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[1] This work investigates how remote sensing of the quantities required to calculate
clear-sky cooling rate profiles propagates into cooling rate profile knowledge. The
formulation of a cooling rate profile error budget is presented for clear-sky scenes given
temperature, water vapor, and ozone profile uncertainty. Using linear propagation of
error analysis, an expression for the cooling rate profile covariance matrix is given. Some
of the features of the cooling rate covariance matrix are discussed, and it is found that
nonzero error correlations in the temperature, water vapor, and ozone retrieval
profiles must be considered to produce an unbiased estimate of cooling rate profile
variance and the covariance structure. To that end, the exclusion of the details of this error
correlation leads to an underestimation of the cooling rate profile uncertainty.
This work then examines the assumptions made in the course of deriving the expression
for the cooling rate covariance matrix by using ERA-40 Reanalysis data. It is
established that the assumptions of linear error propagation and Gaussian statistics are
generally tenable. Next, the information content of thermal infrared spectra with respect
to clear-sky cooling rate profiles is investigated. Several formerly- and currently-
operational spectrometers are compared with different spectral coverage, resolution,
signal-to-noise ratio. Among these, IASI is found to have the ability to provide the greatest
amount of information on the cooling rate profile. Also, it may be scientifically useful to
develop far-infrared missions in terms of cooling rate profile analysis.
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1. Introduction

[2] Heating and cooling rate profiles are influenced by
absorption, emission, and scattering by atmospheric state
constituents such as water vapor (H2O), carbon dioxide
(CO2), ozone (O3), oxygen (O2), methane (CH4), nitrous
oxide (N2O), and liquid and ice clouds. Aerosols have a
strong influence on radiative heating in the visible and near
infrared portions of the spectrum and have a small impact
on the infrared cooling rates where aerosol optical depth is
high. Heating and cooling rate profile calculations are
ubiquitous in the course of general circulation model
(GCM) runs which utilize correlated-k (or other band-
model) methods because these algorithms provide compu-
tational efficiency and achieve reasonable accuracy with
respect to line-by-line calculations for the same inputs of
temperature, water vapor, ozone, and cloud optical depth
profiles. An in-depth discussion of heating rate profile

calculation both from a theoretical and practical standpoint
can be found in texts such Goody and Yung [1989] and Liou
[2002].
[3] Radiometric accuracy with respect to line-by-line

models is crucial to many aspects of model performance
because diabatic heating affects circulation. Morcrette
[1990] found that an improved radiative transfer algorithm
resulted in substantial changes to the distribution of radia-
tive energy in the ECMWF forecast model while Iacono et
al. [2000] explored how the introduction of an improved
correlated-k algorithm to the CCM3 model changed result-
ing cooling rates and fluxes which partially ameliorated the
model’s cold bias at high latitudes. In general, line-by-line
codes are in good agreement with each other [Kratz et al.,
2005] though comparisons of GCM heating rate calcula-
tions still exhibit discrepancies related to band-model
parameterizations [Ellingson and Fouquart, 1991; Baer et
al., 1996; Collins et al., 2006].
[4] Meanwhile, large-scale retrieval efforts from satellite-

borne instruments produce the inputs necessary to calculate
fluxes and heating rate profiles: these products include
temperature, water vapor, and ozone profiles and other trace
gas descriptions along with some description of cloud cover
[e.g., Qu et al., 2001; Susskind et al., 2006; Barnet et al.,
2003; Li et al., 2005]. Several authors have explored the
determination of fluxes such as OLR and total surface
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downwelling flux (more easily measurable quantities) from
remote sensing products [e.g., Zhang et al., 1995, 2004].
Nevertheless, there have been only a few papers focused on
how well-suited these products are for determining heating
and cooling rates. Mlynczak et al. [1999] provided a
comprehensive assessment of stratospheric radiative bal-
ance by using remote sensing data. Efforts to utilize
International Satellite Cloud Climatology Program data to
calculate monthly radiative fluxes and heating rates and the
associated sensitivity of such calculations were explored by
Bergman and Hendon [1998]. More recently, there has
been renewed focus on assessing heating rates using data
from ground validation sites [Fueglistaler and Fu, 2006;
McFarlane et al., 2007]. Also, heating rates derived from
operational analysis temperature, water vapor, and ozone
data, in combination with cloud profiling radar data, are
currently being released as a standard product associated
with the CloudSat mission [L’Ecuyer, 2007]. If properly
implemented, the patterns of heating rates derived from
remote sensing data can be compared with those calculated
by models in a state-space that summarizes the interlayer
radiative energy exchange as it pertains to the primitive
equations. In principle, if all of the inputs to the heating rate
calculation are known with certainty, the radiometric accu-
racy of the band-model with respect to line-by-line calcu-
lations and spectroscopic misrepresentation are the only
appreciable sources of error. However, remote sensing
retrievals produce an imperfect estimation of the true
quantity being retrieved, and it is important to assess how
these imperfections relate to heating and cooling rate
knowledge.
[5] In order to bridge the gap between satellite-based

