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In this paper we propose a network architecture that combines a rule- 
based approach with that of the neural network paradigm. Our pri- 
mary motivation for this is to ensure that‘the knowledge embodied in 
the network is explicit ly e‘ncoded in-the form of understandable rules. 
This enables the network’s decision to be understood, and provides an 
audit trail of how that decision was arrived at. We utilize an informa- 
tion theoretic approach to leafning a model of the domain knowledge 
from examples. This model takes ;he form of a set of probabilistic 
conjunctive rules between discrete input evidence variables and out- 
put class variables. These rules are then mapped onto the weights and 
nodes of a feedforward neural network resulting in a directly specified 
architecture. The network acts as parallel Bayesian classifier, but more 
importantly, can also output posterior probability estimates of the class 
variables. Empirical tests on a number of data sets show that the rule- 
based classifier performs comparably with standard neural network 
classifiers, while possessing unique advantages in terms of knowledge 
representation and probability estimation. 

1 Introduction 

The rule-based knowledge representation paradigm is well established 
as a powerful model for higher level cognitive processes (Newell and 
Simon 1972; Chomsky 1957), whereas the connectionist paradigm seems 
very well suited to modeling lower level perceptual processes. In partic- 
ular, rule-based expert systems have proven to be a successful software 
methodology for automating complex decision-making tasks. Primary 
advantages of this approach include the Facility for explicit kiiozuledge re;’- 
reseiztatiori in the form of rules and objects, and the ability of a rule-based 
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system’s reasoning to be understood by humans. However, current rule- 
based systems are firndmentally restricted in speed of execution, and 
hence in their applicability to real-time systems, because of the serial 
computations performed in present inference processing schemes. In ad- 
dition, current rule-based systems are brittle in their ability to deal with 
the uncertainties inherent in real-world information and lack any abil- 
ity to generalize to novel problems. Neural network paradigms, on the 
other hand, are typically quite adept at modeling problems that occur 
in pattern recognition, visual perception, and control applications. This 
ability is due (at least in part) to their inherent robustness in the pres- 
ence of noise, the lack of which plagues the implementation of rule-based 
systems in practice. In addition, neural networks are inherently parallel, 
and special-purpose parallel neural network hardware implementations 
promise quantum leaps in processing speeds, suitable for real-time sys- 
tems. However, neural networks, as presently implemented, are poor 
at explaining their reasoning in human understandable terms because 
they embed domain knowledge in the implicit form of weights and hid- 
den nodes. The network is thus very much of a “black-box” solution, 
whose structure and reasoning are relatively inaccessible to higher level 
reasoning or control processes, such as the human user. In many areas of 
expertise such as medical, legal, or life-critical domains, it is an absolute 
requirement that an autonomous reasoning agent be able to explain its 
decisions to a higher level authority such as a judge. We are therefore 
led to ask whether it is possible to amalgamate the rule-based and con- 
nectionist approaches into a hybrid scheme, combining the better aspects 
of both, while eliminating the drawbacks peculiar to each in the process. 
A natural common ground on which to combine these approaches is that 
of probability. We show that by referencing both rule-based systems and 
neural networks to the common normative frame of probability, a novel 
and practical architecture emerges. 

In this paper we propose a hybrid rule-based connectionist approach 
that overcomes many of the problems outlined above. Our ultimate goal 
is the automatic learning of rule-based expert systems that can perform 
inference in parallel when implemented on neural network architectures. 
For the purposes of this paper, however, we concentrate on the prob- 
lem of classification and posterior probability estimation, implemented 
on rule-based feedforward neural nets. We show how probabilistic rules 
can be used as a natural method for describing the high-order correlation 
information in discrete (or categorical) data, and how the hidden units 
of a feedforward net can easily implement such rules. Furthermore, we 
show how information theory and minimum description length theory 
can be used to learn only the most important of these rules, thus di- 
rectly specifying the network architecture in terms of hidden units and 
connectivity. Finally, we show that output probabilities may be esti- 
mated using a parallel Bayesian approach, which is a natural extension 
of a first-order Bayes classifier. The architecture proposed in this paper is 
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therefore novel for a number of reasons. First, it avoids iterative network 
training processes (such as backpropagation) by dimctl!y specifying net- 
work weights in terms of probability estimates derived from the example 
data. Second, the hidden nodes of the network are automatically learned 
from the data without having to specify the number of such nodes. This 
approach leads to the advantage that network parameters are directly in- 
terpretable in terms of rules with associated weights of evidence between 
the nodes. Third, given that it is usually necessary to assume some form 
of conditional independence among the input variables in order to render 
the probability estimation problem tractable, the proposed classification 
scheme is novel in that it uses d f ? f a - d e p " ~ [ ~ e ~ ~ t  conditional independence 
assumptions only to the extent jiisfifieil by the data. 

