(3)	C(46)-C(41)-C(42)	119.8(3)
H(25D)-C(25B)-H(25F)	97(4)	C(46)-C(41)-H(41)	117(2)
H(25E)-C(25B)-H(25F)	106(3)	C(42)-C(41)-H(41)	123(2)
C(23B)-C(26B)-H(26D)	116(2)	C(43)-C(42)-C(41)	120.0(4)
C(23B)-C(26B)-H(26E)	115.2(19)	C(43)-C(42)-H(42)	118.9(19)
H(26D)-C(26B)-H(26E)	103(3)	C(41)-C(42)-H(42)	121.0(19)
C(23B)-C(26B)-H(26F)	115.6(17)	C(42)-C(43)-C(44)	120.0(3)
H(26D)-C(26B)-H(26F)	103(2)	C(42)-C(43)-H(43)	120.9(18)
H(26E)-C(26B)-H(26F)	103(2)	C(44)-C(43)-H(43)	118.9(18)
C(32B)-C(27B)-C(28B)	120.8(2)	C(43)-C(44)-C(45)	120.3(3)
C(32B)-C(27B)-N(2B)	120.9(2)	C(43)-C(44)-H(44)	118.9(19)
C(28B)-C(27B)-N(2B)	118.2(2)	C(45)-C(44)-H(44)	120.8(19)
C(29B)-C(28B)-C(27B)	118.1(3)	C(44)-C(45)-C(46)	119.5(3)
C(29B)-C(28B)-C(33B)	121.0(3)	C(44)-C(45)-H(45)	118.0(15)
C(27B)-C(28B)-C(33B)	120.8(3)	C(46)-C(45)-H(45)	122.4(15)
C(30B)-C(29B)-C(28B)	122.2(3)	C(41)-C(46)-C(45)	120.5(3)
C(30B)-C(29B)-H(29B)	119.4(18)	C(41)-C(46)-H(46)	120.6(17)
C(28B)-C(29B)-H(29B)	118.3(18)	C(45)-C(46)-H(46)	118.9(17)
C(29B)-C(30B)-C(31B)	118.3(3)	C(52)-C(51)-C(53)	120.7(3)
C(29B)-C(30B)-C(34B)	120.0(3)	C(52)-C(51)-H(51)	121(2)
C(31B)-C(30B)-C(34B)	121.7(3)	C(53)-C(51)-H(51)	118(2)
C(30B)-C(31B)-C(32B)	122.0(3)	C(51)-C(52)-C(53)#1	120.0(3)
C(30B)-C(31B)-H(31B)	119.6(18)	C(51)-C(52)-H(52)	119.3(16)
C(32B)-C(31B)-H(31B)	118.4(18)	C(53)#1-C(52)-H(52)	120.6(16)
C(31B)-C(32B)-C(27B)	118.5(3)	C(51)-C(53)-C(52)#1	119.2(3)
C(31B)-C(32B)-C(35B)	120.0(3)	C(51)-C(53)-H(53)	121.0(19)
C(27B)-C(32B)-C(35B)	121.5(3)	C(52)#1-C(53)-H(53)	119.6(19)
C(28B)-C(33B)-H(33D)	114.1(16)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for [2]FeI (CCDC 695390). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	11	22	22	22	12	12
	UII	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\overline{Fe(1\Lambda)}$	110(2)	156(2)	132(2)	_30(2)	-15(2)	_27(2)
I(1A)	119(2) 183(1)	268(1)	223(1)	-39(2)	-13(2) -71(1)	-27(2)
$N(1\Delta)$	154(13)	146(13)	124(11)	-48(10)	13(10)	-5(10)
$N(2\Delta)$	116(12)	128(13)	124(11) 174(12)	-66(10)	-31(10)	-3(10)
$N(3\Delta)$	78(12)	202(14)	161(12)	-62(11)	-35(9)	1(10)
$C(1\Delta)$	134(15)	202(14) 211(17)	148(14)	-02(11) -23(13)	-65(12)	-54(13)
C(1A)	154(15) 151(16)	211(17) 210(18)	140(14) 180(15)	-23(13) -47(14)	-65(12)	-10(14)
C(2A)	264(19)	154(18)	284(17)	-4/(14)	-120(14)	-65(15)
C(3A)	185(18)	290(20)	204(17) 214(16)	-4(15)	-64(14)	-113(15)
C(4A)	151(17)	250(20)	198(16)	-26(15)	-32(13)	-113(13) -18(14)
C(5A)	131(17) 135(15)	230(20) 216(17)	110(13)	-20(13) 13(12)	-52(13)	-10(14)
C(0A)	58(14)	210(17) 217(17)	179(13) 178(14)	-10(13)	-31(12) -24(11)	-45(13)
$C(8\Lambda)$	161(16)	268(19)	1/0(14) 1/0(15)	-17(15)	-24(11) -10(13)	-13(14)
C(0A)	101(10) 101(17)	200(19) 330(20)	140(15) 180(16)	-17(15)	-19(13) -30(13)	-13(14)
C(3A)	160(16)	218(10)	200(15)	-123(15)	-37(12)	$\frac{43(13)}{26(14)}$
C(10A)	109(10)	218(17) 218(17)	209(15) 209(15)	-71(13)	-37(12)	-3(12)
C(12A)	$\frac{49(14)}{134(15)}$	103(17)	190(15)	-78(13)	-29(11) -51(12)	-54(13)
C(12A)	134(15) 122(15)	2/3(17)	207(15)	-105(14)	-41(12)	-34(13) 10(14)
C(14A)	122(13) 198(17)	2+3(10) 212(18)	265(16)	-103(14) -113(15)	-96(13)	10(14) 11(14)
C(14A)	166(16)	162(17)	186(15)	-17(13)	-90(13) -85(12)	-42(13)
C(15A)	120(15)	202(17)	141(14)	-41(13)	-46(12)	-42(13)
C(10A)	120(13) 109(14)	183(16)	147(14)	-63(13)	-68(11)	-3(13)
C(18A)	153(15)	141(16)	187(14)	-42(13)	-35(12)	-34(12)
C(10A)	155(15)	150(16)	209(15)	-47(13)	-37(12)	-7(13)
C(20A)	199(17)	210(18)	261(17)	-100(15)	-98(14)	19(14)
$C(20\Lambda)$	155(17)	179(17)	333(18)	-124(15)	-21(14)	-19(13)
C(22A)	217(17)	173(17) 171(17)	202(15)	-110(14)	19(13)	-43(14)
C(22A)	178(16)	109(15)	202(15) 219(15)	-65(13)	-53(12)	-8(12)
C(24A)	234(19)	280(20)	199(16)	-45(16)	-52(15)	-38(18)
C(25A)	141(18)	420(30)	520(30)	-270(20)	-40(17)	9(19)
C(26A)	256(19)	203(19)	189(16)	-88(15)	-7(14)	-26(15)
C(27A)	131(15)	95(15)	141(13)	-30(12)	-8(11)	-25(12)
C(28A)	154(15)	113(15)	188(14)	-56(12)	-37(12)	-40(12)
C(29A)	156(17)	230(18)	229(16)	-81(14)	-68(13)	-44(14)
C(30A)	137(16)	241(18)	237(16)	-130(14)	12(12)	-41(13)
C(31A)	196(16)	243(18)	119(14)	-82(13)	3(12)	-61(14)
C(32A)	142(15)	140(15)	151(14)	-54(12)	-24(12)	-29(12)
C(33A)	175(18)	260(20)	161(15)	-74(15)	-18(13)	-39(16)
C(34A)	137(19)	740(30)	360(20)	-360(20)	0(16)	-46(19)
C(35A)	198(18)	290(20)	136(15)	-59(15)	-33(13)	-53(16)
- ()	()		()	()	()	()
Fe(2B)	128(2)	182(2)	130(2)	-52(2)	-19(2)	-6(2)
I(1B)	190(1)	283(1)	222(1)	-54(1)	-66(1)	52(1)
N(1B)	104(12)	204(14)	124(11)	-59(10)	-2(9)	-32(10)
N(2B)	115(12)	187(14)	167(12)	-55(11)	-20(10)	-3(11)
N(3B)	105(12)	199(14)	136(11)	-52(11)	-14(9)	-16(10)
C(1B)	137(15)	141(15)	143(13)	-19(12)	-59(11)	12(12)