remote-sensing measurements and the heating and cooling
rates on which circulations models rely, preliminary efforts
to address the correspondence between radiances and cool-
ing rates have been made [Liou and Xue, 1988; Feldman et
al., 2006], though formal error analyses have been under-
taken sparingly. Those papers discuss methods for retrieving
cooling rates from radiance data, and the latter paper utilizes
several AIRS spectra [Aumann et al., 2003] to demonstrate
feasibility. Given the existence of several different instru-
ments for atmospheric sounding, it is reasonable to explore
metrics for understanding which instruments best constrain
heating/cooling rates. To this end, it is necessary to produce
a formal error budget and discuss the hyperspectral instru-
ment specifications that most effectively reduce uncertainty
in heating/cooling rate knowledge. Therefore, this paper
focuses on establishing straightforward, computationally-
efficient methods for making appropriate estimation of the
cooling rate covariance matrix so that the skill of standard
retrieval products and methods can be evaluated in the
context of cooling rates. While shortwave heating rates
are also important to circulation models, this paper will
generally focus on tropical longwave cooling rates associ-
ated with different temperature, water vapor, and ozone
profiles due to timely scientific interest [i.e., Hartmann et
al., 2001; Sherwood and Dessler, 2001; Gettelman et al.,
2004].
[6] The concept of information content is broadly applied

throughout this paper. Formally originating with Fisher
[1925] and elaborated substantially by Shannon [1948], this
is a useful concept for describing the change in knowledge

as the result of a measurement of a set of quantities that may
or may not be independent. The information content of a set
of measurements is equivalent to the same number of
measurements of independent equal probability binary
events. Another interpretation of information content is that
it describes the number of different states that can be
distinguished by a measurement. When used properly,
information content is an absolute currency for the evalu-
ation of retrieval system design that produces a reliable
metric with which optimization can occur on many fronts
simultaneously.
[7] This paper is organized as follows. In section 2, we

discuss the basic molecular bands and their cooling rates
using the template of the Tropical Model Atmosphere
[Anderson et al., 1986]. Then, we move on to describe
sources of uncertainty in determining cooling rate profiles
and cooling rate variability in the tropics. In section 3,
formal error propagation analysis is applied to the study of
cooling rates given expected a priori and aposteriori uncer-
tainties in the clear-sky inputs. This propagation of error
analysis is then applied to reanalysis data to demonstrate the
efficacy of this approach in determining cooling rate co-
variance matrices. Finally, section 4 provides context for the
treatment of the intersection between cooling rate profiles
and remote sensing measurements with the comparison of
the cooling rate information content associated with several
past and current spectrometers.

2. Sample Case and Sources of Uncertainty

[8] This paper utilizes radiative transfer codes from the
AER suite (http://rtweb.aer.com): for line-by-line radiative
transfer calculations to produce radiance, the Line-by-Line
Radiative Transfer Model, LBLRTM, [Clough et al., 1992,
2005; Clough and Iacono, 1995] version 9.3 is used, for
line-by-line flux and heating-rate calculations, RADSUM
version 2.4 is used, and for correlated-k calculations, the
Rapid Radiative Transfer Model (RRTM) including long-
wave (version 3.01) and shortwave (version 2.5) modules
are used [Iacono et al., 2000; Mlawer et al., 1997]. For
heating rate profile calculations, RRTM is accurate to within
0.1 K/d in the troposphere and 0.3 K/d in the stratosphere
relative to line-by-line calculations (see Mlawer et al.
[1997] for details).
[9] A sample cooling rate profile calculated with RRTM

is shown in Figure 1. Here, nine spectral bands are pre-
sented along with the total IR cooling rate profile given the
Tropical Model Atmosphere. The three far-infrared bands
covering 10–630 cm�1 show significant upper tropospheric
cooling which arises from the rotational band of water
vapor. In fact, these far-infrared bands, for which no global
satellite-based direct measurements currently exist, account
for upwards of 90% of cooling in the upper troposphere
in the tropics. The two bands from 630–820 cm�1 are
dominated by the n2 band of CO2 which contributes
significantly to stratospheric cooling rates. The two spectral
bands from 820–980 cm�1 and 1080–1180 cm�1 show the
cooling in the window bands which is strongly influenced
by water vapor continuum absorption. The 985–1085 cm�1

spectral region is affected by the n3 band of O3 and the
1070–1180 cm�1 region is influenced by the n1 band of O3

[Clough and Kneizys, 1966]. Both of these bands produce
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IR heating in the lower stratosphere which arises from the
rapid vertical change in O3 concentration and the
corresponding drop in interlayer transmittance. These bands
also lead to IR cooling in the midddle and upper-strato-
sphere with radiation to space.
[10] A demonstration of the zonal, meridional, and tem-

poral variability in total IR cooling rate profiles due to the
corresponding variability in the temperature, water vapor,
and ozone fields gives an indication of the appropriate scale
for a priori values and constraints for cooling rate profile
analysis. Data from year 2000 of the European Centre for
Medium Range Weather Forecasts (ECMWF) 40-year re-
analysis (ERA-40) [Uppala et al., 2005] have been utilized
for this purpose as inputs to RRTM, which happens to be
essentially the same radiative transfer code that the ERA-40
program utilizes internally. The reanalysis reports tempera-
ture, water vapor, and ozone at 23 sigma levels ranging
from the surface to around 1 mbar at 6-h intervals. As seen
in Figure 2a, the total IR cooling rate profile at low latitudes
is several K/d in the troposphere, decreases to much less
than 1 K/d in the tropopause region, and rises rapidly in the
stratosphere to around 10 K/d near the stratopause. For
higher latitudes, cooling rates are more uniform from the
free troposphere to the lower stratosphere and rise rapidly in
the middle and upper-stratosphere. Figure 2b shows the
temporal standard deviation of the cooling rate profile across
a zonal band located at the equator over using reanalysis data
from January 2000 with tropospheric variability ranging
from several tenths of a K/d in the troposphere to around
0.1 K/d at the tropopause and around 0.5 K/d in the middle
stratosphere. Figure 2c displays a meridional cross-section of
the temporal variability in the cooling rate profile and shows
comparable magnitude to Figure 2b.
[11] A cooling rate profile calculation requires knowledge

of the interlayer transmission profile in the band of interest

along with the temperature profile. For clear-sky calcula-
tions, uncertainty arises from the lack of knowledge of the
temperature profile, the vertical distribution of absorbing/
emitting species, and also from spectroscopic uncertainty
largely limited to continua models. The water vapor con-
tinuum has been shown to be very significant for the
determination of cooling rate profiles at many different
altitudes [Iacono et al., 2000]. However, the incorporation
of a state-of-the-art, semi-empirical model [Clough et al.,
2005] into many modern cooling rate calculations largely
removes this as a source of systematic error.

