
   

SUPPLEMENTARY INFORMATION SECTION 

A.1   Select Experimental Detail 

A.1.1   Determination of Acid-Content of Functionalized Polymer 

 The extent of MPA incorporation was determined upon analysis of 1H NMR spectra 

by integration of backbone and side-group peaks, with the following complication.  For 

PB functionalization with MPA, we expect two peaks between 2.85 and 2.55 ppm  

corresponding to HO2CCH2CH2S- protons and HO2CCH2CH2S-, with one or more 

additional peaks (depending on whether cyclic structures are formed or not) around 2.55 

ppm, corresponding to HO2CCH2CH2SCH2-  protons.  Experimental results consistently 

showed two large, partially overlapping peaks between 2.825 and 2.575 ppm, and a much 

smaller, broad overlapping shoulder below 2.575 ppm, extending in some cases down to 

2.4 ppm (for instance, for 510kPB4.7A polymer that shoulder peak was about 1/3 of the 

size of the first two).  These observations indicate that the signal for HO2CCH2CH2SCH2- 

is broad, with significant overlap with the middle peak, and that for simplicity the 2.85-

2.4 ppm range should be integrated as a whole, accounting for 6 protons for each 

functionalized monomer.  The complication is that the integration of the small shoulder 

region between 2.55 and 2.4 ppm was found to be completely unreliable (due both to its 

small size at the very low extents of functionalization investigated, and apparently to the 

presence of the very large neighboring PB backbone peak):  in many cases, the software-

computed integral was a physically nonsensical negative number.  As a result, extents of 

MPA functionalization were approximated instead in all cases by integrating between 

2.825 and 2.575 ppm and estimating that that integral accounted for 5 protons for each 

functionalized monomer. 

A.1.2   Extensional Viscosity Results 

 Figure A.1 below reports apparent extensional viscosity for the solutions whose 

capillary breakup behavior is shown in Figure 13. 
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Figure A.1   Effect of pairwise, self-associations on apparent extentional viscosity during 

capillary breakup rheology (refer to Figure 13 for experimental details).    

 

A.2   Numerical Approach for Chain Statistics of Self-Associating Chains at 

Infinite Dilution in θ-Solvent 

A.2.1   Model Description  

 Our objective is to determine the size of a linear chain of N monomers, f of which are 

modified to act as stickers capable of forming pair-wise only, physical associations.  The 

stickers are assumed to be equidistantly spaced l monomers apart along the chain, and the 

energy of association is εkT.  We will assume Gaussian chain statistics for any segment 

of the chain whose configuration is unrestrained by reversible crosslinks.   

 To calculate the size of the chain in the very dilute regime (all associations are 

intramolecular), we define a semi-Markov process X(t), t > 0 such that each state i is fully 

specified by identifying which pairs of stickers form bonds.  (Note here that a given state 

has an infinite number of chain configurations.)  The chain goes from one state to the 

next by either breaking or forming a bond, as illustrated in Figure A.2. 
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Stickers are indexed from one end of the chain to the other:

3 5 61 4 2 7
(a) 

 

Assume the chain is in the following state at time t:

Say the next state occurs by breaking a bond, e.g. (2,7):

And the following state occurs by forming a bond, e.g. (6,7):

Free: 
2 
6 
7 

Bonded: 
(1,3) 
(4,5) 
(6,7) 
 
Free: 
2

Bonded:
(1,3) 
(4,5) 

Bonded:
(1,3) 
(4,5) 
(2,7) 
 
Free: 
6

l monomers 

(b) 

(c) 

(d) 

 

Figure A.2   Schematic illustration of the transition from one state of the chain to another 

by bond breaking and bond forming, for a chain with f = 7 stickers 

  

 This semi-Markov process is completely specified if we know both (a) the 

distribution of times Ti the chain spends in any given state i and (b) the probabilities Pij 

that once it leaves state i it next enters state j.  Thus, if we can determine the distributions 
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of Ti, compute the transition probabilities Pij, and calculate relevant properties of the 

chain in any state i, then we can estimate the long-run average of chain properties such as 

size by simply running the Markov process for a sufficiently long time.  Fortunately, 

although the total number of states is extremely large for f as small as 20, the number of 

states that are accessible in one step from any given state is much more manageable, that 

is, Pij = 0 for most values of j for a given state i.   

 Assume the polymer chain enters state i at time t.  Clearly, the state it enters next is 

determined by which bond is broken or formed first; and the time spent in the present 

state is the time it took for that bond-breaking or bond-forming event to take place.  

Because the times for bond breaking and bond forming are random variables, in order to 

solve the problem we need to determine the distribution of the breaking time and the 

forming time of all the possible bonds, for any state i. 

