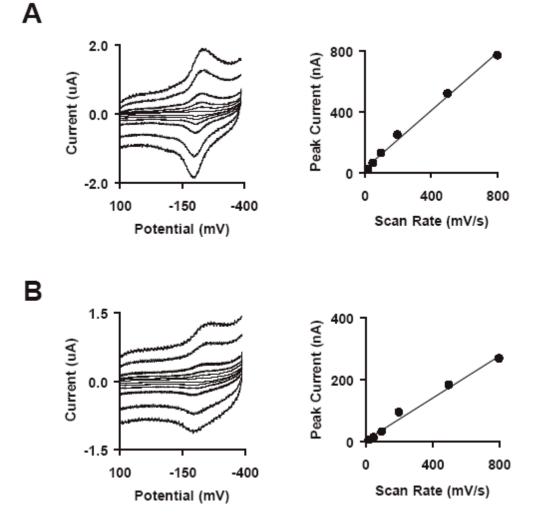
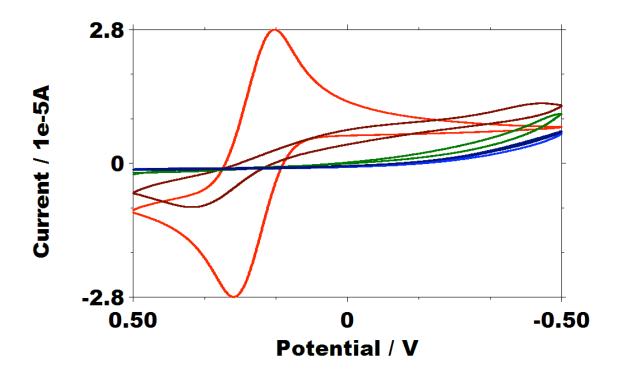
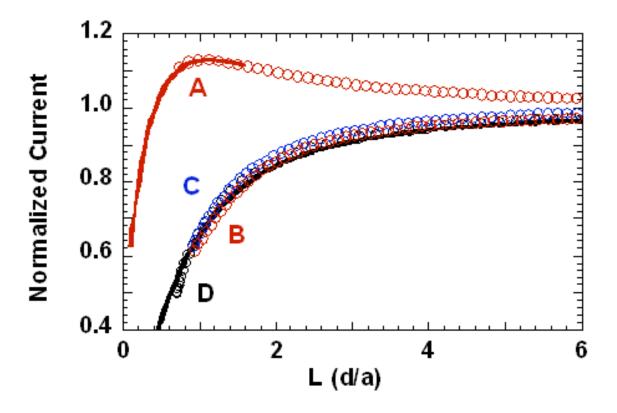

Scanning Electrochemical Microscopy of


DNA Monolayers Modified with Nile Blue

Alon A. Gorodetsky, William J. Hammond, Michael G. Hill, Krzysztof Slowinski, and


Jacqueline K. Barton


Supporting Figure 1. Schematic illustration of the of the Nile Blue modified uridine.

Supporting Figure 2. Cyclic voltammetry of DNA monolayers at various scan rates modified with NB at the bottom (A) and top (B) in pH =7.1, 5 mM NaPi, 50 mM NaCl buffer. The corresponding plots of peak current as a function of scan rate are shown on the right. The sequence was 5'-TGC GTG CTT TAT ATC *U*C-3' (bottom NB) and 5'-*U*GC GTG CTT TAT ATC TC-3' (top NB) where the italicized U indicates the location of the NB moiety.

Supporting Figure 3. Successive cyclic voltammograms of ferricyanide at a bare Au electrode in pH =7.1, 5 mM NaPi, 50 mM NaCl buffer before (red) and after (other colors) addition of 1 mM 11-mercaptoundecylphosphoric acid to the buffer. The voltammograms correspond to different exposure times in the 11-mercaptoundecylphoshoric acid containing buffer. Complete attenuation of the ferricyanide signal is observed within 15 minutes.

Supporting Figure 4: SECM approach curves taken for Nile Blue-DNA monolayers before (C, D) and after (A, B) addition of 1.5 μ M Methylene Blue at substrate biases of 0 mV (B, D) and -300 mV (A, C). Approach curves were taken in pH= 7.2, 20 mM Na₂HPO₄, 80 mM NaCl, and 5 mM K₄Fe(CN)₆ buffer. The sequence was 5'-UGC GTG CTT TAT ATC TC-3' where the italicized U indicates the location of the NB moiety. Theoretical fits for positive and negative feedback are shown as solid lines for comparison.