
 

Data Analysis 

Spectra were bias-subtracted and flat-fielded in the standard manner, and intensity 

calibrated by comparison to the centers of Jupiter’s and Saturn’s disks observed on the 

same nights25. Earth’s atmosphere blurred Enceladus’ disk from 0.09" to 0.8" full-width 

half-maximum, but Enceladus stray light does not contaminate spectra more than two 

arcseconds away. We summed eight 30-minute exposures targeted at the dusk E-ring 

ansa. We separately summed five 30-minute observations targeted on Enceladus after 

correcting for their changing Doppler shifts and removing sky background including 

emissions by subtracting the average sky spectrum north of Enceladus from the entire 

frame. 

Upper limits on sodium emission were derived by simulating features of different 

intensities with appropriate photon noise, adding them into the spectra at the proper 

Doppler shift for each observation, and evaluating which would clearly be identified as 

emissions. Emission surface brightness is expressed in Rayleighs, abbreviated R, with 1 

R = (106/4π) photons/(cm2 steradian second). While our upper limits may seem 

conservative compared to the readily detectable 4R airglow line, this is because the 

airglow line (1) spans the entire slit, while our upper limit applies to smaller spatial 

regions; (2) lies on a uniform continuum background as opposed to the modelled 

emissions which lie within the strong spectral variations of the solar Fraunhofer line. 

Formal error analysis confirms that our visual approach is twice as conservative as 3-σ 

statistical errors. The observed brightness limits are linearly converted to maximum 

sodium column abundances in Table 1using Saturn’s distance from the Sun and 
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Enceladus’ Doppler shift relative to the minimum of the solar Fraunhofer line. Given the 

low column abundances, no correction for optical thickness is needed.  

Numerical Modeling 

The model tracks individual particles (atoms or molecules) as they leave 

Enceladus’ south pole and expand away on escape trajectories. The model can simulate 

spectral line shapes and intensities for any Enceladus orbital longitude and spectrograph 

slit location, including the source region at Encledus. The southward ejection velocities 

of ~400 m/s estimated from Cassini data15,16 exceeds Enceladus’ escape speed of 240 

m/s. Once particles have escaped, they orbit Saturn every ~33 hours and are bombarded 

by magnetospheric particles and sunlight. The dominant loss processes and their lifetimes 

are molecular photodissociation (~9 hrs)26; photoionization (~1500 hours27) and electron 

impact ionization28 (~104 hours within 0.5Rs (Saturn radii) of Enceladus’ orbit, but 

reduced in our model to little as 100 hours outside at 5 Rs, based on spatially-resolved 

Cassini data29). Collisions with Saturn’s rings will occur for sodium atoms after about 

700 hours (explained below), but collisions of Na molecules with E-ring particles, 

Enceladus, or other moons can be neglected. 

The model can be run under different assumptions for the source of sodium. 

Sodium may be ejected in atomic form, as at Io and Europa, and appear in the plume near 

Enceladus. Alternatively, if sodium is ejected in particle or molecular form then 

sputtering and photodissociation will liberate it in atomic form and add a small random 

velocity component. The model assumes that after dissociation, the fragments gain 

~1km/sec of random velocity (0.1eV) and are therefore dispersed from the original 

orbits30. Additional models examining different post-dissociation velocities confirmed 

doi: 10.1038/nature08070 SUPPLEMENTARY INFORMATION

www.nature.com/nature 2



that our detection limits are valid for velocities up to 3 km/sec, spanning the plausible 

range for plausible molecules31.  

Radiation pressure (caused by the same resonant scattering that makes sodium so 

visible) will significantly alter sodium atom orbits. On Saturn’s dusk side, scattering occurs 

as the atom recedes from the sun, hence will accelerate it and raise the orbit on the opposite 

side of Saturn. There, each scattering slows the atom and lowers the orbit on the dusk side. 

Together these effects make orbits more elliptical and shift them towards Saturn’s dawn side. 

This accelerates sodium loss in two ways: First, as apoapse moves outwards, sodium 

experiences a harsher ionizing electron environment, reducing the lifetime to 100-200 hrsiv. 

Second, as periapse moves inwards, atoms are eventually adsorbed onto Saturn’s rings at 

2.3Rs, placing an upper limit of  ~20 orbits (~700 hours) on sodium atoms. 
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