Networks that learn from example form the basis of many current con- 
nectionist paradigms. The success of the backpropagation (Rumelhart ct 
a/ .  1986) and related algorithms is that, given a specific architecture in 
terms of input, hidden, and output nodes, the connection weights be- 
tween these nodes needed to model the high-order correlations in the 
example data can be easily learned. Learning the network nrclrifccfure 
itself, and generating true output probability estimates is a considerably 
more difficult task for current neural network paradigms. It is inter- 
esting to note that Uttley (1959), conceived of a network in which al l  
higher order input-output correlations were stored. This network stored 
a number of probabilities exponential in the number of input variables, 
but contained the information necessary for calculating the conditional 
probability of any set of output variables, given any other set of input 
variables. In principle, this provided a method of calculating output 
probabilities at the expense of exponentially many of what we would 
now call hidden units, many of which were redundant in the sense of 
not contributing to the output information. Networks whose architec- 
tures include high-order connections chosen rnridoiiily were of course 
among the very early neural network models (Rosenblatt 1962; Alek- 
sander 1971). At the other extreme, in a previous paper we showed 
how simple first-order correlations could be used to successfully pre- 
dict output probabilities (Goodman r t  a / .  19891, provided the data were 
well specified by such low-order information. Between these extremes 
lie approaches that make subjective prior judgments about conditional 
independence to decide 7diicI1 higher order conjunctive probabilities to 
store, such as the Bayesian networks described by Pearl (1988), Lansner 
and Ekeberg (19891, and Kononenko (1989). 

This paper develops in the following way. First, we outline our rule- 
based network architecture. Second, we describe our methodology for 
learning a set of probabilistic production rules from example data, using 
an information theoretic appruach. Third, we show how these rules are 
then mapped onto the nodes and links of a feedforward neural network 
in such a manner that the network computes posterior class probabilities 
using a Bayesian formalism. We conclude with a comparative evaluation 
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of the approach using five data sets, including medical diagnosis and 
protein structure prediction. 

2 A Rule-Based Classifier Architecture 

We consider the problem of building a classifier that relates a set of K dis- 
crete feature variables (or attributes) comprising the set Y = { YI. . . . . YK} 
to a discrete class variable X. Each attribute variable takes values in the 
alphabet {y!. . . . .y;”’}. 1 5 1 5 K, where ml is the cardinality of the lth 
attribute alphabet. The class variable X takes discrete values from the set 
{x, . . . . . x,,,}, where rn is the cardinality of the class. We also assume that 
we are given an initial labeled training set of N examples where each 
example is of the form {Y, = G ,  . . . . YK = yi, X = x,}. The supervised 
learning problem we set ourselves is to learn a classifier that when pre- 
sented with future unseen attribute vectors (which may be either partial 
or complete) will estimate the posterior probability of each class. We may 
then wish to output either these probabilities, or the class variable with 
the highest probability as the decision made by the classifier. Note that 
we are particularly interested in real data sets in which the classification 
is often nondeterministic or noisy, that is, there exists class overlap and 
hence a fundamental ambiguity in the mapping from Y to X. In this 
case there is no perfect classifier for the problem and the performance of 
the classifier as measured by its error rate will be nonzero, and bounded 
below by the optimal Bayes error rate p: .  

The rule-based architecture we propose takes the form of a three-layer 
feedforward network as shown in Figure 1. 

Input Atbiibutes Conjmaive Rulcs outplc class 

Figure 1: Architecture of the rule-based classifier. 



Rule-Based Neural Networks 785 

The input nodes correspond to each possible attribute-value pair in 
the input attribute space. The hidden layer consists of a set of lRJ con- 
junction detector nodes (or AND gates), one for each rule in the set of 
rules R. These hidden nodes detect the conjunction of one or more input 
attribute-value pairs of the form { Y1 = Y;. . . . . YI = ~ } .  When a conjunc- 
tion is detected the rule fires and the node outputs a 1. When the node is 
not firing it outputs a 0. The output layer consists of one node for each 
output class. The action of a rule firing contributes an activation from 
the hidden rule node into one or more output class nodes. The contri- 
bution into the ith output node from rule r, is given by the link weight 
zu,,, and represents the weight of evidence for the conclusion, given the 
occurrence of the left-hand side conjunction of attribute values. Each 
rule node together with its output link can therefore be considered to be 
implementing an lth-order conjunctive rule of the form 

IF { Y1 = Y;. . . . . YI = yr} THEN X = x, with STRENGTH zu,, 

The rule has a conjunction of input attribute-value pairs on its left-hand 
side (LHS), and a particular class attribute-value pair on its right-hand 
side (RHS). The weights w,, can be positive or negative depending on 
whether the rule supports the truth or falsity of the RHS conclusion. 
Each output node accumulates the inputs feeding into i t  from the rules 
that have fired and outputs a quantity that is a function of the particular 
activation function and threshold used in the node. Our design problem 
is then to implement a set of rules and associated weights, together with 
a suitable set of output activation functions and thresholds, such that 
the output of each class node is an estimate of the corresponding class 
probability. 

3 Learning Rules Using Information Theory 

We now consider how to learn the set of rules R from the given training 
data such that the classifier will operate in the desired manner. Clearly 
we do not want to implement nll possible conjunctive rules, as the size 
of the hidden layer will be exponential in the size of the input attributes. 
Rather we require a sirfflcrcntly good set of rules that allows the network 
to both load the training data and to generalize to new data while having 
a performance that approaches the optimum Bayes risk. Alternatively, 
given a fixed resource constraint in terms of lRI allowed hidden units, 
we should implement the bcsf (72 rules, according to some "goodness" 
criterion. 

Let us rephrase the previously defined rule in terms of a prohnhilistic 
production rule of the form: 

If si  then x, with probability p 
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where p is the conditional probability p ( x ,  1 s,), and sf represents the 
particular conjunction of attribute-value pairs found in the LHS of the 
rule. 