C(2B)	173(17)	184(17)	166(14)	-25(13)	-26(13)	-25(14)
C(3B)	240(18)	167(17)	227(16)	-79(14)	-78(13)	2(14)
C(4B)	188(17)	207(18)	195(15)	-83(14)	-45(13)	49(14)
C(5B)	125(16)	234(18)	168(15)	-50(14)	-33(13)	12(14)
C(6B)	150(15)	167(16)	145(14)	-36(12)	-61(12)	13(13)
C(7B)	80(14)	221(17)	189(14)	-68(13)	-44(12)	22(12)
C(8B)	119(15)	278(19)	176(15)	-96(14)	-45(12)	-8(13)
C(9B)	110(15)	252(19)	200(16)	-9(15)	-38(13)	-8(14)
C(10B)	183(17)	140(17)	271(17)	-42(14)	-91(13)	-23(13)
C(11B)	82(14)	170(16)	209(15)	-51(13)	-53(12)	27(12)
C(12B)	122(15)	208(17)	183(14)	-84(13)	-38(12)	-1(13)
C(13B)	167(17)	229(18)	225(16)	-72(15)	11(13)	-12(14)
C(14B)	223(18)	214(19)	372(19)	-113(16)	-128(15)	-26(15)
C(15B)	201(17)	234(19)	264(17)	-126(15)	-75(14)	57(14)
C(16B)	181(16)	200(18)	179(15)	-79(14)	-26(13)	18(14)
C(17B)	122(15)	187(17)	188(14)	-63(13)	-45(12)	6(13)
C(18B)	146(15)	175(16)	158(14)	-83(13)	-11(12)	-42(13)
C(19B)	173(16)	159(16)	134(13)	-64(12)	-23(12)	-23(13)
C(20B)	156(17)	232(18)	242(16)	-111(15)	-75(13)	16(14)
C(21B)	145(16)	243(18)	281(17)	-141(15)	-31(13)	-26(14)
C(22B)	222(17)	224(18)	176(15)	-79(14)	51(13)	-106(14)
C(23B)	215(16)	154(16)	140(14)	-76(13)	-24(12)	-28(13)
C(24B)	234(19)	230(20)	187(15)	-41(14)	-63(14)	10(16)
C(25B)	162(19)	460(30)	460(20)	-160(20)	-6(17)	-86(19)
C(26B)	266(19)	210(19)	172(16)	-20(15)	-27(14)	-60(16)
C(27B)	136(15)	151(16)	195(14)	-97(13)	-35(12)	3(12)
C(28B)	197(16)	134(16)	162(14)	-79(13)	-5(12)	-36(13)
C(29B)	144(16)	242(18)	231(16)	-139(14)	-49(13)	18(14)
C(30B)	180(16)	250(18)	205(15)	-139(14)	11(13)	-46(14)
C(31B)	285(19)	228(18)	102(14)	-55(14)	19(13)	-81(15)
C(32B)	200(16)	229(17)	162(14)	-89(13)	-37(12)	-22(14)
C(33B)	212(18)	193(19)	193(15)	-77(14)	-12(13)	0(15)
C(34B)	240(20)	410(30)	270(20)	-111(19)	47(16)	-148(19)
C(35B)	270(20)	340(20)	177(17)	-76(16)	-67(15)	-22(17)
	. ,			× /		× /
C(41)	300(20)	290(20)	400(20)	-127(18)	-116(16)	-86(17)
C(42)	280(20)	330(20)	294(19)	-27(17)	-116(16)	-47(17)
C(43)	320(20)	320(20)	410(20)	-153(19)	-42(17)	58(18)
C(44)	350(20)	440(20)	310(19)	-187(19)	-31(17)	-55(19)
C(45)	200(18)	390(20)	225(17)	-13(16)	-24(14)	-75(16)
C(46)	219(19)	201(19)	370(20)	-17(16)	-48(15)	-34(15)
× /	~ /	× /	×)	× /		、
C(51)	159(17)	330(20)	342(19)	-212(18)	-13(14)	-37(15)
C(52)	208(18)	199(19)	298(18)	-121(16)	25(14)	-8(15)
C(53)	186(18)	310(20)	273(18)	-140(17)	-60(15)	49(16)
	~ /	× /	× /	、 <i>、 、 、</i>	``'	× /