3. Error Propagation and Covariance Matrices

[12] Operational heating and cooling rate calculation
algorithms generally do not include formal error estimates
as a result of the uncertainty in input parameters such as the
temperature, water vapor, ozone, and cloud profiles. Finite
difference uncertainty estimation is sometimes employed
for gross error statistics [Mlynczak et al., 1999]. However,
formal error estimates can establish how uncertainties in
atmospheric state descriptors such as the temperature, water
vapor, and ozone profiles and cloud layering propagate into
uncertainties both in spectral and broadband cooling rate
profiles. This calculation will involve the mapping of the
atmospheric state covariance matrix onto the cooling rate
covariance matrix. For this mapping, we recognize that a
deviation in an atmospheric state value in one layer will
tend to impact the cooling rate profile at that layer and at
neighboring layers also. Figure 3 shows the result of a
perturbation in a single atmospheric layer of the temperature
value or the water vapor or ozone concentration. Here, the
results of three separate perturbations to the atmospheric
state for the layer from 14 to 16 km (182–132 mbar) are
shown: the temperature is increased by 1 K, the water vapor

Figure 1. Total and band-averaged IR cooling rate profiles for the Tropical Model Atmosphere on a
log-pressure scale.
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value is increased by 5%, and the ozone value is increased
by 5%. Note that as a result of a positive perturbation in the
temperature and water vapor in a certain layer, the cooling
rate in that layer increases and the cooling rate in adjacent
layers generally decreases as a result of increased emission
from the perturbation layer. Also, for increases in water
vapor, the optical path of the perturbed layer increases,
thereby decreasing the cooling to space of the layers below
perturbed layer. A positive perturbation in ozone in the
troposphere leads to different results: this perturbation
causes increased IR heating in that layer and it decreases
IR heating in the upper troposphere/lower stratosphere
(UTLS), even if the perturbation layer is not-necessarily
near the UTLS. This behavior arises because ozone IR
heating in the UTLS results from the rapid increase of O3

with height. In a spectral region that is otherwise free of
significant absorptions between the surface and the UTLS, a
typical O3 profile leads to a change of interlayer transmit-
tance from the O3 n3 and n1 bands. Any positive increase in
the O3 concentration leads to increased IR heating in the
perturbation layer. However, the response of the total IR
cooling rate profile to similar perturbations at other layers
leads to qualitatively and quantitatively different results
depending on which bands contribute to the cooling and
whether cooling-to-space dominates.
[13] Clearly, the propagation of uncertainties in conven-

tional atmospheric state parameters such as the T, H2O, and
O3 profiles as they pertain to the cooling rate covariance
structure is nontrivial. We seek to characterize the cooling
rate covariance matrix because it is a useful concept as

Figure 2. (a) Contours of clear-sky total IR cooling rate profile values from monthly averaged ERA-40
reanalysis data for January 2000. (b) Meridional cross-section of temporal variability in clear-sky total IR
cooling rate at the equator using 6-h ERA-40 reanalysis data for January 2000. (c) Same as Figure 2b but
displaying a zonal cross-section of temporal variability.
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applied to the retrieval of profile quantities from remote
sensing data: it describes how errors are correlated between
different entries of the profile. In order to account for the
extent to which uncertainties in atmospheric state parame-
ters at all layers impact knowledge of the cooling rate at the
layer of interest, we start with linear error propagation for a
function of several normally-distributed random variables:

Df½ �2¼
Xn
i¼1

Xn
j¼1

@f

@xi

@f

@xj
cov xi; xj

� �
ð1Þ

where cov refers to the covariance function to describe the
error correlations in a quantity f that is a function of several
variables for which there is nonzero covariance among input
variables (x1, . . . xn) [Taylor and Kuyatt, 1994].
[14] To calculate the diagonal of the cooling rate profile

covariance matrix, we apply equation (1) to the cooling rate
value in each layer:

D _q zð Þ
� �2¼ Xn

i¼1

Xn
j¼1

@ _q zð Þ
@xi

@ _q zð Þ
@xj

cov xi; xj
� �

ð2Þ

where (x1, . . . xn) represent all of the atmospheric state
inputs that are relevant to cooling rate profile calculations at
each layer and _q refers to either the spectral or broadband
cooling rate at height z. In order to calculate the off-diagonal
elements of the cooling rate profile covariance matrix, we
note the following relationship between the variance of a
sum of two quantities:

var xþ yð Þ ¼ var xð Þ þ var yð Þ þ 2cov x; yð Þ ð3Þ

from which we find:

cov _q zið Þ; _q zj
� �� �

¼ 1

2
fvar _q zið Þ þ _q zj

� �� �
� var _q zið Þ

� �
� var _q zj

� �� �
g ð4Þ

where the first term on the RHS of the above equation is
given by:

var _q zið Þ þ _q zj
� �� �

¼
Xn
k¼1

Xn
m¼1

@ _q zið Þ þ _q zj
� �� �

@xk

@ _q zið Þ þ _q zj
� �� �

@xm


 cov xk ; xmð Þ ð5Þ

and the other terms on the RHS of equation (4) were derived
from equation (2). In this formulation, it should be noted
that _q(zi) and _q(zj) can refer to cooling rates associated with
different layers and different spectral regions. With
equations (2) and (4), we can populate a covariance matrix
with respect to the cooling rate profile given the covariance
matrix of the atmospheric state parameters. In order to
implement equation (2) numerically, finite difference
perturbations are applied to the T, H2O, and O3 profiles
separately to produce cooling rate profile difference values
(Jacobians). The implementation of the derivative terms in
equation (5) simply requires summing the finite difference
values calculated for equation (2).
[15] An application of this formal error budget analysis to

cooling rate profile calculations is demonstrated with the
RRTM calculation of band cooling rate profile errors for the
Tropical Model Atmosphere [Anderson et al., 1986]; here,
the standard deviation in the temperature profile is 3 K in
each layer (spaced approximately 1 km apart) and that of the

Figure 3. Change in Tropical Model Atmosphere total IR cooling rate profile arising from separate
perturbations in the layer from 132 to 182 mbar of +1 K in temperature and +5% in H2O and O3 volume
mixing ratio. Gray shading indicates the perturbation layer.
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water vapor and ozone profiles is 20% of their respective
values in each layer. The purpose of this exercise is to
characterize cooling rate variability from T, H2O, and O3

variability and set reasonable a priori constraints on the
cooling rate from an assumed climatology for subsequent
analysis. The a priori covariance of the temperature, water
vapor, and ozone profiles is assumed to be based on a first-
order autoregressive process such that adjacent layer errors
are correlated [Rodgers, 2000]. Consequently, each element
of this covariance matrix is given by:

cov xi; xj
� �

¼ s xið Þs xj
� �

exp � jzi � zjj
H

� �
ð6Þ

where xi and xj refer to different layer quantities, s(xi) refers
to the standard deviation in xi, zi and zj refer to the altitude
of each layer, and H is the atmospheric pressure scale
height. The true covariance matrix of H2O and O3 will be

undoubtedly of a quantitatively different nature and such
profile quantities as T and H2O are undoubtedly correlated
to some extent. For the purposes of illustrating the mapping
of T, H2O, and O3 covariance matrices to the cooling rate
covariance matrix, however, we assume in the a priori sense
that the T-H2O, T-O3, and H2O-O3 covariances are exactly
zero. From Figure 4a, it can be seen that this propagation of
uncertainty analysis leads to some predictable and some
surprising results.
[16] From a qualitative point of view, we find that

uncertainty in the distribution of water vapor contributes
most substantially to the total cooling rate profile uncer-
tainty in the troposphere as shown with the contributions
from the far-infrared. In the stratosphere, uncertainty in the
total IR cooling rate profile arises from uncertainty in the O3

v3 and n1 bands and the CO2 v2 band cooling; the former
term is determined by O3 and T profile uncertainty while the
latter term is determined only by T profile uncertainty. In

Figure 4. (a) Error estimation for the total and band-averaged IR cooling rate profile using formal error
propagation as described in equations (2) and (4) with T uncertainty at 3 K/km and H2O and O3

uncertainty at 20% vmr/km where T, H2O, and O3 errors covary according to equation (6). (b) Same as
Figure 4a but T, H2O, and O3 errors are uncorrelated. (c) Error bars estimated from 1000 Monte Carlo
perturbations to the T, H2O, and O3 profiles. (d) Same as Figure 4c but using 40 Monte Carlo
perturbations.
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the tropopause region, the total IR cooling rate uncertainty
is largely composed of the O3 n3 and n1 bands and the CO2

n2 band cooling uncertainty, and water vapor (from the
rotational band and the v3 band) uncertainty is not the
dominant contributor.
[17] Another very important consideration from this anal-

ysis is to note the results shown in Figures 4a–4d with
respect to uncertainty estimation. All figures show the
estimation of total IR and also band-averaged cooling rate
profile uncertainty. First, Figure 4a shows error estimation
derived from equations (2) and (4) with off-diagonal covari-
ance matrix components determined from equation (6).
Figure 4b shows this estimation derived from formal un-
certainty propagation as described above with no off-diag-
onal covariance matrix components (zero covariance
between layers for T, H2O, and O3). Figure 4c shows the
estimation of variability using 1000 Monte Carlo perturba-
tions of the T, H2O, and O3 profiles assuming that the
probability distribution functions (pdfs) of all variables are
Gaussian. In these Monte Carlo simulations, the layer of the
perturbation of the T, H2O, and O3 values is chosen from a
uniformly-distributed random number and the magnitude
and sign of the perturbation are determined by a normally-
distributed random variable scaled by the estimated error in
the perturbation layer. The correlation matrix derived from
the covariance matrix is used to scale a profile of nonzero
perturbations of the T, H2O, and O3 profiles so the simu-
lation is authentic to the assumed covariance structure.
[18] From Figures 4a and 4b, it can be seen that the off-

diagonal components of the T, H2O, and O3 covariance
matrices tend to increase the derived variability in the
cooling rate profile which implies that for remote sensing
to be useful for cooling rate constraint, it is important to
retain the details of the retrieval product error correlation
structure. Also, the latter two panels show that the cooling
rate error budget can be estimated through Monte Carlo
simulations, though in practice, fewer than 1000 simulations
are required to describe the cooling rate profile uncertain-

ties. That is, Figure 4d shows the variability estimation
using 40 Monte Carlo simulations which is qualitatively
similar to the estimation shown in Figure 4c. It should be
noted that the uncertainty shown in these four panels is
much greater than the typical error that would be expected
in the reanalysis results. Nevertheless, the purpose of these
figures is to demonstrate different methods for estimating
cooling rate uncertainty given T, H2O, and O3 uncertainty
and the associated covariance matrix. Also relevant to this
discussion is the sensitivity of the derived cooling uncer-
tainty to the covariance terms of the T, H2O, and O3