We wish to have a measure of the utility or goodness of such a rule. 
In a Hebbian sense such a rule might be considered good if the occur- 
rence of the LHS conjunction of variables is strongly correlated with the 
RHS. Alternatively, such a rule might be considered good if the transition 
probability p is near unity. For example, a rule with p = 1 indicates a 
deterministic rule in which the occurrence of s1 implies X = x, with cer- 
tainty. However, we will take an information theoretic approach to this 
problem, and consider that the goodness of such a rule can be measured 
by the average bits of information that the occurrence of the LHS sf gives 
about the RHS X = x,. We have introduced such a measure, called the 
]-measure (Goodman and Smyth 1989), which can be defined as 

This measure possesses a variety of desirable properties as a rule in- 
formation measure, not the least of which is the fact that it is unique as a 
nonnegative measure of the information that si gives about X (Blachman 
1968). As can be seen the ]-measure is the product of two terms. The 
first is p(s,), the probability that the LHS will occur. This term can be 
viewed as a preference for generality or simplicity in our rules; that is, 
the left-hand side must occur relatively often for a rule to be deemed 
useful. The other term is the cross-entropy of X and X given s,, and as 
such is well-founded measure of the goodness of fit between our a pos- 
teriori belief about X and our a priori belief (Shore and Johnson 1980). 
Hence, maximizing the product of the two terms, ](X; s,), is equivalent to 
simultaneously maximizing both the simplicity of the hypothesis s i  and 
the goodness of fit between sf and a perfect predictor of X. The simplicity 
of s, directly corresponds to the number of attribute-value conjunctions 
in the rule LHS, that is, the rule order. Low-order rules have less LHS 
conditions, and thus a higher p ( s , ) .  There is a natural trade-off involved 
here because, typically, one can easily find high-order rules (less prob- 
able s,s) that are accurate predictors, but one has a preference for more 
general low-order rules (more probable s,s). The ]-measure thus provides 
a unique method of not only ranking the goodness of a set of rules, but 
also being able to tell if a more specialized rule (one with more LHS con- 
ditions) is better or worse than a more general rule. This basic trade-off 
between accuracy and generality (or goodness of fit and simplicity) is a 
fundamental principle underlying various general theories of inductive 
inference (Angluin and Smith 1984; Rissanen 3989). 

We use the ]-measure in a search algorithm (Smyth and Goodman 
1992) to search the space of all possible rules relating the LHS attributes 
Y to the RHS class X and produce a ranked candidate set S of the IS1 
most informative rules that classify X. The search proceeds in a depth 
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first manner starting with a particular LHS conjunction and progressively 
specializes the rule until bounds indicate that a higher measure cannot 
be achieved by specializing turther. The search is potentially exponential 
but in practice is highly constrained by small sample estimators and in- 
formation theoretic bounds that  heavily penalize searching higher order 
rules (empirical results demonstrating this effect are given in Smyth and 
Goodman 1992). In addition, higher order rules that have lower infor- 
mation content than a corrcywnciing lower order (more general) rule can 
be omitted from the final rule list. From this large candidate set of rules 
S we next produce the final set of rules R, which will be implemented 
in the classifier. 

4 Rule Pruning Using a Minimum Description Length Model ~ 

We have already described how we find an initially large candidate set 
of rules S that models tlie data. I t  is well known, both empirically and 
from theory, that there is a trade-off between the complexity of the model 
and the quality of generalization performance. A model that is too sim- 
ple will not have the representational power to capture the regularities 
of the environment, whereas a model that is too complicated may well 
overfit the training data and generalize poorly. When we speak here 
of generalization we are referring to the system’s mean performance in 
terms of classification accuracy (or a similar function) evaluated over 
some infinitely large independent test data set. The notion of Occam’s 
razor has been used to promote model parsimony: choose the simplest 
model that perfectly explains the data. Unfortunately this presupposes 
that there exists a model under consideration that can explain the data 
perfectly in this manner. In practical problems this is unlikely to be the 
case, siiice there is often a n  ambiguity in tlie mapping from attribute 
space to the class labels. In this stochastic setting a more general version 
of Occam’s razor has been introduced (Rissanen 1984, 1987) under the 
title of minimum description length (MDL). The MDL principle is sim- 
ple to state: choose the model that results in the least description length, 
where the description length is calculated by first sending a message de- 
scribing the model [the complexity term L ( M ) ] ,  followed by a message 
encoding the data given the model [the goodness-of-fit term L (  D I M ) ] .  
Thus we minimize: 

UMI  + L ( D  1 Mi 

MDL can be viewed as entirely equivalent to a Bayes maximum a pos- 
teriori (MAP) principle (where one chooses the model that maximizes 
the joint probability of the data and the model) by virtue of the fact that 
the description lengths are directly related to prior probabilities. We will 
refer primarily to tlie description length framework as it is somewhat 
more intuitive. 
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In the context of applying MDL to the problem at hand we seek a 
pruned rule set R 2 S, which possesses near-minimal description length 
among all possible subsets-finding the optimal solution is clearly in- 
tractable in the general case. For a more general discussion of search 
in MDL contexts see Smyth (1991). The algorithm we propose is a sim- 
ple greedy procedure that, starting from an initially empty set of rules, 
continues to add the next-best rule to the current set, and terminates at 
a local minimum of the description length function. In more detail the 
algorithm is described as follows: 

4.1 MDL Rule Pruning Algorithm. 

1. Let R = { }. 

2. Find the rule r E S such that when R U r is evaluated on the train- 
ing data as a classifier the sum of the goodness of fit and the com- 
plexity of r is minimized. 