	X	у	Z	U _{iso}
H(2A)	7314(18)	9842(18)	8526(16)	10(7)
H(3A)	8433(17)	10690(18)	7629(16)	7(7)
H(4A)	9716(19)	9993(19)	6781(17)	20(8)
H(5A)	9730(20)	8420(20)	6909(19)	33(10)
H(8A)	9074(16)	7459(17)	6487(15)	0(6)
H(9A)	9052(16)	5984(16)	6388(15)	3(6)
H(10Å)	8655(16)	4756(17)	7655(15)	3(7)
H(13A)	8958(18)	3702(19)	8838(17)	19(8)
H(14A)	8480(20)	2320(20)	9915(18)	34(9)
H(15A)	7192(16)	2574(17)	11090(16)	7(6)
H(16A)	6548(17)	4155(18)	11091(16)	12(7)
H(20A)	4335(17)	9041(17)	8368(16)	11(7)
H(22A)	4464(18)	8842(18)	10773(17)	21(7)
H(24A)	5680(20)	8600(20)	7323(19)	34(9)
H(24B)	6529(19)	7990(20)	7711(17)	21(8)
H(24C)	6440(20)	9060(20)	7377(18)	18(9)
H(25A)	2820(20)	8830(20)	9750(20)	48(12)
H(25B)	2890(30)	9720(30)	9720(30)	72(17)
H(25C)	2850(30)	9070(40)	10510(30)	130(20)
H(26A)	6003(18)	8769(18)	11059(17)	19(7)
H(26B)	6910(20)	8480(20)	10390(20)	51(11)
H(26C)	6320(20)	7740(20)	11050(20)	40(10)
H(29A)	3904(19)	6506(19)	10417(17)	16(8)
H(31A)	4779(16)	6064(17)	12503(16)	7(6)
H(33A)	5980(20)	6580(20)	8934(18)	25(8)
H(33B)	4980(30)	6500(30)	9020(20)	65(13)
H(33C)	5699(19)	5610(20)	9233(17)	22(8)
H(34A)	3050(20)	6640(30)	12470(20)	47(12)
H(34B)	2750(20)	6390(30)	11870(20)	42(12)
H(34C)	2830(40)	7210(40)	11700(40)	170(30)
H(35A)	6440(20)	5600(20)	12520(20)	41(9)
H(35B)	7050(20)	5980(20)	11687(18)	20(8)
H(35C)	6940(20)	4930(20)	11981(18)	35(9)
H(2B)	3708(17)	9429(17)	6736(15)	4(6)
H(3B)	2823(17)	10124(17)	7759(15)	6(7)
H(4B)	1281(17)	9680(17)	8571(16)	12(7)
H(5B)	810(19)	8502(19)	8270(17)	19(8)
H(8B)	1030(16)	6915(17)	8656(15)	7(7)
H(9B)	622(17)	5449(18)	8797(17)	14(7)
H(10B)	1060(16)	5024(17)	7534(15)	1(7)
H(13B)	895(19)	4994(19)	6365(18)	22(8)
H(14B)	1323(18)	4317(18)	5308(17)	10(7)
H(15B)	2554(19)	4717(19)	4144(17)	24(8)
H(16B)	3359(16)	5937(16)	3996(15)	2(6)
H(20B)	6315(19)	6988(19)	6521(17)	20(8)
H(22B)	6080(20)	9010(20)	4283(19)	31(9)
	4202(10)	700(10)	7750(17)	01 (0)

Table 6. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for [2]FeI (CCDC 695390).

H(24E)	4870(20)	6300(20)	7551(19)	35(9)
H(24F)	3970(20)	6650(20)	7320(20)	51(11)
H(25D)	7630(30)	8490(30)	4910(30)	68(14)
H(25E)	7710(30)	7610(30)	4620(30)	80(14)
H(25F)	7730(30)	7610(40)	5490(30)	120(20)
H(26D)	4510(20)	9930(20)	4070(20)	53(11)
H(26E)	3680(20)	9760(20)	4767(19)	29(9)
H(26F)	3940(20)	9170(20)	4178(18)	31(9)
H(29B)	6241(19)	6246(19)	4518(17)	23(8)
H(31B)	5202(19)	8164(19)	2601(18)	23(8)
H(33D)	4449(18)	5220(19)	5776(16)	11(7)
H(33E)	4196(19)	6063(19)	6132(18)	25(8)
H(33F)	5260(30)	5590(30)	5990(20)	75(13)
H(34D)	6930(20)	7670(20)	2410(20)	50(11)
H(34E)	7280(30)	6810(30)	3050(30)	92(17)
H(34F)	7090(20)	7860(20)	3090(20)	40(10)
H(35D)	3160(20)	8750(20)	3338(19)	34(10)
H(35E)	2850(20)	7780(20)	3440(20)	39(10)
H(35F)	3540(20)	8370(20)	2630(20)	52(11)
H(41)	9950(20)	8370(20)	4279(18)	28(9)
H(42)	10870(20)	6890(20)	4360(20)	36(10)
H(43)	10770(20)	5950(20)	3564(19)	42(10)
H(44)	9860(20)	6680(20)	2566(19)	40(10)
H(45)	9020(19)	8216(19)	2391(17)	21(8)
H(46)	9073(18)	9033(19)	3317(16)	15(8)
H(51)	990(20)	690(20)	359(19)	33(9)
H(52)	180(16)	1585(18)	-684(15)	3(7)
H(53)	771(19)	-868(19)	1041(17)	17(8)

([**2**]Fe)₂O

Contents

Table 1. Crystal data Figures Minimum overlap

Table 2. Atomic Coordinates

Table 3. Selected bond distances and angles

Table 4. Full bond distances and angles

Table 5. Anisotropic displacement parameters

Table 6. Observed and calculated structure factors (available upon request)

([**2**]Fe)₂O

Note: The crystallographic data have been deposited in the Cambridge Database (CCDC) and has been placed on hold pending further instructions from me. The deposition number is 697910. Ideally the CCDC would like the publication to contain a footnote of the type: "Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number 697910."

Table 1. Crystal data and structure refinement for ([2]Fe)₂O (CCDC 697910).

Empirical formula	$C_{70}H_{66}N_6OFe_2 \bullet 0.5(C_7H_8)$	
Formula weight	1165.05	
Crystallization Solvent	Toluene	
Crystal Habit	Plate	-
Crystal size	0.38 x 0.24 x 0.07 mm ³	_
Crystal color	Green	- English

Data Collection

Type of diffractometer	Bruker KAPPA APEX II
Wavelength	0.71073 Å MoKα
Data Collection Temperature	100(2) K
θ range for 9283 reflections used in lattice determination	2.30 to 31.52°
Unit cell dimensions	a = 19.8707(9) Å b = 39.4031(19) Å c = 15.1038(6) Å
Volume	11825.8(9) Å ³
Z	8
Crystal system	Orthorhombic
Space group	Iba2
Density (calculated)	1.309 Mg/m ³
F(000)	4904

Bruker APEX2 v2.1-0
1.86 to 32.23°
93.8 %
$\text{-29} \le h \le 29, \text{-59} \le k \le 42, \text{-19} \le l \le 22$
ω scans; 12 settings
Bruker SAINT-Plus v7.34A
121688
$18216 [R_{int} = 0.0571]$
0.542 mm ⁻¹
None
0.9630 and 0.8204

Table 1 (cont.)

