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Rate  Equations  Analysis of Phase-Locked 
Semiconductor  Laser  Arrays  Under 

Steady  State  Conditions 

Abstract-Rate  equations analysis of phase-locked  semiconductor 
laser  arrays  has  been  carried  out. I t  was found  that  for given  (laser) 
current  densities, the  photon  density  distribution  in  the  array  elements 
is that  pmticular  one which  maximizes the total photon  density.  There- 
sults of this  analysis  were  then  combined  with  the  waveguiding  properties 
of the  laser  array waveguide,  yielding a basic model of phase-locked 
diode  laser arrays. This  model  explains  the  effects of the variation of 
the  current  combination  through  the  array  elements on its  mode  struc- 
ture  that were  observed  recently. 

P HASE locking  of  semiconductor  injection lasers has been 
the subject of widespread  research effort  recently,  with 

most  of  the  work  implemented  in various monolithic  configu- 
rations of one-dimensional arrays [ I ]  - [ l o ] .  The few theoret- 
ical investigations of  such  arrays,  to  date involve the evaluation 
of  the  array far-field pattern using an  ad  hoc presumed near- 
field pattern [4 ] ,  and  more  recently,  the  construction  of  its 
optical field in  terms of the  array  supermodes [ 111 (i.e., the 
eigenmodes of the  array waveguide). Amore  complete analysis 
of  the  array  properties,  however,  should  include  the  effect  of 
the gain distribution  among  the  different  array  elements, as 
determined  by  the carrier and  photon densities, rather  than 
considering just  the  “cold”  cavity  of  the  array.  The  effect of 
the  saturated gain distribution is of  particular  importance  in 
the case of  multiple-stripe lasers. Whereas single-stripe lasers 
are designed mostly to  support  a single spatial mode,  N-channel 
laser arrays  are  characterized  by N (lateral) supermodes [ 111 . 
Since each  of  these  supermodes  exhibits,  generally,  different 
excitations  of  the  different array channels [ 111 , it is clear that 
gain saturation  effects are important  in  determining  the  modal 
gain of  the  supermodes  and,  hence,  their relative excitation  at 
various pumping levels. This, in  turn,  determines  the  array  far- 
field pattern [ l  11 and  its  longitudinal  mode  structure [ 121 . 
Furthermore, as the  control  of  the gain distribution  among 
the  array  channels can be realized by providing  each laser 
with  a  separate  contact [ 101 , the  results  of  this  more  complete 
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Fig. 1. Ycnematic illustration of tne laser array.  The  carrier and pho- 
ton  density in each laser are Ni and Si, respectively,  and  the  current 
density flowing through  it is Jf .  

analysis can be utilized to find  the  conditions  under  which  a 
single supermode  can be excited.  Such  mode  of  operation is 
most desirable,  since it  results  in  narrow far-field pattern  and 
narrow  spectral  linewidth  of  the  array. 

In  this  paper. we present  a  rate  equation analysis of  injection 
laser arrays,  which yields the  most favorable optical  power dis- 
tribution associated with  a given current  distribution across 
the  array. This information is then  combined  with  the  optical 
analysis of  the  array waveguide. The resulting basic model  of 
phase-locked  arrays serves to explain  their observed mode 
structure. 

The laser array is depicted schematically in Fig. 1. It  is as- 
sumed  that  the  array  operates  in  a single longitudinal, phase- 
locked  mode. (Such mode of operation is feasible,  as demon- 
strated  experimentally in [ 121 .) Each  element  of  the  array is 
characterized  by  its  photon  density Si, which  is  the  portion  of 
the  intensity  of  the array supermode [ 111 in the  ith  channel, 
and  its carrier density Nj ,  and is fed  with  current  density 4. 
[The  array lasers are treated as discrete elements; i.e., the 
spatial  (lateral) distributions  of S and N are  assumed to  have 
been  eliminated  by  an  appropriate  integration.]  The  interplay 
among  these variables can be described by  means  of  the laser 
rate  equations  [13] . Consider  first the simplest case of two 
coupled lasers. The  steady  state laser rate  equations  are 

+ S 2 )  = A  [(N, - N,,)S, + (N2 - No,)S,] 
d t  
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where di is the active region thickness of the  ith laser, A is  the 
gain constant [13], Nom is the carrier density  required  for 
transparency, q is the  electron  charge,  and rs and rph are  the 
carrier and  photon  lifetimes, respectively. The  parameter p 
denotes  the  fraction of spontaneous emission coupled  into  the 
lasing mode,  and  is  of  the  order of For practical values 
of  the  parameters,  it was found  that  the last term  in (2)  can  be 
neglected in all subsequent  calculations.  It is also worth  men- 
tioning  that (1) and (2) do  not  include  any  coupling  terms  be- 
tween  the  two cavities.  This is due to  the  fact  that  when  the 
array  is  phase-locked,  it is basically a single composite device 
operating  in  a single supermode [ 111 , and,  thus,  the  concept 
of  coupling is irrelevant &e..  there is no  such  thing as coupling 
within  a  mode). 