 Consider the breaking of a single bond.  A bond that has been “alive” for any given 

time s is just as strong as a bond which has just formed; in other words the expected time 

to break a bond given that is has been “alive” for time s is independent of s.  Accordingly, 

bond breaking is a memoryless (hence exponential) process, and the time to break a bond 

is given by the exponential density function: 

 
bT

1f ( ) = exp -
b b

tt
τ τ

⎛ ⎞
⎜
⎝ ⎠

⎟   t ≥ 0  

where τb is the expected time to break a bond, and has the same value for all bonds.  

Bond forming can also be argued to be an exponential process, as discussed below, with 

expected time τf dependent on the number of monomers Lqq’ in the shortest connected 

path  between the two free stickers q and q’.  Observe that the shortest path Lqq’ between 

stickers depends on the pair of stickers q and q’ and on the current state of the chain; for 

example, the shortest distance between stickers 1 and 6 in state (b) of Figure A.1 is L1,6 = 

2l.  

 Let’s now see if we can determine expressions for τb and τf. Rubinstein and Semenov1 

give τb = τ0 exp(ε + εa), where τ0 is the monomer relaxation time and εakT is a potential 

barrier for bond breaking and also the activation energy for bond forming.  I get τf ≅ 
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τ0/pcps
 to a first approximation (as discussed below), where pc = (6/πL3)1/2 is the contact 

probability that the two stickers separated by L monomers be within distance b of each 

other (b is the Kuhn length, assumed to be the maximum distance over which the stickers 

can associate), and ps is the sticking probability that a bond is formed at any given “visit.”  

If ps ≈ (Vb/b3) exp(-εa) where Vb is the bond volume, then we get τf ≈ α τ0 exp(εa) L3/2 

where α = (b3/Vb)(π/6)1/2.  

 Let {pp’}i be the set of all pairs of stickers that are bonded in state i, and {Tb,pp’}i be 

the set of random variables corresponding to their breaking time.  Among the unpaired 

stickers in state i, let {qq’}i be the set of all possible pairings for formation of a new 

bond, and {Tf,qq’}i be the set of random variables corresponding to their expected bond-

forming time.  For a given state i, then, we have independent, exponential random 

variables {Tb,pp’}i and {Tf,qq’}i, with expected values E[Tb,pp’] =τb and E[Tf,qq’] = α τ0 

exp(εa) (Lqq’[i])3/2, where Lqq’[i] is the number of monomer in the shortest connected path  
between the two free stickers p and p’ in state i.  The probability that the next state is 

achieved by breaking a specific bond pp’, or by forming a specific bond qq’ is the 

probability that Tb,pp’ or Tf,qq’ is the shortest of all the breaking and forming times.  For 

independent exponential random variables this probability is (the rate of the given 

exponential variable)/(the sum of all the rates).  Thus, the probability that the next state is 

obtained from forming a bond between any two free stickers q and q’ is: 

  [ ]

[ ]

-1 -3/2

-1 -3/2

e
P =

+ e
qq' i

qq' i

ε

ε

qq'

α L

Q α L⋅∑
 

where Q is the number of bonds in the present state i and the sum is over all the possible 

pairs of unpaired stickers in the present state.  The probability that the next state is 

obtained from breaking a given bond is: 

 
[ ] 

-1 -3/2

1P =
+ e

qq' i

ε

qq'
Q α L⋅∑

. 

Note that these probabilities are independent of the activation energy.  Given that all the 

breaking times and forming times are independent exponential random variables, the time 
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Ti to transition from any state i to the next is also exponentially distributed, with rate 

equal to 1/(sum of all the rates), so with mean: 

 
[ ]

-1 -3/2

'

=
+ e

qq' i

b
i ε

qq

ττ
Q α L⋅∑

. 

 In this case (exponentially distributed transition times), the semi-Markov process is a 

continuous-time Markov chain.  Continuous-time Markov chains are characterized by the 

Markovian property that, given the present state, the future is independent of the past.  

This result is intuitive for the bond-breaking and bond-forming processes which 

determine the time-evolution of our chains:  given the present state, the next state and the 

time to transition into the next state are both independent of what states were visited 

previously or how long the chain has been in the present state already.  As a result of the 

memoryless property of a continuous-time Markov chain, the amount of time Ti spent in 

state i, and the next state visited are independent random variables.  The reader is referred 

to a text by Ross2 for an excellent description of Markov chains, semi-Markov chains, 

and continuous-time Markov chains.   

A.2.2   Distribution Function for the Time to Form a Bond 

 Consider a strand of L monomers with 2 stickers at its ends.  What is the probability 

density function of the random variable Tf, the time for the stickers to form a bond (given 

that they are not bonded at the present time)?   