Structure solution and Refinement

Structure solution program	SHELXS-97 (Sheldrick, 2008)
Primary solution method	Direct methods
Secondary solution method	Difference Fourier map
Hydrogen placement	Geometric positions
Structure refinement program	SHELXL-97 (Sheldrick, 2008)
Refinement method	Full matrix least-squares on F ²
Data / restraints / parameters	18216 / 10 / 757
Treatment of hydrogen atoms	Riding
Goodness-of-fit on F ²	1.792
Final R indices [I>2 σ (I), 14462 reflections]	R1 = 0.0416, wR2 = 0.0558
R indices (all data)	R1 = 0.0600, wR2 = 0.0567
Type of weighting scheme used	Sigma
Weighting scheme used	$w=1/\sigma^2(Fo^2)$
Max shift/error	0.003
Average shift/error	0.000
Absolute structure determination	Anomalous differences
Absolute structure parameter	-0.007(6)
Largest diff. peak and hole	1.372 and -0.704 e.Å ⁻³

Special Refinement Details

Crystals were mounted on a glass fiber using Paratone oil then placed on the diffractometer under a nitrogen stream at 100K. Refinement of F^2 against ALL reflections. The weighted R-factor (wR) and goodness of fit (S) are based

on F^2 , conventional R-factors (R) are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters $(Å^2x 10^3)$ for $([2]Fe)_2O$ (CCDC 697910). U(eq) is defined as the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U _{eq}
Fe(1)	7380(1)	8495(1)	10926(1)	16(1)
Fe(2)	7526(1)	8565(1)	8636(1)	16(1)
O(1)	7402(1)	8618(1)	9792(1)	21(1)
N(1)	8180(1)	8518(1)	11632(1)	19(1)
N(2)	7370(1)	7983(1)	10897(1)	16(1)
N(3)	6529(1)	8538(1)	11526(1)	18(1)
N(4)	6787(1)	8425(1)	7895(1)	17(1)
N(5)	8028(1)	8124(1)	8483(1)	17(1)
N(6)	8206(1)	8840(1)	8083(1)	18(1)
C(1)	8708(1)	8299(1)	11484(1)	18(1)
C(2)	9373(1)	8391(1)	11729(1)	23(1)
C(3)	9912(1)	8190(1)	11523(1)	27(1)
C(4)	9823(1)	7887(1)	11070(1)	27(1)
C(5)	9181(1)	7785(1)	10874(1)	22(1)
C(6)	8607(1)	7975(1)	11101(1)	19(1)
C(7)	7949(1)	7801(1)	10999(1)	19(1)
C(8)	7909(1)	7449(1)	11032(1)	26(1)
C(9)	7294(1)	7289(1)	10922(2)	29(1)
C(10)	6722(1)	7481(1)	10808(1)	26(1)
C(11)	6760(1)	7832(1)	10801(1)	18(1)
C(12)	6139(1)	8040(1)	10700(1)	17(1)
C(13)	5624(1)	7897(1)	10185(1)	19(1)
C(14)	4989(1)	8035(1)	10140(1)	20(1)
C(15)	4850(1)	8326(1)	10626(1)	19(1)
C(16)	5349(1)	8483(1)	11104(1)	19(1)
C(17)	6014(1)	8356(1)	11122(1)	18(1)
C(18)	8271(1)	8820(1)	12134(1)	19(1)
C(19)	8463(1)	9122(1)	11722(1)	24(1)
C(20)	8476(1)	9417(1)	12220(1)	30(1)
C(21)	8305(1)	9422(1)	13118(1)	31(1)
C(22)	8132(1)	9116(1)	13510(1)	28(1)
C(23)	8118(1)	8816(1)	13049(1)	22(1)
C(24)	8664(1)	9124(1)	10762(1)	31(1)
C(25)	8297(1)	9749(1)	13633(2)	50(1)
C(26)	7947(1)	8485(1)	13498(1)	31(1)
C(27)	6372(1)	8808(1)	12120(1)	18(1)
C(28)	6424(1)	9147(1)	11842(1)	20(1)
C(29)	6325(1)	9406(1)	12450(1)	25(1)
C(30)	6169(1)	9340(1)	13334(1)	26(1)
C(31)	6107(1)	9004(1)	13585(1)	24(1)
C(32)	6199(1)	8739(1)	13004(1)	20(1)
C(33)	6572(1)	9232(1)	10887(1)	31(1)
C(34)	6062(1)	9631(1)	13968(1)	44(1)
C(35)	6107(1)	8376(1)	13307(1)	27(1)
C(36)	6541(1)	8101(1)	7933(1)	16(1)
C(37)	5878(1)	8026(1)	7672(1)	20(1)
C(38)	5605(1)	7708(1)	7745(1)	22(1)

C(39)	5979(1)	7445(1)	8100(1)	24(1)
C(40)	6632(1)	7506(1)	8338(1)	21(1)
C(41)	6948(1)	7821(1)	8226(1)	18(1)
C(42)	7693(1)	7830(1)	8310(1)	19(1)
C(43)	8061(1)	7535(1)	8154(1)	28(1)
C(44)	8756(1)	7544(1)	8191(1)	32(1)
C(45)	9081(1)	7842(1)	8362(1)	27(1)
C(46)	8716(1)	8137(1)	8517(1)	19(1)
C(47)	9071(1)	8461(1)	8678(1)	20(1)
C(48)	9712(1)	8436(1)	9075(1)	26(1)
C(49)	10152(1)	8702(1)	9122(1)	32(1)
C(50)	9958(1)	9011(1)	8760(1)	35(1)
C(51)	9326(1)	9055(1)	8419(1)	28(1)
C(52)	8853(1)	8785(1)	8390(1)	20(1)
C(53)	6399(1)	8693(1)	7508(1)	17(1)
C(54)	5914(1)	8866(1)	8008(1)	19(1)
C(55)	5601(1)	9149(1)	7644(1)	23(1)
C(56)	5755(1)	9263(1)	6801(1)	25(1)
C(57)	6228(1)	9085(1)	6307(1)	22(1)
C(58)	6548(1)	8800(1)	6647(1)	18(1)
C(59)	5729(1)	8747(1)	8924(1)	23(1)
C(60)	5417(1)	9575(1)	6434(1)	38(1)
C(61)	7040(1)	8606(1)	6082(1)	23(1)
C(62)	8065(1)	9128(1)	7541(1)	19(1)
C(63)	7634(1)	9382(1)	7838(1)	21(1)
C(64)	7468(1)	9649(1)	7285(1)	25(1)
C(65)	7724(1)	9677(1)	6439(1)	26(1)
C(66)	8157(1)	9422(1)	6157(1)	27(1)
C(67)	8334(1)	9149(1)	6676(1)	23(1)
C(68)	7356(1)	9380(1)	8775(1)	28(1)
C(69)	7543(1)	9972(1)	5848(1)	44(1)
C(70)	8796(1)	8877(1)	6331(1)	31(1)
C(81)	10000	10000	7764(3)	288(7)
C(82)	10000	10000	6753(3)	204(4)
C(83)	9909(2)	9699(1)	6290(3)	155(3)
C(84)	9909(2)	9699(1)	5371(3)	381(8)
C(85)	10000	10000	4906(3)	207(6)