Using the following  normalizing transformations  for  the 
pumping  current densities, photon densities  and  carrier den- 
sities, 

pi  = Arph - - Jirs 
qd1 

Arph Nom e noi - nom i = 1 , 2  (3a) 

si = AT,S, i =  1 , 2  (3b) 

ni = Arph Ni i = 1 , 2  (3c) 

and analyzing the resulting set  of  equations,  it is found (see 
Appendix A) that  the  only  stable  solution (see below) to (1) 
and (2) is for  photon  density  ratio  which satisfies the  follow- 
ing quadratic  equation: 

s2 s1 - P1 - P z  
s1 s2 a- 1 .  

- (4) 

The  solution  of (4) is shown  in Fig. 2  in  terms  of  the  current 
densities  flowing through  the lasers. Parameter values used for 
the  calculations are A = 1.5 . cm3 . s-’, Nom = 7.5 . 1017 
crnn3, d = 0.2 pm, rs = 3 . lo-’ s and rph = 1 * lo-‘’ s which 
describe typical GaAs laser arrays. As expected, sz approaches 
sl, as J1  approaches J z .  For  operation far above threshold 
(i.e., pi  >> 1, i = 1, 2), sz/sl approaches  the  asymptotic value 
of d z .  This square  root  dependence is a direct  result of 
gain saturation  in  the lasers. 

It is interesting to  note  that  the  total  photon  density s = 
s1 t s2 attains  its  maximum  at  the  operating  point given by (4). 
As shown  in Fig. 3,  possible solutions  where  the  modal gain 
equals the  modal loss exist for  many values of s. However, the 
only  stable  solution is that  in  which  the  modal gain equals the 
modal loss  at a single point,  indicated in Fig. 3 by Po. All 
other  solutions  are  unstable  with respect to  fluctuations  in S- 
for  example,  due to  spontaneous emission-and therefore will 
gravitate toward Po. 

In  the  more general case of an N-element  array,the  pertinent 
normalized  equations  are also derived using the  transformations 
of (3). The resulting set  of  equations  is: 

0 = noi - (ni - nom)si - n i ,  i =  1 , 2  1 ’ - N  (5). 

0 = (ni - nom - l)si ,  ( 6 )  
N 

i= 1 

JI’J2 

Fig. 2. Photon  density  distribution (sz/sl) in a  two-element  array 
versus current  density in the first laser (with  the  current  density in 
the second laser as a  parameter). 
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Fig. 3. Schematic  dependence of the modal gain sz/sl, with s = s1 + s2 
as a parameter. 

Following a similar procedure as in the case of the  two  coupled 
lasers, we find  that  the  fraction  of  photon  density  in  the  ith 
laser, pi, is given by 

j = 1  j = 1  

where C is a  parameter  that  depends  on  the  pumping of the 
different lasers: 

The  total (normalized) photon  density of the  array is given by 

s = c c  N 6 - N .  
i = l  
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(The  derivation  of (7)-(9) is outlined in Appendix B.) It is 
interesting to  note  that  sufficiently above threshold (i.e., 
C f i  >> l) ,  we can see from (7) that  the  photon  density  ratio - 
between  any  two lasers in  the array does  not  depend  on  the 
number  of  array  elements.  In  some  symmetrical cases, this  is 
true regardless of  the  magnitude  of  the  pumping  currents;  for 
example, p 2 / p l  is the  same  in a 2-element  array  with  normal- 
ized pumping  currents p1 and p2 as in a 4-element  array  with 

The  importance  of  the  information  contained  in (7) [or (4), 
for  the N = 2 case]  becomes obvious when  it is combined  with 
the waveguiding properties  of  the array. The  intensity  patterns 
of  the  array  supermodes,  and,  therefore,  the  photon  density 
fractions pi of the  different  channels are determined  by  the 

channels as well as by  the  coupling  coefficients  Kij  between two-laser array. 
the  array  elements [ 1 1 ] . The (field) gains yi are related to  the 

P4 = P1 and P3 = P2. 

0 1 
’I”2 

propagation ‘Onstants p i  and the gains yi in the various array Fig. 4. Schematic  depiction of current  induced  favelength  tuning of a 

current densities Ji by 
the  squared  magnitude  of  the  admixture  factor  of  the fields in 
the  two waveguides. Using (4), (lo),  and (1 l),  one  can  relate 
the deviation from phase matching Ap to  the  current  combina- 

where v i  is the phase  velocity of  the laser mode  in  the  ith 
channel. 