covariance matrices. Particularly, we examined the sensitiv-
ity of the results shown in Figure 4a to the parameter H in
equation (6). We found that a decrease in H by, for example,
a factor of two, leads to an increase in the resulting cooling
rate uncertainty at all levels approximately 10 percent.
[19] It should also be noted that this formal error propa-

gation analysis for quantities that are derived directly from
retrieval results can be applied to many other aspects of
satellite instrument data analysis, especially with respect to
higher-level retrievals using Bayesian geophysical inver-
sions that directly apply to circulation models. Specifically,
this analysis is also applicable to the understanding of
cooling rate profiles under cloudy conditions with respect
to the knowledge of cloud optical depth profiles.
[20] Whereas Figures 4a–4d show cooling rate profile

standard deviations, the cooling rate covariance matrix in
Figure 5a illustrates the propagation of temperature, water
vapor, and ozone profile covariance into the covariance for
the total IR cooling rate profile. The figure shows that the
off-diagonal covariance matrix components generally de-
crease exponentially with vertical separation, and the long-
range, weak covariance between cooling rates at different
layers in the troposphere arises from the assumed long-
range, weak covariance in the water vapor profile. Cooling
rate profile variance in the stratosphere is much greater than
in the troposphere due to stratospheric temperature and
ozone uncertainty. The small off-diagonal covariance matrix

Figure 5. Total IR cooling rate covariance matrices with the Tropical Model Atmosphere for (a) a priori
uncertainty of T at 3 K/km and H2O and O3 uncertainty at 20% vmr/km where T, H2O, and O3 errors
covary according to equation (6). (b) a posteriori uncertainty with a standard retrieval of T, H2O, and O3

profiles using the AIRS instrument model.
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elements of the cooling rate profile in the stratosphere are
caused by the larger altitude spacing between layers in the
stratosphere which also leads to small off-diagonal covari-
ance matrix components for stratospheric T and O3 profiles.
[21] Figure 5b shows that the introduction of thermal

sounder retrieval information produces an aposteriori co-
variance matrix that is qualitatively and quantitatively
different from the a priori covariance matrix because the
sounder measurement significantly improves understanding
of those quantities required for the cooling rate profile
calculation. First, the variance at all layers is significantly
reduced after the measurement. This is to be expected since
the T, H2O, and O3 profiles are better constrained after the
measurement. Second, the limited number of degrees of
freedom of the signal with respect to the temperature, water
vapor, and ozone profiles is also evidenced in the aposteriori
cooling rate covariance. That is, the retrieval has limited
vertical resolution and thus imparts a set of independent
pieces of information this is generally smaller than the
number of retrieval quantities. The result is that the re-
trieved profile quantities tend to oscillate about the true
profile quantities, and the cooling rate covariance matrix
associated with such T, H2O, and O3 profile retrievals has

negative covariance values in the near-range off-diagonal
components. This negative covariance tends to reduce the
effective vertical resolution of cooling rates that are derived
from the spectrometer retrievals. If, for example, one is
interested in the vertical structure of the cooling rate in the
boundary layer, the vertical width of the T, H2O, and O3

retrieval averaging kernels will frustrate efforts for mean-
ingful cooling rate analysis. Depending on the way in which
cooling rates are utilized, vertical resolution may or may not
be necessary. For example, the comparison of vertically-
integrated tropospheric cooling resulting from different
water vapor distributions may allow for degraded vertical
resolution which can be accomplished by passing the high-
resolution covariance matrix through a vertically-averaging
operator. On the other hand, circulation models generally
require high vertical resolution for heating/cooling rates, so
analysis of cooling rates from sounder retrievals as com-
pared to circulation model cooling rates should be under-
taken at high resolution.
[22] The formulation of the cooling rate covariance ma-

trix herein rests on several assumptions which need to be
addressed. First, because significant cooling arises from the
layer at which the atmosphere transitions between optical

Figure 6. Finite difference Jacobian of cooling rate profile change with respect to changes in T (left),
H2O (center), and O3 (right) over the layer from 132–182 mbar. The linearity of the Jacobian is tested
through different percentage change step sizes and these different step sizes are distinguished through the
linestyles indicated by the legend in the right.

D11118 FELDMAN ET AL.: COOLING RATE PROFILE INFORMATION CONTENT

8 of 14

D11118



thickness and transparency in a certain band, the nonlinear
nature of the radiative transfer equation may render the
linear error analysis less meaningful. The issue here is
whether this error propagation is valid for small changes
in the clear-sky cooling rate inputs and what magnitude of
T, H2O, and O3 profile uncertainty invalidates this linearity
assumption. To estimate this, we investigate the behavior of
the derivative terms in equation (2) by examining the
change in a finite difference derivative approximation with
increasing differential step size. The three panels of Figure 6
show the change in cooling rate for different perturbations
in the temperature, water vapor, and ozone at 150 mbar
normalized by the perturbation step size. It can be seen from
this figure that even for fairly large perturbations, the
normalized response of the clear-sky cooling rate profile
does not change significantly (though RRTM has difficulty
resolving the effects of small perturbations on stratospheric
cooling rates). Even the nonlinearity shown in the T
perturbation panel only becomes evident for changes on
the order of 10% which represents a perturbation of over
20 K. Perturbations in other layers in the atmosphere are
similar to the results in Figure 6 in that the finite difference
Jacobians are nearly independent of step-size.
[23] The other important assumption in the derivation of a

