Supporting Information

Wu et al. 10.1073/pnas. 0900102106

SI Materials and Methods

Lottery Tasks in Experiment 2. The purpose of the decision-making session in experiment 2 was to reliably estimate both the subjective transformation of outcome [the value function, $v(O)$] and probability [the probability weighting function, $w(p)$]. To obtain reliable estimate of the parameters for $v(O)$ and $w(p)$, we design lottery pairs that span the range of outcomes from $\$ 30$ to $\$ 150$ and probability from 0.2 to 0.96 .
There were 120 lottery pairs in our design, which are categorized into 4 types. We now describe them in detail.

Type 1: The Common Ratio Task. The lottery pairs were constructed based on the base pair ($p, \$ x$), a lottery with probability p of winning $\$ x$ or nothing, and $(q, \$ y)$, a lottery with probability q of winning \$y or nothing. Let $(y / x)=(p / q)=1.2 ; p=0.24 k ; k=$ $1,2,3,4$; and x be drawn from a uniform distribution within $[\$ 30, \$ 50]$ to construct the common ratio task. In Fig. S1, we show an example of the common ratio design. On rung 1, the subjects are asked to choose between 2 lotteries: $(0.24, \$ 30)$ and $(0.2, \$ 36)$. The probabilities are then multiplied by $k(k=2,3,4)$ in both lotteries to construct the subsequent rungs.

The common ratio task is often referred to as the multiplicative version of the Allais task, whereas the common consequence task of experiment 1 is the additive Allais. Each pair was presented 16 times, making the total number of presented pairs of this type of pairs 64 .
From pilot results and Monte Carlo simulations, we found that data from type 1 lotteries alone do not provide sufficient constraint to estimate $v(O)$ and $w(p)$ across a wide range of parameter values. For this reason, we added 3 other types of trials.

Type 2. Create $(p, \$ x)$ and $(q, \$ y)$ such that $(p / q)=1.2, p=0.24 k$, $k=1,2,3,4$ and $(y / x)=m, m=1.1,1.5,2,2.5,3$. For example, if $k=$ $1, m=3$, and $x=50$, then the lottery pair is $(0.24, \$ 50)$ and $(0.2, \$ 150)$. In other words, we manipulated the ratio (y / x) in addition to the common ratio task. Type 2 had a total of 32 pairs.

Type 3. Create $(p, \$ x)$ and $(q, \$ y)$ such that $(p / q)=1.5, q=0.2 k$, $k=1,2,3$ and $(y / x)=1.2$. For example, if $k=3$ and $x=40$, then the lottery pair is $(0.9, \$ 40)$ and $(0.6, \$ 48)$. Type 3 had 12 trials.

Type 4. Create $(p, \$ x)$ and $(q, \$ y)$ such that $(y / x)=1.2$ and $q=0.2$, $(p / q)=k, k=2,3,4$. For example, if $k=4$ and $x=40$, then the lottery pair is $(0.8, \$ 40)$ and $(0.2, \$ 48)$. Type 4 had 12 trials.

Parameter estimation. In every trial in both the motor and classical tasks, the subject had to chose 1 of 2 lotteries, $A(p, \$ x)$ and B $(q, \$ y)$. In cumulative prospect theory, the subjective transformation of outcome is modeled by a value function of the form

$$
v(O)=\left\{\begin{array}{ll}
O^{\alpha}, & O \geq 0 \tag{S1}\\
-(-O)^{\beta}, & O<0
\end{array}\right\} .
$$

The distortion of probability is modeled by the probability weighting function $w(p)$. Since its proposal, there have been several functional forms proposed. In this paper, we chose the form proposed by Prelec (1)

$$
\begin{equation*}
w(p)=\exp \left[-(-\ln p)^{\gamma}\right], \quad 0<p<1 . \tag{S2}
\end{equation*}
$$

The cumulative prospect value of a lottery is the sum of the value of each outcome weighted by its decision weight. In the context of a 1 non-zero outcome lottery, the decision weight of the non-zero outcome is the probability weight associated with it. In the model, we assume that cumulative prospect value is a random variable with Gaussian noise ε with mean 0 and standard deviation proportional to the $v(O) w(p)$. To write out explicitly the cumulative prospect of both lotteries,

$$
\begin{align*}
& \psi(A)=v(x) w(p)+\varepsilon_{A} \\
& \psi(B)=v(y) w(q)+\varepsilon_{B}, \tag{S3}
\end{align*}
$$

where $\varepsilon_{A}=N(0, k v(x) w(p))$ and $\varepsilon_{B}=N(0, k v(y) w(q))$. Given that $v(O)$ and $w(p)$ each have 1 parameter, and 1 parameter k determines the noise standard deviation, we wish to estimate 3 parameters (α, γ, k) from each subject's choice performance in the classical task and 3 parameters (α, γ, k) from the subject's choice performance in the motor task.

We assumed that the subject's decision rule in either task was determined by the difference between the 2 lotteries $\Delta=\psi(A)$ $\psi(B)$. Specifically, we assumed that, if $\Delta>0$, the subject chooses A, otherwise $B . \Delta$ is itself a Gaussian random variable with variance $\sigma_{\Delta}^{2}=\sigma_{A}^{2}+\sigma_{B}^{2}$, the sum of variances of the 2 independent variables $\psi(A)$ and $\psi(B)$. The probability of choosing A can then be computed as

$$
\begin{equation*}
p_{A}=1-\int^{0} \frac{1}{\sqrt{2 \pi \sigma_{\Delta}}} e^{-(\delta-\Delta)^{2} / 2 \sigma_{\Delta}} d \delta \tag{S4}
\end{equation*}
$$

Given that on the i th trial, the subjects have a choice response r_{i}, let choosing A be denoted by $r_{i}=1$ and choosing B by $r_{i}=0$. Then we could write down the likelihood function

$$
\begin{equation*}
L(\alpha, \gamma, k)=\prod_{i=1}^{n} p_{A}^{r_{i}}\left(1-p_{A}\right)^{1-r_{i}} . \tag{S5}
\end{equation*}
$$

The maximum likelihood estimate of (α, γ, k) is the choice of $(\alpha$, γ, k) that maximizes the above likelihood function. We verified by Monte Carlo simulation that the selection of trials of 4 types described above allowed stable parameter estimates.

Fig. S1. An example of the common ratio design. In this example, the bottom rung is constructed of the lottery pair $(0.24, \$ 30)$ and $(0.2, \$ 36)$. The upper rungs in the ladder are constructed by multiplying the probability of the non-zero outcome by a constant to both lotteries. For example, the second rung is constructed by multiplying the probabilities by 2 to arrive at $(0.48, \$ 30)$ and $(0.4, \$ 36)$.