3. Remove rule r from S.  

4. If the description length of R U r is greater than the description 

5. Else let R = R U Y and return to step 2 .  

At this point in the discussion we can treat the classifier itself as a 
”black box” that simply takes a rule set R, a set of unlabeled test data, 
and produces probability estimates of the class labels. We will describe 
this ”black box” in detail in the next section. Let us first look at the other 
part of the algorithm, which we have not defined in detail, namely the 
calculation of description length. 

Suppose we have N training samples. For the ith sample, 1 5 i _< 
N, let xt,,(i) be an index to the true class, i.e., the training label. Let 
p[xtme(i)] be the classifier’s estimate of this class given the ith attribute 
vector. Hence, the length in bits to describe the data given the model 
(the classifier) is 

length of R then stop. 

The complexity term, the length in bits to describe the classifier itself, 
may be arrived at by a number of arguments. In principle we need to 
send a message describing for each rule its left-hand side component, its 
right-hand side component, and an estimate of the transition probability 
of the rule. One of the key factors in proper application of MDL is the 
precision with which these probabilities are stated. It is a well known 
general result that very often the optimal precision for model parameters 
is proportional to fl, or about (1/2) log N bits per parameter. In practice 
this term dominates as N becomes large over the specification of the 
rule components. Since these specification terms also depend on the 
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particular coding scheme (or the prior bias in Bayesian terminology), we 
choose to ignore these terms in the optimization or search and propose 
that the complexity be simply proportional to the (3/2) log N precision 
terms. This penalty scheme has been widely used in practice by other 
authors (Rissanen and Wax 1988; Tenorio and Lee 1990, et al.). Hence, 
for rule set R the complexity is assessed as 

As we shall discuss later in the section on empirical results, this sim- 
ple pruning algorithm is very effective at discovering parsimonious rule 
sets that account for the data. Heuristically, for multivalued class prob- 
lems, we can understand the behavior of the algorithm as initially trying 
to account for each class by a single accurate rule for each, and then inte- 
grating rules that cover regions of the attribute space with high accuracy. 
In particular, as we shall discuss in the next section, by evaluating the 
performance of the classifier on each candidate rule, we can match the 
rule set to the nature of the classifier (conditional independence in this 
case). 

If IRI is the number of rules in the final rule set then it is straight- 
forward to show that the complexity of the pruning algorithm approxi- 
mately scales as NISIIRI’. Typically IR( << IS[, the number of rules in 
the initial rule set. It is difficult to bound 1721 accurately (since it depends 
on the complexity of the particular classification problem), however, em- 
pirical results suggest that it often grows sublinearly with N, perhaps as 
slowly as logN. 

5 Derivation of the Classification Equations 

In this section we describe how the network uses the learned rule set 
to estimate the class probabilities, given a particular set of evidential 
attribute-values. As before we have m classes x l .  . . . . x,,, and a rule set R. 
As discussed earlier each rule r, E R specifies a particular Ith-order left- 
hand side attribute conjunction s,, a class x,, and the transition probability 
p ( x ,  I s,), where we recall that s, denotes a particular conjunction of input 
attribute-value terms. 

For a particular input vector {yl.. . . . y ~ } ,  a certain subset of rules 
F C R is said to ”fire,” i.e., F is the set of rules whose left-hand sides 
logically evaluate to true, or, in neural terms, the set of hidden nodes 
that are activated. The problem is simple: given only knowledge of 
p ( x ,  [ s I ) ,  1 5 j 5 IF\, how can we estimate p(x, 1 sl. . . . . s l r l ) ?  In principle 
there are strong arguments for using a maximum entropy solution, i.e., 
viewing the p ( x ,  I s,) and the particular input vector {y,. . . . . y K }  as a set 
of constraints and maximizing the entropy of the joint distribution sub- 
ject to these constraints (Cheeseman 1983; Miller and Goodman 1990). 
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However, the direct solution of this nonlinear optimization problem is 
unattractive from an implementation viewpoint, being both computation- 
ally intensive and unnatural to integrate into a system based on explicit 
knowledge representation. 

A better approach in this context is to make a particular simplifying 
assumption, resulting in a maximum entropy solution that can be di- 
rectly expressed in closed form (in terms of the component rules). This 
key assumption is that the left-hand side conjunctions are conditionally 
independerzt given the class, i.e., for any pair of rules rl and rk E R, which 
refer to the same class x,, we have 

p(s,.sl,  1 xi) = p ( s ,  I xi)p(sk I x i )  (5.1) 

As described in the previous section, the rule set R is formed from a large 
candidate set of rules in a manner such that rules that obey this condi- 
tional independence assumption are included and those which violate 
the assumption are not. Hence, we find a classifier that uses conditional 
independence only insofar as it can be justified by the training data-this 
is considerably more robust than making a priori assumptions about in- 
dependence without any knowledge of the data. Assuming conditional 
independence of attributes given the class is well motivated, as  discussed 
by Pearl (1988). 