cooling rate covariance matrix is whether Gaussian statistics
can be utilized. Since many of the physical quantities
relevant to cooling rate profiles can be reasonably repre-
sented with Gaussian statistics and because error propaga-
tion in these instances can be described analytically, it is
convenient to make an assumption that the probability

distribution functions (pdfs) of all variables associated with
the calculation of the cooling rate profile are normal. This
may be reasonable given the low number of parameters
required to constrain a Gaussian pdf, but this assumption
can be tested. If the pdfs of the input variables are non-
Gaussian, covariance matrix estimation from the approach
described above may be difficult. The lack of an analytic
expression (e.g., equation (1)) for meaningful error bars of
functions with non-Gaussian inputs has led to diverse
approaches some of which focus on Monte Carlo distribu-
tion sampling [e.g., Palacios and Steel, 2006; Posselt et al.,
2006]. Indeed, the error estimation in Figure 4a was
qualitatively accomplished with a limited number of Monte
Carlo samples as shown in Figure 4d.
[24] Testing the assumptions made in the course of the

cooling rate covariance matrix formulation using real data
or a realistic data set is important to establishing the utility
of error propagation as it applies to cooling rate profiles.
The ERA-40 reanalysis data fields provide a convenient,
straightforward, and realistic set to calculate sample covari-
ance matrices of T, H2O, and O3 profiles and also sample
cooling rate covariance matrices. The pdfs of temperature
for the region bounded by 20�S, 20�N and 150�E, and
210�E at most levels exhibit qualitatively Gaussian behavior
though water vapor and ozone exhibit a much different
distribution that can be better characterized as lognormal.
The resulting pdfs of cooling rates at various layers are also
qualitatively Gaussian with some positive skewness. An
example of the pdfs of temperature, water vapor, ozone, and
cooling rate at 150 mbar is shown in Figure 7. In order to

Figure 7. Sample probability distribution functions of the temperature (upper left), water vapor (upper
right), ozone (lower left) and cooling rate (lower right) at 150 mbar from the ERA-40 data set for January
2000 for the region bounded by (20�S, 20�N) and (150�E, 210�E).
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estimate the cooling rate covariance matrix, it is more
appropriate to utilize the covariance of the logarithm of
H2O and O3 and also the change in cooling rate profile with
respect to changes in the logarithm of H2O and O3.
[25] In Figure 8a, a cooling rate profile covariance matrix

is calculated from an ensemble of clear-sky cooling rate
profiles from all time steps of the ERA-40 in January 2000
from 20�S to 20�N and 150�E to 210�E. Figure 8b shows
the cooling rate covariance matrix derived with equations
(2–5) using calculated T, log(H2O), and log(O3) covariance
matrices. That is, we are calculating the covariance matrix
of T, log(H2O), and log(O3) from a large set of reanalysis
profiles using error propagation as discussed above to
produce a cooling rate covariance matrix. The results are
compared to the covariance matrix derived empirically from
the cooling rate profile calculations performed with the
same set of T, H2O, and O3 profiles. The two covariance
matrices describe variability and are qualitatively similar,
though the latter (empirically-derived) has substantially
more structure. The discrepancy arises primarily due to
the non-Gaussian pdfs of the input quantities. Clearly, the
series of assumptions necessary to create the cooling rate
covariance matrix from equation (2) and equation (4),
including Gaussian statistics and the validity of the linear
error estimation for slightly or moderately nonlinear
regimes, must be utilized with some caution.

4. Spectrometer Information Content
Comparison

[26] Given a proper formulation for the cooling rate
profile covariance matrix as a function of the atmospheric
state covariance matrix, an information content analysis can
be performed to assess the relative merits of traditional
retrieval techniques using data from past, current, and future
observing systems. Also, information content analysis facil-
itates discussion of the value of the traditional treatment of
cooling rates and other approaches to the analysis of
spectra. In the previous section, we developed methods

for calculating the error budget for the cooling rate profile
both from prior knowledge and from knowledge gained by
data from remote-sensing instruments. It is sensible to use a
measure such as information content to compare these two
states of knowledge.
[27] According to Shannon [1948], the information con-

tent can also be described by the entropy of the probability
distribution functions associated with the a priori and
aposteriori states. Given an assumption of Gaussian statis-
tics for the quantity of interest, the entropy, and thus the
information content can be directly related to the covariance
matrix of the suite of physical variables estimated in the
retrieval (e.g., T, H2O, O3 profiles):

S Pað Þ ¼ 1

2
ln jSajð Þ ð7Þ

where Pa is the prior state and Sa is its associated covariance
matrix. The information content h, in bits, is given by the
difference in entropy from the prior to the posterior state:

h ¼ � 1

2
ln jŜ* S�1

a j
� �

ð8Þ

where Ŝ is the posterior covariance matrix.
[28] We estimate the information content for the cooling

rate profile derived from current thermal sounder measure-
ments according to instrumental spectral coverage, noise,
and resolution. The purpose of this analysis is to understand
and compare how different instrument characteristics are
able to impart knowledge toward the determination of the
cooling rate profile. First, this analysis compares the cooling
rate profile information, in bits, derived from standard
optimal-estimation atmospheric state retrievals [Rodgers,
2000] for the temperature, H2O, and O3 profiles. While it
is recognized that most operational retrieval techniques
employ more advanced approaches to the inversion, a linear
error analysis is chosen for simplicity and because the