 Clearly there is an infinite number of configurations for the strand, where a 

configuration is specified by specifying the position vectors r1,  r2,…, rL of all the 

monomers.  However, if we break up space into a 3D lattice with arbitrarily small but 

finite volume elements, then there is now a finite number of strand configurations.  If we 

further define a macroscopic time τ0 over which the polymer configuration does not 

change (and renormalize time in units of τ0), then the configurations the strand takes over 

time constitute an irreducible (all the states communicate), positive recurrent (the 

expected time to return to the present state is finite for all the states) Markov chain.  
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Therefore, there exist stationary probabilities  independent of initial state u 

for all states v. 

n

n
π = lim Pv →∞ uv

 Given a probability density function for the initial polymer configuration, there exists 

a distribution function for Tf, the time it will take for the stickers to bond given that they 

are not bonded at the present time t = 0.  If the probability density of the initial chain 

configuration is the stationary probability density, and given that the sticker ends have not 

bonded after time s, the probability density to find the chain in any given configuration at 

time s is still equal to the stationary probability density.  Therefore, nothing has changed 

after time s, so that the remaining time it will take to form a bond is independent of s.  

Accordingly, bond forming is a memoryless (hence exponential) process, and the time to 

break a bond is given by: 

 
bT

1f ( ) = exp -
b b

tt
τ τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

where τf is the expected value of Tf.  To determine τf for a strand of L monomers with 

stickers at its ends, we need to know the time it takes for the stickers to come within close 

enough distance of each other to associate.  Assume stickers form a bond with sticking 

probability ps if they come within distance b (= Kuhn length) of each other.  Consider 

another semi-Markov process with the following two states only: the strand is in state 1 if 

the stickers are within distance b of each other, and in state 2 otherwise.  Let μ1 and μ2 be 

the mean times spent in states 1 and 2, respectively (we do not need to know the 

distribution of transition times).  For ε = 0 (corresponding to a non-associating strand of L 

monomers), the long-run fraction of time spent in state 1 is: 

 
1/21

2 1
31 1

2 21 2

6= =
+ πc
μ p

μ μ L
⎛ ⎞
⎜ ⎟⋅⎝ ⎠

 

where pc is the contact probability for the chain ends to be within distance b of each 

other, and the only assumption is that of Gaussian statistics.  But the mean time spent in 

state 1 is μ1 ≈ τ0, from which we get μ2 ≈ τ0 (1-pc)/pc.  Note here that the above 

expression for μ1 is also valid when ε ≠ 0 if stickers fail to stick while the strand is in 
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state 1, and that the above expression for μ2 is likewise also valid when ε ≠ 0.  By 

conditioning on the present state of the chain, the expected time to form a bond is: 

 ( )( )
1 2

2

2

E T = E T 1 P + E T 2 P

= E T 1 + μ + E T 1 1-

= μ (1- ) + E T 1 .

f f f

f c f

c f

cp p

p

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤⎣ ⎦

 

 We find the expected time to bond given that the strand is in state 1, E[Tf |1], by 

conditioning on whether the stickers stick the first time around: 

 ( )1 2E T 1 + + + E T 1 (1- )f s 0 f sp τ μ μ p⎡ ⎤ ⎡ ⎤≈⎣ ⎦ ⎣ ⎦  

where ps ≈ (Vb/b3) exp(-εa) is the probability that the stickers form a bond while the chain 

segment is in state 1.  So after rearranging: 

 1 2
2

s

+E T 1 -f
μ μ μ

p
⎡ ⎤ ≈⎣ ⎦ . 

Substituting, we get:  0 0τ (1- )(1- ) τE T c c s
f

c s c s

p p p
p p p

⎡ ⎤ ≈ ≈⎣ ⎦ p
. 

A.2.3   Simplifying Assumptions of the Model 

 We made two simplifying assumptions in our construction of the model.  First, we 

have assumed Gaussian statistics for any strand whose configuration is unrestrained by 

reversible crosslinks. This assumption is reasonable in θ-solvents only to the extent that 

congestion is not an issue.  In reality there is a limit to the number of monomers that can 

be collapsed into a given volume, and for a high-enough number density of paired 

stickers and long-enough chains, congestion is expected to become important. 

 Second, in our derivation of the time for bond formation we assumed that the initial 

configuration of the strand between the stickers was chosen according to the stationary 

probabilities πu, where a state u corresponds to a specific configuration of the strand.  

Justification for this assumption is derived from the fact that the probability density of the 

strand configuration will reach the stationary probability density, for any arbitrary initial 

probability density, after a sufficiently long time during which the stickers do not pair up.  
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The assumption however presents limitations for a pair of stickers right after their bond is 

broken:  due to spatial proximity, these may reassociate before the strand between them 

reaches its stationary probability density.  In other words, the memoryless Markovian 

property may be violated to that extent in that the future is not completely independent of 

the past.  
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