By Bayes' rule we have that 

[by the conditional independence 
assumption in (5.1)] 

(by Bayes' rule) 

Let us define the weights w,, as 

a bias term for each class as 

t, = logp(x1) 

and an (as yet) undetermined constant 
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Hence, we get that 

(5.2) 

Equation 5.2 allows us to estimate the log posterior probability for 
each output class. From this, the actual probability can be computed, 
or a classification decision can be made by simply choosing the largest 
estimate as the output class. Equation 5.2 admits a direct and intuitive 
interpretation of the operation of the classifier. First, we can ignore the 
unknown constant C because i t  can be eliminated by the constraint that 
the sum of the posterior estimates must equal 1, as shown in the next 
section. Thus, in the absence of any rules firing (IF1 = 0) the estimate for 
each class is given by the bias value t,, namely the log of the prior prob- 
ability of the class x,. Given a set of rules that fires, each rule contributes 
a “weight of evidence” into its corresponding output class. This weight 
of evidence zoII  has a direct interpretation as the evidential support for 
the class provided by the rule-a positive weight implies that the class 
is true, while a negative weight implies it is false. The w,, thus provide 
the user with a direct explanation of how the classification decision was 
arrived at. Each class estimate is then computed by accumulating the 
“weights of evidence” incident on each class from the rules that fire, 
which can be done in a parallel manner. 

We can relate our weights of evidence to those proposed by Good 
(1950) and Minsky and Selfridge (19611, namely, our w,, are what Good 
termed “relative weights of evidence” for the case of multivalued classes. 
This weights of evidence classifier (which is relatively well known and 
has appeared in various guises in recent decades) is an intuitively elegant 
implementation of a linear reasoning scheme, as pros and cons for a 
particular hypothesis (or class) are tabulated in an additive manner. 

6 Neural Architecture ~~ 

The classification procedure given by equation 5.2 can now be mapped 
onto the three-layer feed forward network architecture shown in Figure 2. 
The input layer contains one node for each input attribute value. The 
hidden layer contains one node for each rule. These nodes are effectively 
AND gates that output ‘1 1 if the left-hand side of the rule is satisfied, 
and a 0 otherwise. The third layer contains a node for each value of the 
class attribute. Each second-layer node representing rule i is connected 
to a third-layer node j via the multiplicative weight of evidence 7 u f J .  Also 
feeding into and summed by each third-layer node is the bias value t,. 
The sum of activations into this node given by 
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Figure 2: Neural network architecture. 

is then exponentiated to produce the node output: 

0’, = e‘l = epc . p(x l  1 sl . .  . . , slF1) 
The output of the exponentiators is then fed into a normalization layer 
that constrains each output to satisfy: 

0’1 0, = ___ 

This effectively removes the constant C from each input 0’, = cC . 
p(x ,  I sl, . . . ~ slFi) producing the output probability estimate 0, = p ( x ,  I 
sl. . . . ~ s l ~ j )  as desired. If required, a winner-take-all stage can be added 
to decide on the the most likely class. 

It is interesting to note that for the special case of a binary class vari- 
able, rn = 2, the resulting circuit may be considerably simplified to that 
shown in Figure 3. In this case the output is a single node that accumu- 
lates the weights of evidence for one class value and against the other. 
The rule weights incident on the output are then 

cp=j O’k 

and the bias is the log-odds of X, 

The exponentiation and normalization steps are combined by noting that 
for this binary case 

0 ’ 1  - 1 
0 1  = - 

0 1 ,  + 0’2 1 + e-(ui-uz) 
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Input Anributes Conjunctive Rules 

Figure 3:  Binary class architecture. 

resulting in the output node having the well-known sigmoid activation 
function. If a classification decision is required, the sigmoid is simply re- 
placed with a hard-limiting node which switches at zero input activation 
to output 1 for class s1 = true and 0 for class s1 = false. 

Without getting into details, it is important to note that the above 
neural architecture is well suited to VLSI implementation. I n  particular, 
the weights for the first layer are binary, and the hidden units are sim- 
ply AND gates. Analog weight storage is required only for the second 
layer weights, and there are typically many fewer of these than there 
are first layer weights. Also, exponentiation can easily be performed in 
VLSI by using MOS transistors in their subthreshold region (Chiueli and 
Goodman 1990), and the final normalization stages can be performed by 
variants of the winner-take-all circuit (Lazzaro et n l .  1990). 

7 Empirical Results -~ ~~ 

We now compare the pcrtormance of the proposed classifier with that 
of two other classifiers, namely a backpropagation-trained neural net- 
work and a first-order Bayes model. It is important to point out tliat the 
primary goal of these experiments was to see if our rule-based classifier 
yielded coinparnblc performance (in terms of classification accuracy) when 
compared to standard alternative approaches, rather than demonstrably 
siqwiov performance. It  is well known tliat most well-founded classifier 
algorithms will come reasonably close to the optimal Bayes classifica- 
tion rate on most reasonable problems (Weiss and Kapouleas 1989; Lee 
and Lippmann 1990). Hence the goal of the empirical evaluation is to 
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test whether the rule-based classifier can achieve similar near-optimal 
performance over a number of different problems. 

From this point onward we will refer to the first-order Bayes clas- 
sifier model as the ”first-order classifier,” and to the backpropagation 
trained feedforward neural network as the ”neural network.” A first- 
order classifier is a special case of our rule-based network, where the 
network architecture consists of no hidden units, i.e., the model consists 
of all possible first-order rules with the weights defined exactly as for 
the rule-based network as described earlier. This model is also known 
as a “naive Bayes” model (Kononenko 1989) and amounts to assuming 
that the joint distribution of the class and the attributes can be factored 
into first-order terms. We chose this model for comparison purposes 
both because of its simplicity and the fact that it often provides better 
classification performance than one has any right to expect. 