Figure 8. Clear-sky total IR cooling rate covariance matrix from ERA-40 reanalysis for the region
bounded by (20�S, 20�N) and (150�E, 210�E) for January 2000 calculated from (a) ensemble cooling rate
calculations and (b) error propagation analysis using calculated variability in T, H2O, and O3 fields.
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aposteriori covariance matrix estimation for nonlinear re-
trieval is similar to the linear case.
[29] For these cases, the suite of physical quantities

retrieved consists of a vector of the concatenated profiles of
the temperature and the logarithm of the H2O, and O3

profiles. We assume that the a priori covariance matrix for
the gaseous profiles is given as amodification of equation (6),
noting that a Taylor expansion approximation of the variance
of a function is:

var f xð Þ½ � � f 0 xð Þð Þ2 *var xð Þ ð9Þ

which implies that for the transformation:

yi ¼ log xið Þ

yj ¼ log xj
� �

8<
: ð10aÞ

where xi and xj refer to gaseous profile concentration at
different layers, that:

s yið Þ ¼ s xið Þ
xi

s yj
� �

¼
s xj
� �
xj

8>>><
>>>:

ð10bÞ

which leads to the following result for the H2O and O3

elements of the a priori covariance matrix:

cov yi; yj
� �

¼ s yið Þs yj
� �

exp � jzi � zjj
H

� �
ð11Þ

The a priori covariance matrix is generally block-diagonal
with respect to the different gaseous species in the absence
of compelling a priori knowledge of the covariance between
different profile quantities. That is, the retrieval of physical
quantities can be implemented without constraining the
covariance between different species though the covariance
matrix of the suite of physical values retrieved from the
measurement will not, in general, be block-diagonal. For
information content analyses, the role of the a priori
constraint is central toward determining how the measure-
ment translates to total knowledge about the quantity of
interest. Since the a priori was not specified rigorously here,
it should be noted that for higher assumed values of prior
uncertainty in T, H2O, O3 and correlations in those
uncertainties, the information content associated with that
measurement will also increase.

[30] The thermal infrared sounders herein compared in-
clude the IRIS-D instrument aboard the Nimbus 4 platform
[Hanel et al., 1971], the AIRS instrument aboard the Aqua
platform [Aumann et al., 2003], the TES instrument aboard
the Aura platform [Beer et al., 2001], the IASI instrument
aboard the MetOp platform [Chalon et al., 2001], and the
FIRST instrument which is a newly-developed instrument
that has been tested from a balloon platform [Mlynczak et
al., 2006]. All instruments are infrared spectrometers:
AIRS, TES, and IASI measure most of the midinfrared
out to approximately 650 cm�1, while IRIS-D covers a
portion of the far-infrared with measurements out to 400
cm�1 and FIRST measures nearly the entire far-infrared out
to 50 cm�1. Each information content calculation requires
the utilization of an instrument line shape (ILS). All but
one of the instruments herein considered are Fourier Trans-
form Spectrometers (FTS) and the ILS for the FTS instru-
ments is specified as an upapodized sinc-function
parameterized by the maximum optical path length of each
scan and the integrated field of view. The specification of
the ILS for the AIRS instrument, the only grating instru-
ment included in the comparison, is defined by the post-
launch characterization of channel centroids and spectral
response characteristics [Gaiser et al., 2003]. The approx-
imate noise characteristics of the instruments listed in
Table 1 show the range of the Noise-Effective Delta
Temperature (NeDT) for each instrument.
[31] A posteriori covariance of T, H2O, and O3 profiles is

estimated according to a linear Bayesian atmospheric state
retrieval approach detailed by Rodgers [2000] and is given
by the following:

Ŝ ¼ KTS�1
e K þ S�1

a

� ��1 ð12Þ

where Se is the measurement covariance matrix, T and -1
denote the matrix transpose and inverse respectively, and K
is the weighting function matrix with components given by:

K i; jð Þ ¼ @Ri

@xj
ð13Þ

where Ri refers to the radiance in the ith channel and xj is an
input to the line-by-line radiative transfer model. The
measurement covariance matrix is derived from an estima-
tion of measurement error, which is generally acquired
through a detailed calibration procedure. For this demon-
stration, static measurement error models were used which
assume that the noise is limited to a non-spectrally
correlated detector signal; that is, the off-diagonal elements

Table 1. Comparison of Thermal Infrared Spectrometer Specifications and Cooling Rate Information Content for Different Model

Atmosphere Conditions

Instrument
Temporal
Span

Spectral
Coverage, cm�1 NeDT, K

Spectral
Resolution, cm�1 hTRP, bits hMLS, bits hSAW, bits

IRIS-D (Nimbus 4) 1970–1971 400–1600 2–4 2.8 9.8 8.4 6.4
AIRS (aqua) 2002–Present 650–1400, 1900–2700 0.1–0.6 1–2 17.1 11.5 12.6
TES (aura) 2004–Present 650–1325, 1900–2250 1–4 0.12 13.2 10.5 8.0
IASI 2006–Present 650–2700 0.3–0.5 0.5 21.8 19.9 18.3
FIRST Prototype 50–2000 1.1 0.6 17.5 18.3 11.4
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of the measurement covariance matrix are set to zero. While
not all spectral errors are uncorrelated, it is reasonable to
assume that in the course of the processing of raw detector
data to geolocated, calibrated radiance data that a significant
part of the calibration fluctuations and other spectrally-
correlated errors can be corrected. The aposteriori covar-
iance matrix from equation (11) is then re-entered into the
cooling rate covariance matrix formulation calculated with
equations (2) and (4) and from this, the cooling rate
information content is calculated.
[32] Table 1 shows the information content of several