Fe(1)-O(1)	1.7802(14)	O(1)-Fe(1)-N(1)	120.08(6)
Fe(1)-N(1)	1.9174(15)	O(1)-Fe(1)-N(3)	116.84(6)
Fe(1)-N(3)	1.9262(14)	N(1)-Fe(1)-N(3)	117.50(6)
Fe(1)-N(2)	2.0161(14)	O(1)-Fe(1)-N(2)	104.57(6)
Fe(2)-O(1)	1.7761(14)	N(1)-Fe(1)-N(2)	93.86(6)
Fe(2)-N(6)	1.9234(15)	N(3)-Fe(1)-N(2)	95.14(6)
Fe(2)-N(4)	1.9262(15)	O(1)-Fe(2)-N(6)	117.27(6)
Fe(2)-N(5)	2.0153(15)	O(1)-Fe(2)-N(4)	119.97(6)
		N(6)-Fe(2)-N(4)	116.39(6)
		O(1)-Fe(2)-N(5)	106.37(6)
		N(6)-Fe(2)-N(5)	95.06(6)
		N(4)-Fe(2)-N(5)	93.67(6)

Table 3. Selected bond lengths [Å] and angles [°] for ([2]Fe)₂O (CCDC 697910).

Table 4. Bond lengths [Å] and angles [°] for $([2]Fe)_2O$ (CCDC 697910).

Fe(1)-O(1)	1.7802(14)	C(13)-C(14)	1.376(2)
Fe(1)-N(1)	1.9174(15)	C(14)-C(15)	1.387(2)
Fe(1)-N(3)	1.9262(14)	C(15)-C(16)	1.374(2)
Fe(1)-N(2)	2.0161(14)	C(16)-C(17)	1.413(2)
Fe(2)-O(1)	1.7761(14)	C(18)-C(19)	1.397(3)
Fe(2)-N(6)	1.9234(15)	C(18)-C(23)	1.415(2)
Fe(2)-N(4)	1.9262(15)	C(19)-C(20)	1.385(3)
Fe(2)-N(5)	2.0153(15)	C(19)-C(24)	1.503(3)
N(1)-C(1)	1.378(2)	C(20)-C(21)	1.400(3)
N(1)-C(18)	1.421(2)	C(21)-C(22)	1.384(3)
N(2)-C(11)	1.358(2)	C(21)-C(25)	1.506(3)
N(2)-C(7)	1.365(2)	C(22)-C(23)	1.374(3)
N(3)-C(17)	1.391(2)	C(23)-C(26)	1.509(3)
N(3)-C(27)	1.428(2)	C(27)-C(28)	1.402(3)
N(4)-C(36)	1.370(2)	C(27)-C(32)	1.406(2)
N(4)-C(53)	1.431(2)	C(28)-C(29)	1.389(3)
N(5)-C(42)	1.361(2)	C(28)-C(33)	1.509(2)
N(5)-C(46)	1.371(2)	C(29)-C(30)	1.396(3)
N(6)-C(52)	1.384(2)	C(30)-C(31)	1.383(3)
N(6)-C(62)	1.427(2)	C(30)-C(34)	1.508(3)
C(1)-C(2)	1.419(2)	C(31)-C(32)	1.378(3)
C(1)-C(6)	1.414(3)	C(32)-C(35)	1.513(3)
C(2)-C(3)	1.370(3)	C(36)-C(37)	1.406(2)
C(3)-C(4)	1.386(3)	C(36)-C(41)	1.437(3)
C(4)-C(5)	1.370(2)	C(37)-C(38)	1.370(3)
C(5)-C(6)	1.408(2)	C(38)-C(39)	1.382(3)
C(6)-C(7)	1.486(2)	C(39)-C(40)	1.369(2)
C(7)-C(8)	1.389(3)	C(40)-C(41)	1.402(3)
C(8)-C(9)	1.384(2)	C(41)-C(42)	1.487(2)
C(9)-C(10)	1.376(3)	C(42)-C(43)	1.395(3)
C(10)-C(11)	1.385(3)	C(43)-C(44)	1.382(3)
C(11)-C(12)	1.487(2)	C(44)-C(45)	1.362(3)
C(12)-C(13)	1.403(2)	C(45)-C(46)	1.391(3)
C(12)-C(17)	1.421(3)	C(46)-C(47)	1.478(2)