The particular neural network design algorithm that we used was the 
conjugate-gradient scheme of Barnard and Cole (1989). Each network has 
three layers, the first layer containing a single node for each attribute, and 
the third layer containing a node for each class. The size of the hidden 
unit layer was typically chosen to be roughly twice the number of input 
nodes. One of the current problems with neural network techniques is 
the arbitrary choices that must be made in terms of architecture selection. 
If one chooses too few hidden units, the network may have too limited 
a hypothesis space to learn the required concepts, while with too many 
it may overfit on the training data. Typically, however, for the data 
sets considered here, we found only minor variations in classification 
accuracy as long as the number of hidden units was of the same order 
as the number of input units. 

We evaluated the performance of the algorithms on five data sets. 
Two of the data sets are synthetic (LED digits, and a Boolean function), 
while the other three are real-world data sets (congressional voting, med- 
ical diagnosis, and protein secondary structure). The first data set is the 
well-known LED digits classification problem with 10% noise added. Es- 
sentially this consists of a seven-segment LED, where the seven segments 
correspond to seven binary features, and the digits ”0” though “9” rep- 
resent 10 classes. The 10% noise consists of reversing the segments from 
their true value with a probability of 0.1. This renders the classifica- 
tion problem somewhat nontrivial, since the optimal Bayes classification 
accuracy can be shown to be about 74% (as opposed to 100% for the 
noiseless case). We generated a database of size 1000 (with 10 equally 
likely classes) to use for evaluation. The second data set consists of 435 
voting records from a session of the 1984 United States Congress. The at- 
tributes correspond to 16 different issues on which the politicians voted, 
such as aid to the Nicaraguan contras and budget cuts. The class variable 
is party affiliation, i.e., Democrat or Republican. Recognition accuracy 
up to 95% is known to be achievable on this data set using only a single 
attribute, the p h y s i c i r r r r - ~ ~ ~ - ~ ~ ~ ~ z ~  attribute. Hence, as suggested by Bun- 
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Table I: Comparative Perforinance Results on Three Data Sets. 

Mean percentage accuracy i SD Mean rule 

Data set Trivial First-order Neural Rule-Based Complexity i SD 

LED digits 10.0 74 . l f  5.3 72.2 * 4.96 73.1+ 5.03 40 dr 1.27 
Voting 61.4 87.441 9.66 87.68f 7.06 88.18f 4.41 2.2 i 0.40 
Boolean 64.7 66.66k 5.41 89.99& 2.33 89.061 2.44 11.7 f 0.48 

tine (1991) and others, the problem is made more interesting by removing 
this attribute. On the modified data set, Buntine reports accuracies u p  
to 89%' using a variety of decision tree techniques. The third data set is 
artificially generated with size 640, where there are 6 binary attributes, 
YI. . . . . Yb and the class is the Boolean function 

X OR[XOR(YI .Yz) .  AND(Y?.YJ). AND(Y;.Yh)] 

To introduce noise, the class variable X has a 10% random chance of 
being reversed from its true state. Hence the optimal recognition rate 
on this problem is 90%. The fourth data set is a real database of breast 
cancer diagnosis data collected at the University of Wisconsin Hospitals 
between January 1989 and July 1990. We will describe this data set in 
more detail later since tlie performance of tlie classifiers was evaluated in 
an incremental manner as if they had been run as the data were collected 
(in chronological order). The fifth data set is a protein secondary structure 
problem, also described in more detail later. 

For the first three data sets we use the standard evaluation technique 
of V-fold cross-validation where V was chosen to be 10. This means that 
the LED, voting, and Boolean function data sets were divided into disjoint 
test sets of size 100, 43, and 64, respectively. The neural network was a 
three-layer feedforward network with sigmoid activation functions, and 
25, 20, and 8 hidden units for the LED, voting, and Boolean function 
problems, respectively. Both the mean and standard deviation of the 
resulting CV estimates are reported in Table 1. In addition we tabulate 
the mean complexity of tlie rule-based classifier for each data set, in 
terms of the mean (over the different training sets) number of weights 
connected to the output layer (tlie number of rules in tlie classifier). One 
column of the table corresponds to the mean accuracy obtainable for each 
data set simply by the trivial strategy of always predicting the most likely 
class label. 

Performance on the data is roughly equivalent between the classifiers 
except for the first-order model on the Boolean function data-one of the 
motivations for including this data set was to demonstrate the limitations 
of the first-order model in capturing such high-order concepts. Hence, 
we can conclude that tlie rule-based model achieves roughly comparable 
classification accuracy to the more usual backpropagation model. 
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The fourth data set considered is the aforementioned medical diagno- 
sis database. A common technique in breast cancer diagnosis is to obtain 
a fine needle aspirate (FNA) from a patient under examination. Wolberg 
and Mangasarian (1990) describe the domain in some detail. The FNA 
sample is evaluated under a microscope by a physician who makes a 
diagnosis. All patients evaluated as malignant, and some of those la- 
beled as benign, later undergo biopsy, which confirms or disconfirms the 
original diagnosis-the other patients diagnosed as benign undergo later 
reexamination to provide a true measurement of their condition. Since 
biopsy is roughly eight times as costly as the FNA technique, it is im- 
portant that unnecessary biopsies be kept to a minimum. In addition, 
Wolberg and Mangasarian report that physicians encounter borderline 
cases making diagnosis difficult. The approach taken by Wolberg and 
Mangasarian was to collect training data in the form of nine subjectively 
evaluated characteristics of the FNA sample for each patient. These fez- 
tures describe general characteristics of the FNA sample as seen under a 
microscope, such as uniformity of cell size, marginal adhesion, and mi- 
toses. Ground truth in the form of class labels (benign or malignant) was 
obtained at a later stage by a biopsy or reexamination. A classifier was 
then designed that takes the physician’s description of the FNA sample 
and produces a diagnosis. In Wolberg and Mangasarian (1990) a suc- 
cessful linear programming technique is introduced for determining the 
parameters of a neural network classifier for this diagnosis problem. 