clear-sky sounders for three model atmospheres [Anderson
et al., 1986] where hTRP denotes information content for the
Tropical model atmosphere, hMLS denotes information con-
tent for the Mid-Latitude Summer model atmosphere, and
hSAW denotes information content for the Sub-Arctic Winter
model atmosphere. These results indicate some optimal
qualities for remote sensing data for cooling rate profile
determination. First, it is expected that older instruments
such as IRIS-D with relatively low spectral resolution and
high instrument noise will contain some information re-
garding the cooling rate profile, but that newer instruments
will have improved performance. Second, the amount of
information that a thermal sounder can derive about the
cooling rate profile is also proportional to the thermal
contrast between the surface and the atmosphere. Therefore,
cooling rate profiles can be better determined when viewing
tropical atmospheres as opposed to wintertime polar ones.
Third, the balance between signal-to-noise ratio and spectral
resolution tends to favor the AIRS instrument (which has a
superior signal-to-noise ratio). Fourth, IASI, with compara-
ble channel coverage and noise yet increased spectral
resolution, should provide more information regarding the
cooling rate profile as compared to AIRS. Finally, the
descriptive ability of upper tropospheric water vapor bands
that the FIRST instrument exhibits strongly suggests that
far-infrared measurements do not represent a completely
redundant description as compared to what is derived from
the 6.3 mm H2O band. In fact, if only the midinfrared
portion of the FIRST instrument is used for the analysis
listed in Table 1, hTRP is 16.2 bits, hMLS is 16.9 bits, and
hSAW is 10.3 bits. Moreover, it is expected that errors in
the spectroscopic databases in the far-infrared will contrib-
ute to midtropospheric cooling rate profile biases and large-
scale measurements in this spectral region should reveal
discrepancies.

5. Concluding Remarks

[33] In this paper, we have addressed the formulation of a
cooling rate profile error budget for clear-sky scenes. This is
particularly important for cooling rate analysis from remote
sensing data so that the errors associated with the retrieval
of standard physical quantities are retained. We start with
formal linear propagation of error analysis to derive an
expression for the diagonal and off-diagonal components of
the cooling rate profile covariance matrix. From this, we
find that knowledge of the structure of error correlations in
the T, H2O, and O3 profiles is important to the estimation of
the cooling rate profile error budget in that higher error
correlation tends to increase cooling rate uncertainty.
While this knowledge may not always be available, it is

necessary for the proper assessment of the cooling rate
error budget.
[34] Next, we explore the assumptions made in the course

of deriving an expression for the cooling rate covariance
matrix are borne out by using a large set of T, H2O, and O3

profiles from the ERA-40 reanalysis data set. Namely, we
test the extent to which linear error propagation can be
assumed and Gaussian pdfs for radiative transfer model
input variables can be utilized. There is qualitative agree-
ment between the cooling rate profile covariance matrix
derived from an ensemble of radiative transfer calculations
and that derived from the covariance matrices of tempera-
ture, water vapor, and ozone profiles though some ad hoc
second-order corrections may be required.
[35] Subsequently, we address how the formal retrieval of

temperature, water vapor, and ozone profiles using thermal
infrared spectra impart information toward understanding
the clear-sky cooling rate profiles. Several spectrometers
were compared with different spectral coverage, resolution,
signal-to-noise ratio. Among operational spectrometers,
IASI was found to have the ability to provide the greatest
amount of information to the cooling rate profile; also,
it was found that it may be scientifically useful to develop
far-infrared missions in terms of cooling rate profile anal-
ysis. In the absence of operational far-infrared satellite-
borne spectrometer, the implicit information contained in
midinfrared spectra about long-wavelength processes will
have to suffice.
[36] This paper has not directly discussed the character-

ization of cooling rate errors and their correlations in GCMs
and reanalysis data. However, with the uncertainties in T,
H2O, and O3 profiles, the cooling rate error propagation
described herein can be applied. Straightforward statistical
tests can be employed to test the significance of discrep-
ancies between cooling rates derived from satellite-based
products and those calculated in circulation models.
[37] One major frontier in the characterization of the

cooling rate profile error budget is how uncertainties in
cloud cover and overlap impact the error budget formulation
in this paper. Thermal IR spectra may be able to provide
partial information regarding cloud-covered scenes, but
most of that information will be imparted toward cooling
rate profiles above the cloud decks. The cooling rate profiles
arising from the new generation of active remote sensing
instruments in the A-Train including CloudSat [Stephens et
al., 2002] and Calipso [Winker et al., 2003] should be able
to provide large amounts of information on the cooling rate
profile. Since different cloud vertical distributions produce
differential changes in H2O rotational band cooling and O3

v3 and v1 IR heating [e.g., Hartmann et al., 2001] which
may affect such processes as stratosphere-troposphere ex-
change [Gettelman et al., 2004; Fueglistaler and Fu, 2006],
cloud water content and optical depth profiles will impart
unprecedented information on heating/cooling rate profiles
at high vertical resolution. The work of L’Ecuyer [2001]
may prove to be very useful for addressing the cooling rate
error budget in the presence of clouds, and the advent of the
2B-FLXHR product associated with CloudSat [L’Ecuyer,
2007] presents a comprehensive assessment of cloud radi-
ative impacts throughout the atmospheric column. Signifi-
cant IR radiative heating generally occurs at cloud bases and
cooling occurs at cloud tops with rates as high as 100 K/d
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for sharp cloud boundaries; therefore, it is expected that
error budget determination for cooling rates in all-sky
scenes will require that more attention be focused on the
linearity and Gaussian pdf assumptions utilized here.
[38] Finally, methods for determining shortwave heating

rate profiles have not been discussed though they are of
course necessary to the determination of the layer-by-layer
radiative energetic budget. The formal error propagation
discussion herein is directly relevant to clear-sky heating
rate error budget analyses.
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