C(47)-C(48)	1.410(2)	C(36)-N(4)-Fe(2)	120.97(12)
C(47)-C(52)	1.416(3)	C(53)-N(4)-Fe(2)	115.93(12)
C(48)-C(49)	1.367(3)	C(42)-N(5)-C(46)	121.72(16)
C(49)-C(50)	1.387(3)	C(42)-N(5)-Fe(2)	120.95(12)
C(50)- $C(51)$	1 369(3)	C(46)-N(5)-Fe(2)	117 25(12)
C(51)-C(52)	1.422(3)	C(52)-N(6)-C(62)	120.02(15)
C(53)-C(58)	1 398(2)	C(52)-N(6)-Fe(2)	11475(12)
C(53)- $C(54)$	1.390(2) 1 402(2)	C(62)-N(6)-Fe(2)	123.96(12)
C(54)- $C(55)$	1 391(3)	N(1)-C(1)-C(2)	120.90(12) 120.41(17)
C(54)- $C(59)$	1 506(2)	N(1) - C(1) - C(6)	120.11(17)
C(55)- $C(56)$	1 385(2)	C(2)-C(1)-C(6)	121.32(10) 118.07(17)
C(56)-C(57)	1.303(2) 1 301(3)	C(2)-C(1)-C(0)	121.34(10)
C(50)-C(57)	1.591(5)	C(3) - C(2) - C(1) C(2) - C(3) - C(4)	121.34(19) 120.65(18)
C(50)-C(00)	1.300(3)	C(2) - C(3) - C(4)	120.03(18) 119 70(18)
C(57)-C(58)	1.590(5)	C(3)-C(4)-C(3)	110.70(10) 122.02(10)
C(58)-C(01)	1.307(2)	C(4) - C(3) - C(6)	122.95(18)
C(02)-C(03)	1.391(3)	C(5)-C(6)-C(1)	11/./(10)
C(62)-C(67)	1.414(2)	C(5)-C(6)-C(7)	116.14(17)
C(63)-C(64)	1.384(3)	C(1)-C(6)-C(7)	125.76(16)
C(63)-C(68)	1.519(2)	N(2)-C(7)-C(8)	118.77(16)
C(64)-C(65)	1.380(3)	N(2)-C(7)-C(6)	120.70(16)
C(65)-C(66)	1.390(3)	C(8)-C(7)-C(6)	120.51(16)
C(65)-C(69)	1.507(3)	C(9)-C(8)-C(7)	120.01(17)
C(66)-C(67)	1.379(3)	C(10)-C(9)-C(8)	119.52(18)
C(67)-C(70)	1.504(3)	C(9)-C(10)-C(11)	120.43(18)
C(81)-C(82)	1.5266(9)	N(2)-C(11)-C(10)	118.91(16)
C(82)-C(83)#1	1.3880(9)	N(2)-C(11)-C(12)	120.75(16)
C(82)-C(83)	1.3881(9)	C(10)-C(11)-C(12)	120.34(16)
C(83)-C(84)	1.3885(9)	C(13)-C(12)-C(17)	118.16(16)
C(84)-C(85)	1.3897(10)	C(13)-C(12)-C(11)	116.22(17)
C(85)-C(84)#1	1.3898(10)	C(17)-C(12)-C(11)	125.50(16)
		C(14)-C(13)-C(12)	122.53(18)
O(1)-Fe(1)-N(1)	120.08(6)	C(13)-C(14)-C(15)	118.88(17)
O(1)-Fe(1)-N(3)	116.84(6)	C(16)-C(15)-C(14)	120.42(17)
N(1)-Fe(1)-N(3)	117.50(6)	C(15)-C(16)-C(17)	121.63(17)
O(1)-Fe(1)-N(2)	104.57(6)	N(3)-C(17)-C(16)	120.89(17)
N(1)-Fe(1)-N(2)	93.86(6)	N(3)-C(17)-C(12)	121.30(16)
N(3)-Fe(1)-N(2)	95.14(6)	C(16)-C(17)-C(12)	117.80(16)
O(1)-Fe(2)-N(6)	117.27(6)	C(19)-C(18)-C(23)	120.15(19)
O(1)-Fe(2)-N(4)	119.97(6)	C(19)-C(18)-N(1)	120.67(16)
N(6)-Fe(2)-N(4)	116 39(6)	C(23)-C(18)-N(1)	119 04(18)
O(1)-Fe(2)-N(5)	106 37(6)	C(20)-C(19)-C(18)	118 61(18)
N(6)-Fe(2)-N(5)	95.06(6)	C(20)- $C(19)$ - $C(24)$	120.88(19)
N(4)-Fe(2)-N(5)	93 67(6)	C(18)-C(19)-C(24)	120.00(19) 120.51(19)
Fe(2)-O(1)-Fe(1)	156 60(7)	C(19)-C(20)-C(21)	120.31(17) 122.3(2)
C(1)-N(1)-C(18)	120.93(15)	C(22)-C(21)-C(20)	117.6(2)
C(1)-N(1)-E(1)	120.95(19) 120.81(12)	C(22)-C(21)-C(20)	117.0(2) 121 /3(10)
C(1) - N(1) - Fc(1) C(18) - N(1) - Fc(1)	120.81(12) 116.21(12)	C(22)- $C(21)$ - $C(25)$	121.43(19) 121.0(2)
$C(10) - N(1) - \Gamma C(1)$ C(11) - N(2) - C(7)	110.21(12) 122.20(15)	C(20) - C(21) - C(23) C(23) - C(22) - C(21)	121.0(2) 122.40(10)
C(11) - N(2) - C(1) C(11) - N(2) = C(1)	122.30(13) 116.63(13)	C(23) - C(22) - C(21) C(22) - C(22) - C(12)	122.49(19)
C(11) - IN(2) - FC(1) $C(7) N(2) E_{2}(1)$	110.02(12) 121.04(12)	C(22) - C(23) - C(10) C(22) - C(23) - C(26)	110.03(19) 101.44(10)
$C(1) - N(2) - \Gamma C(1)$ C(17) - N(2) - C(27)	121.04(12) 120.01(14)	C(22) - C(23) - C(20) C(18) - C(22) - C(26)	121.44(18) 110.71(19)
C(17) - N(3) - C(27) $C(17) - N(2) - E_{2}(1)$	120.01(14) 112.20(11)	C(10)-C(20)-C(20)	119./1(18)
C(17) - N(3) - Fe(1)	113.20(11) 122.59(12)	C(28) - C(27) - C(32)	119.27(18)
C(2/)-N(3)-Fe(1)	123.58(12)	C(28)-C(27)-N(3)	120.36(16)
C(36)-N(4)-C(53)	120.80(15)	C(32)-C(27)-N(3)	120.28(18)