For our evaluation purposes we used the same database that consists 
of 535 patient records. As described above there are 9 attributes, each of 
which takes on a discrete value between 1 and 10. We chose to evaluate 
classifier performance by training the performance of each classifier on 
the first k x 50 samples (where 1 5 k 5 10) and testing on the remainder. 
This gives an idea of the performance as a function of training sample 
size and is also closer to the manner in which a classifier would be used 
in practice since the database of patient records is in chronological order. 
The results are shown in Figure 4. Clearly beyond about 150 training 
samples, all of the classifiers perform equally well. The excellent perfor- 
mance of the first-order classifier, and the fact that near 100% accuracy 
can be attained, leads one to suspect that the problem is not a difficult 
one in terms of classifier design. The relatively poor performance of the 
rule-based classifier for small sample sizes deserves some comment. In 
effect the MDL nature of the classifier design algorithm ensures that the 
model is conservative in its use of parameters when there are few data 
available. In contrast, both the first-order model and the neural network 
had a fixed, relatively complex, architecture independent of the amount 
of training data-the neural network used a single hidden layer with 12 
hidden units throughout. In theory, for small sample sizes, both of these 
networks are too complex to be plausible models in a statistical sense. 
This phenomenon has been observed elsewhere by Cybenko (1990) and 
Smyth (1991). Nonetheless, in practice, overcomplex models can outper- 
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Figure 4: Medical database-performance. 

form the more theoretically correct, simpler, models on a particular data 
set. In particular we note that the performance of our rule-based classi- 
fier when used with the more complex (in terms of more rules) unpruned 
rule set also performs comparably to the other techniques. 

Classification accuracy alone is not, however, the only figure of merit 
of interest. We are particularly interested in the ability of our scheme 
to provide an estimate of the classifier’s confidence in its decision, by 
using the output probability estimates provided along with the classifi- 
cation decision. For the rule-based and first-order Bayes networks these 
probabilities are produced directly. For the backpropagation network we 
normalize the output activation to produce a probability estimate. Fig- 
ure 5 shows the mean binary entropy computed using these probabilities, 
for each classifier’s decisions on the medical database, as a function of 
sample size. Entropy provides a measure of the classifier’s uncertainty 
in its decision, and ranges from 0 (completely certain) to 1 bit (max- 
imally uncertain). In practice this uncertainty estimate can provide a 
useful confidence indicator to a higher level decision maker. Two cases 
are shown for each classifier. One case corresponds to the uncertainty 
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Figure 5: Medical database-classifier uncertainty. 

when the classifier’s decision was correct, and the other corresponds to 
the uncertainty when the decision was incorrect. Ideally we would like 
a classifier to have a low uncertainty (near 0) when it makes a correct 
decision, and a high uncertainty (near 1) when it makes an incorrect de- 
cision. Consider first the three curves that indicate incorrect decisions. 
From Figure 5 we see that the rule-based system performs well in this 
regard, being near maximal uncertainty when it makes a wrong decision 
over the entire range of sample sizes. The neural network does not per- 
form as well. It begins with a reasonable degree of uncertainty and then 
becomes more definite (in its mistakes) as the training size increases. The 
first-order Bayes classifier is initially quite definite in its mistaken conclu- 
sions, but begins to become more reasonable as the sample size increases. 
This effect is likely due to the fact that its model becomes more accurate 
as more data become available (in terms of probability estimates). Also 
shown are the uncertainty curves for the correct decision. The rule-based 
and backpropagation networks are comparably low as desired, with the 
first-order Bayes classifier being even more confident in its decisions. 

In Table 2 we list the the actual rules obtained when the algorithm 
was trained on the first 400 samples of the data set. This set of 11 rules 
is the final set obtained by the MDL portion of the algorithm after the 
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Table 2: Medical Database-Rules. 

/-Measure Rule 

0.297 

0.289 

0.271 

0.231 
0.145 
0.111 
0.103 
0.085 
0.057 
0.056 
0.045 

IF 
AND 
IF 
AND 
IF 
AND 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 

cell size uniformity 1 
mitoses 1 
bare nuclei 1 
iiormal nucleoli 1 
epithelial cell size 2 
bare nuclei 1 
bare nuclei 10 
clump thickness 10 
cell sim uniformity 10 
normal nucleoli 10 
margind adhesion 10 
cell size uniformity 5 
epithelial cell size 10 
bland chromatin 8 

THEN 

THEN 

THEN 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

DB" 

DB 

DB 

DM" 
DM 
DM 
DM 
DM 
DM 
DM 
DM 

Strength i",, 
~ 

5.9 

6.2 

8.0 

-4.4 
-5.7 
-5.3 
-5.2 
-4.2 
-4.5 
-3.8 
-4.2 

"Diagnosis benign. 
"Diagnosis malignant. 

rule search procedure liad initially found a candidate set of 500 rules. 
The rules are ranked in order of decreasing average information content. 
The rules that confirm the benign condition (positive weights) are some- 
what more informative than those that conclude the malignant condition 
(negative weights), primarily because the malignant rules have a lower 
prior probability of occurrence, i.e., the left-hand side conditions are less 
likely. 