C(29)-C(28)-C(27)	119.46(17)	N(6)-C(52)-C(47)	121.93(17)
C(29)-C(28)-C(33)	119.71(18)	N(6)-C(52)-C(51)	120.39(18)
C(27)-C(28)-C(33)	120.81(17)	C(47)-C(52)-C(51)	117.68(17)
C(28)-C(29)-C(30)	121.74(19)	C(58)-C(53)-C(54)	120.03(17)
C(31)-C(30)-C(29)	117.50(18)	C(58)-C(53)-N(4)	119.14(16)
C(31)-C(30)-C(34)	122.66(18)	C(54)-C(53)-N(4)	120.60(16)
C(29)-C(30)-C(34)	119.83(19)	C(55)-C(54)-C(53)	119.01(17)
C(30)-C(31)-C(32)	122.70(18)	C(55)-C(54)-C(59)	120.24(17)
C(31)-C(32)-C(27)	119.28(19)	C(53)-C(54)-C(59)	120.74(17)
C(31)-C(32)-C(35)	120.62(17)	C(56)-C(55)-C(54)	121.66(18)
C(27)-C(32)-C(35)	120.09(18)	C(55)-C(56)-C(57)	118.59(18)
N(4)-C(36)-C(37)	121.31(17)	C(55)-C(56)-C(60)	120.29(18)
N(4)-C(36)-C(41)	121.83(16)	C(57)-C(56)-C(60)	121.12(18)
C(37)-C(36)-C(41)	116.85(18)	C(56)-C(57)-C(58)	121.36(18)
C(38)-C(37)-C(36)	122.77(18)	C(57)-C(58)-C(53)	119.32(17)
C(37)-C(38)-C(39)	120.26(18)	C(57)-C(58)-C(61)	119.89(17)
C(40)-C(39)-C(38)	118.66(19)	C(53)-C(58)-C(61)	120.78(17)
C(39)-C(40)-C(41)	123.27(19)	C(63)-C(62)-C(67)	119.28(18)
C(40)-C(41)-C(36)	117.70(17)	C(63)-C(62)-N(6)	120.59(16)
C(40)-C(41)-C(42)	117.14(17)	C(67)-C(62)-N(6)	120.04(17)
C(36)-C(41)-C(42)	124.69(17)	C(64)-C(63)-C(62)	119.96(18)
N(5)-C(42)-C(43)	119.14(17)	C(64)-C(63)-C(68)	118.63(17)
N(5)-C(42)-C(41)	121.49(17)	C(62)-C(63)-C(68)	121.39(17)
C(43)-C(42)-C(41)	119.24(18)	C(65)-C(64)-C(63)	122.15(19)
C(44)-C(43)-C(42)	119.6(2)	C(64)-C(65)-C(66)	117.03(19)
C(45)-C(44)-C(43)	120.3(2)	C(64)-C(65)-C(69)	121.48(19)
C(44)-C(45)-C(46)	120.32(18)	C(66)-C(65)-C(69)	121.49(19)
N(5)-C(46)-C(45)	118.86(17)	C(67)-C(66)-C(65)	123.23(18)
N(5)-C(46)-C(47)	120.98(16)	C(66)-C(67)-C(62)	118.35(18)
C(45)-C(46)-C(47)	120.10(17)	C(66)-C(67)-C(70)	120.91(17)
C(48)-C(47)-C(52)	117.91(17)	C(62)-C(67)-C(70)	120.73(18)
C(48)-C(47)-C(46)	116.22(17)	C(83)#1-C(82)-C(83)	119.49(17)
C(52)-C(47)-C(46)	125.57(16)	C(83)#1-C(82)-C(81)	120.26(8)
C(49)-C(48)-C(47)	123.2(2)	C(83)-C(82)-C(81)	120.25(8)
C(48)-C(49)-C(50)	118.32(18)	C(82)-C(83)-C(84)	120.28(11)
C(51)-C(50)-C(49)	120.99(19)	C(83)-C(84)-C(85)	120.30(11)
C(50)-C(51)-C(52)	121.45(19)	C(84)-C(85)-C(84)#1	119.36(18)

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y+2,z

Table 5. Anisotropic displacement parameters (Å²x 10⁴) for ([2]Fe)₂O (CCDC 697910). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Fe(1)	140(1)	187(1)	163(1)	0(1)	5(1)	2(1)
Fe(2)	140(1)	172(1)	165(1)	-1(1)	-2(1)	0(1)
O(1)	173(7)	257(8)	198(5)	10(7)	8(6)	3(6)
N(1)	160(8)	213(10)	184(8)	2(8)	-18(6)	-5(7)
N(2)	150(7)	188(8)	149(7)	19(8)	10(7)	1(7)
N(3)	146(8)	194(9)	193(8)	-32(7)	23(6)	3(7)

N(4)	135(8)	166(9)	197(8)	11(7)	-13(7)	-5(7)
N(5)	145(8)	195(9)	158(8)	23(7)	5(6)	-7(6)
N(6)	147(8)	207(10)	176(8)	-5(7)	11(6)	-1(7)
C(1)	173(10)	215(12)	141(10)	25(8)	31(8)	2(8)
C(2)	187(10)	254(12)	240(11)	51(9)	-25(8)	-11(9)
C(3)	147(10)	313(13)	337(12)	118(10)	-47(9)	-39(9)
C(4)	172(10)	288(12)	346(12)	45(11)	28(9)	48(8)
C(5)	225(10)	188(11)	259(11)	-4(10)	20(9)	24(8)
C(6)	160(9)	257(12)	163(10)	62(9)	-4(8)	-4(8)
C(7)	179(9)	214(11)	166(10)	18(10)	-17(9)	42(8)
C(8)	172(9)	247(13)	351(12)	27(11)	-15(10)	43(8)
C(9)	257(10)	162(11)	464(12)	-40(12)	-24(10)	-1(9)
C(10)	185(10)	237(12)	364(12)	21(11)	-62(9)	-42(9)
C(10)	174(9)	191(11)	176(11)	-3(9)	9(8)	-5(8)
C(12)	1/4(9)	191(11) 189(11)	164(10)	45(8)	7(7)	-20(8)
C(12) C(13)	221(10)	151(11)	205(10)	25(9)	24(8)	-26(9)
C(13)	154(10)	222(12)	203(10) 210(10)	29(9)	-53(7)	-5(9)
C(14)	124(10)	222(12) 224(12)	210(10) 215(11)	29(9) 20(9)	-33(7)	-3(9)
C(15)	124(9)	224(12) 203(11)	177(10)	-16(9)	7(0) 13(7)	22(8)
C(10) C(17)	190(9)	203(11) 222(11)	177(10) 130(10)	-10(9)	43(7)	22(8)
C(17)	103(9) 150(10)	222(11) 200(12)	139(10) 215(11)	32(8) 47(0)	20(7)	-21(8)
C(10)	130(10) 102(11)	209(12)	213(11) 260(12)	-4/(9)	-47(0)	21(8)
C(19)	192(11) 218(12)	237(13) 220(14)	200(12)	-8(10)	-57(9)	-3(9)
C(20)	318(13)	220(14)	332(13)	50(10)	-33(10)	9(10)
C(21)	310(12) 202(11)	207(14)	323(13)	-34(11)	-11/(10)	82(10)
C(22)	293(11) 12((10)	333(13)	209(11) 224(11)	-32(11)	-35(9)	103(10)
C(23)	130(10)	308(13)	224(11)	-15(10)	-2/(8)	40(9)
C(24)	343(12)	282(13)	303(13)	2(10)	-4(10)	-6/(10)
C(25)	791(19)	295(14)	414(14)	-104(13)	-133(14)	155(13)
C(26)	305(11)	407(15)	221(11)	11(11)	18(10)	-37(10)
C(27)	124(9)	214(12)	202(10)	-38(9)	-30(8)	/(8)
C(28)	1/5(10)	199(12)	211(11)	-1(9)	11(8)	-16(8)
C(29)	242(11)	203(12)	317(12)	-17(10)	11(9)	-43(9)
C(30)	233(11)	303(14)	255(11)	-111(10)	34(9)	-37(9)
C(31)	194(10)	355(14)	165(10)	-31(11)	12(9)	-47(8)
C(32)	134(10)	261(12)	190(10)	3(9)	-5(8)	-1(9)
C(33)	418(13)	227(12)	287(12)	-25(11)	50(11)	-42(9)
C(34)	544(16)	412(16)	351(13)	-133(12)	135(11)	-89(12)
C(35)	258(11)	317(13)	240(11)	14(10)	49(9)	-5(10)
C(36)	156(10)	215(12)	120(9)	-29(8)	29(7)	8(8)
C(37)	162(10)	248(12)	179(10)	-24(9)	-13(8)	33(9)
C(38)	147(10)	278(13)	248(11)	-83(10)	-2(8)	-1(9)
C(39)	202(11)	201(12)	321(12)	-56(10)	78(9)	-41(9)
C(40)	212(11)	157(11)	272(11)	-34(9)	19(8)	37(8)
C(41)	146(10)	199(11)	191(10)	-32(8)	11(8)	16(8)
C(42)	164(10)	201(11)	208(10)	8(9)	-3(8)	8(8)
C(43)	192(11)	196(12)	440(13)	-16(10)	23(10)	10(9)
C(44)	197(12)	246(13)	522(15)	-25(11)	30(11)	84(9)
C(45)	158(10)	274(13)	372(13)	48(10)	24(9)	28(9)
C(46)	160(9)	234(11)	165(10)	34(9)	-33(8)	19(8)
C(47)	149(9)	279(12)	171(10)	-5(10)	8(8)	-26(8)
C(48)	195(11)	332(13)	258(11)	26(10)	-32(8)	19(9)
C(49)	175(11)	463(15)	322(12)	27(11)	-82(9)	-38(10)
C(50)	222(11)	387(14)	431(13)	-11(12)	-48(11)	-138(10)
C(51)	264(11)	272(13)	298(12)	22(10)	-26(9)	-60(9)

C(52)	171(10)	272(12)	142(10)	-8(9)	17(8)	-19(9)
C(53)	162(10)	151(11)	207(10)	-33(8)	-52(8)	-18(8)
C(54)	154(10)	211(12)	200(10)	-16(9)	-28(8)	-6(8)
C(55)	210(11)	231(12)	249(11)	-31(10)	28(9)	49(9)
C(56)	261(12)	191(12)	299(12)	29(10)	-20(9)	31(9)
C(57)	220(11)	242(13)	205(11)	9(9)	-19(9)	0(9)
C(58)	148(10)	169(11)	224(11)	-29(9)	-10(8)	-14(8)
C(59)	184(10)	274(12)	220(11)	25(9)	33(8)	30(9)
C(60)	417(14)	314(14)	417(13)	72(11)	40(11)	165(11)
C(61)	243(10)	238(12)	213(11)	-5(9)	-21(9)	47(8)
C(62)	177(10)	182(11)	220(10)	1(9)	-31(8)	-57(9)
C(63)	204(10)	198(11)	225(10)	-29(9)	-9(8)	-44(9)
C(64)	254(12)	203(11)	290(11)	-7(9)	-22(9)	4(9)
C(65)	359(13)	193(12)	240(11)	24(9)	-70(9)	4(10)
C(66)	375(13)	267(13)	175(11)	37(10)	25(9)	-1(10)
C(67)	255(11)	203(12)	224(11)	-34(10)	17(9)	-6(9)
C(68)	311(12)	240(12)	281(12)	-37(10)	35(10)	-9(9)
C(69)	570(15)	342(13)	395(13)	75(13)	-54(14)	91(12)
C(70)	369(13)	310(14)	242(12)	37(10)	83(10)	71(11)
C(81)	2480(110)	4050(170)	2110(80)	0	0	1790(110)
C(82)	1050(60)	1180(70)	3890(150)	0	0	760(60)
C(83)	390(20)	530(20)	3720(80)	140(40)	-280(40)	21(19)
C(84)	1920(80)	5000(200)	4540(140)	1140(110)	-1210(110)	460(110)
C(85)	1180(70)	3590(170)	1430(60)	0	0	940(100)

Electrochemical Data

A note on control experiments: Voltammograms of THF, the solution of ${}^{n}Bu_{4}BF_{4}$ in THF, and the protonated ligand [2]H₂ were obtained. No peaks were observed, thus supporting that the peaks observed for [2]Fe(THF) are attributable to that species exclusively.

Voltammogram showing isolated Fe^{II}/Fe^I couple

Exp. Conditions:
Init E (mV) = -100
High E (mV) = -100
Low E (mV) = -800
Init P/N = N
V (mV/sec) = 100
Number of Segments = 2
Sample Interval (mV) =
Quiet Time (sec) = 2
Sensitivity $(A/V) = 1E-6$

Voltammogram using expanded window, showing ferrocene/ferrocenium reference. Note the new oxidation wave at more positive potentials, and two new reduction waves which are coupled to the aforementioned wave.

Exp. Conditions:
Init E (mV) = -100
High E (mV) = -100
Low E (mV) = -800
Init P/N = N
V (mV/sec) = 100
Number of Segments
= 2
Sample Interval (mV)
= 1
Quiet Time (sec) = 2
Sensitivity (A/V) = 1E-
6

Scan Rate Dependence Study

Using the Cottrell equation, it is clear that the root of the scan rate is proportional to current at the peaks (see below), thus indicating a diffusion controlled wave.

Root of scan rate versus current

UV-Vis Spectroscopy Data

Typical tetrahydrofuran blank used for background subtraction shown below

Purification of 1 via column chromatography

The column was packed with 1.5 L of silica gel and run initially in methylene chloride. The fractions were collected in 280 18 x 150 mm tubes, then 6 500 mL Erlenmeyer flasks. Thin layer chromatography was performed in methylene chloride, and visualized via a UV lamp. Spot number 5 corresponds to the product. Tubes 171-280, and flasks 1-5 were combined, and concentrated to a yellow solid.

Column chromatography data for 1.

Tube #	Spot #	Solvent Mixture	Spot #	R _f
1-31	None	CH_2Cl_2	1	~1
32-41	1	CH ₂ Cl ₂	2	0.8
51-71	1+2	CH ₂ Cl ₂	3	0.4
81-120	2+3	CH ₂ Cl ₂	4	0.3
121-130	3	CH ₂ Cl ₂	5	0.2
131-170	3+4	CH ₂ Cl ₂	6	~0
171-240	4+5	CH ₂ Cl ₂		
241-280	5	4:1 CH ₂ Cl ₂ :EtOAc		
Flask #	Spot #	Solvent Mixture		
1	5	4:1 CH ₂ Cl ₂ :EtOAc		
2-3	5	1:1 CH ₂ Cl ₂ :EtOAc		
4	5	EtOAc		
5	5+6	EtOAc		
6	6	EtOAc]	