Figure 6 shows a diagram of the network that results when the rules 
are implemented on a neural architecture. Note that there are really only 
three genuine hidden units ( the AND gates) corresponding to the three 
second-order rules. The first-order rules do not need a hidden unit and 
effectively correspond to a single weighted link between the input and 
output layers. 

The final data set was chosen to test the rule-based approach on a 
large database. One of the original successes of the neural network clas- 
sifier model on a large-scale problem was the secondary structure protein 
prediction problem, as described by Qian and Sejnowski (1988). The ob- 
jective of this prediction task is to predict the secondary structure of 
globular proteins from a knowledge of their sequence of amino acids 
(the primary structure). The secondary structure is comprised of small 
groups of residues that join together into recognizable local shapes. The 
secondary structure is classified into one of three types: "helix," "sheet," 
and "coil," denoted by "h," "e," and "-," respectively. For our experi- 
ment we used the same training and testing data as used in Qian and 
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Figure 6: Medical database-network. 

Sejnowski's paper, which consists of 18,105 training residues and 3520 
testing residues. Each "example" in the database consists of a window 
of 13 contiguous amino acids, six preceding and six following a particu- 
lar central amino acid. A total of 20 different amino acid fractions appear 
in the data, each one denoted by an alphabetic character (A, C, D, . . . 
etc). The objective is to classify the central amino acid into one of the 
three secondary classes. 

Prior to Qian and Sejnowski's work, the best results obtained on the 
protein data set were in the mid-50% accuracy range. The work of Qian 
and Sejnowski showed that accuracies in the low 60% range were ob- 
tainable using neural network techniques: 62.7% for a single network, 
and 64.3% when correlations between adjacent elements in the sequence 
were taken into account using a secondary cascaded network. Subse- 
quent studies by other authors using network models achieved similar 
accuracies. Indeed Stolorz et al. (1991) recently showed that a first-order 
Bayes classifier can achieve 61.1% accuracy using a window size of 17, 
indicating that there is limited predictive information in the attributes 
beyond first-order. 
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Table 3: Protein Database--Kules 

801 

/-Measure 

0.016 
0.011 
0.010 
0.009 
0.007 
0.006 
0.006 
0.006 
0.006 
0.006 
0.005 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 

R d e  

IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 
IF 

-. ~~ 

~~~ 

priin,iry+l P 
priinxy+l P 
primciry+O P 
primxy+0 G 
primxy+2 P 
prim,iry+0 V 
primary+2 P 
priniary+0 G 
primary-1 P 
prini,iry+0 V 
primxy+O I 
prirn,iry+O L 
primary+l V 
prim‘iry-1 G 
prini;lry+O I’ 
prim,iry+3 P 
prim,iry+l L 
priniary+O I 
primary+O A 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

secondary - 
secondary h 
secondary - 
secondary - 
secondary - 
secondary e 
secondary h 
secondary h 
secondary - 
secondary - 
secondary e 
secondary - 
secondary e 
secondary - 
secondary e 
secondary 11 
secondary - 
secondary - 
secondary h 

0.004 ~~ primary-1 G THEN secondary h 

Strength 70,, 

0.467 
- 1.542 

0.394 
0.296 
0.340 
0.309 

-0.837 
-0.428 

0.313 
- 0.348 

0.360 
-0.285 

0.237 
0.212 

- 1.261 
- 0.594 
-0.265 
-0.374 

0.594 
- 0.273 

We ran our algorithm to find the best first-order model, i.e., using 
only first-order rules on n window size of 13. The final model contained 
194 rules and  correctly predicted 61.7% of the test samples. In Table 3 w e  
list the 20 most informative rules from the final pruned network model. 
It is interesting to note that the best rules tend to involve the central 
amino acid (primary+O) and the ones nearby at  positions primary+l, 
primary-1, etc., rather than those farther away from the center. The 
rules also tend to be grouped into triplets of rules with the same left- 
hand side. These rules tend to be a positive rule for the most probable 
class (-, with a prior of 0 545), and  two negative rules for the other two 
classes. 

Again, we  note that the point of this experiment was not necessar- 
ily to obtain better results than have been previously reported but to 
demonstrate that results comparable to other ”black-box” techniques can 
be obtained on a large-scale discrete prediction problem, while achieving 
useful explainability d u e  to the explicit rule-based model. 

The experimental results confirm that the rule-based classifier is very 
competitive in terms of classification accuracy when compared with alter- 
native approaches. The results (particularly those for the cancer diagnosis 
problem) also clearly demonstrate the unique ability of this approach to 
produce a hybrid rule-based neural network, wherein units and weights 
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possess a clear semantic interpretation to the external observer. In do- 
mains such as medical diagnosis such a feature makes the likelihood of 
user acceptance much higher than would be the case with a "black box" 
algorithm. 

8 Conclusions 

A novel hybrid rule-based connectionist classifier architecture has been 
proposed. The architecture of the classifier is directly derived from the 
example data by an efficient information-theoretic search technique. The 
classification performance of the hybrid scheme on discrete data has been 
shown to be comparable with that of conventional neural network clas- 
sifiers, and the resulting network exhibits an explicit knowledge repre- 
sentation in the form of human-readable rules. 
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