The  formal  procedure leading to (7), on  the  other  hand,  en- 
ables us t o  determine  the individual channel  photon densities 
s1 and s2 given the  currents J1 and J2 in  the case of 2 elements. 
It follows that  in  order  to  excite a pure  supermode  in  the  total 
N channel  structure,  the individual currents J1 , J2 * * * must  be 
such  that  the resulting photon densities s1 . * * SN, as determined 
from (7), are  the same as those  determined  from  the  supermode 
analysis. Or, to summarize,  at given total  output s, a given 
supermode requires  a  specific set  of  channel  currents. 

We have determined  qualitatively  in  our  separate  contact 
laser array  experiments  that,  indeed, a single supermode  de- 
pended  in a  sensitive  fashion on an independent  adjustment  of 
the  channel  currents  [12] , 

A  peculiar property  of  multichannel waveguides is the signif- 
icant sensitivity of  their  supermode  intensity  patterns  with 
respect to frequency [12].  Formally,  this  frequency  depen- 
dence  enters  mainly  through  the dispersion of the  propagation 
constants pi. Therefore,  it is clear that changing the  current  APPENDIX A 
density  combination Ji, yielding  a  change in  the  intensity  pat- 
tern  for p i  [via (7)],  would result in  tuning  of  the lasing wave- The  modal gain of  the  two  element laser array  mode is 
length, as was indeed observed experimentally [12],  [14]. 
For  example,  in  the simple case of a two-element  array  the G = A ( N ,  ~ N ~ ~ )  ~ S1 s2 

phase-velocity mismatch A p E p ,  - p2 and  the gain difference 
Ay E y1 - y2 are  related to  the  photon  density  ratio p 

tion  through  the  coupled lasers. Fig. 4 shows an  example  of 
such  calculations,  employing  parameters  which  correspond to  
GaAs lasers. For given values of J1 / J 2 ,  the  coupled lasers would 
tend  to oscillate with  detuning Ap in which  their  modal gain 
is maximized,  taking  into  account  the  photon  density  ratio 
between  the  two  coupled  channels.  Since AD is readily related 
to  the wavelength deviation  from  the  phase-matching wave- 
length [ 151 , Fig. 4 can  be used in  order  to evaluate the wave- 
length  tuning  which results from  the  currents  variation.  Such 
a current-induced wavelength tuning  in a coupled  cavity laser 
has been  recently  demonstrated  [14],  with a tuning range of 
-30 A. 

In  conclustion, we have presented a basic analysis for  the 
photon  density  distribution  among lasers in a semiconductor 
phase-locked  laser array.  The results of  this analysis, when 
combined  with  the waveguiding properties  of  the  array wave- 
guide, give insight into  the observed mode  structure  of laser 
arrays  and yield  useful  guidelines in  optimum  array design. 

DERIVATION O F  (4) 

Sl +s2 
+A(N2 - Nom)  * (AI) 

~ 2 / ~ 1  =s2/’~1  through [I51 In  normalized  units [see  (3)] the  modal gain can  be expressed 
as 

-1 2K p2 t 1 2K 
= I  

where K is the  coupling  coefficient  of  the  two laser waveguides. l + s + -  
Equation (1 1) is obtained  by  straightforward algebraic manip- 
ulations  from  the  coupled  mode formalism [16]  which is where s E s1 + s 2 ,  r E s2/sl ,   and use has  been  made  of  (la) 
modified to  take  into  account  the gain difference Ay, between  and  (lb).  From (A2) is is clearly seen  that  for s‘ > s, g(r; s) < 
the  two waveguides by replacing Ap with Ap - iAy [ 151 . p is g(r; s’), as depicted  schematically in Fig. 3. For a given s it 

r 
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can be found  by simple differentiation  that g(r) has a maxima 
at 

and  that  the value of the  modal gain at  this  point is 

(1 + S)(Pl + P 2 )  - 2 G  
s(s + 2) gopt = 

when  the array is lasing, the  modal gain equals to  the  modal 
loss whose normalized value is unity. As explained  in the sec- 
ond paragraph  following (4),  the  only stable solution is when 
there is a single solution  to g = 1, which  occurs  for gopt and 
rapt given by  (A4) and (A3), respectively. Equating gopt = 1 
in (A4)  yields  a  quadratic  equation  for s which  has  only  one 
physical (s > 0 )  solution. Inserting that  solution in (A3) yields 
an expression for rapt that  depends  only  on p 1  and p 2 .  By 
straightforward algebra it can be shown  that 

1 P2 - P 1  
r o p t  - - - 

r o p t  d m  - 1 
- 

which is identical t o  (4). 

APPENDIX  B 
DERIVATION OF (7)-(9) 

From  the results of the  two-element array we deduce  that 
arrays  distribute  the  photon densities among their  elements 
such that  the  total  photon  density is maximized. We will con- 
sider next an N-element  array. Defining 

p i =  - S i  i =  1 , .  . .N (B 1) 
S 

we want  to  maximize 

N 
s =  si 

i= 1 

subject  to  the  constraint  that  the normalized modal gain is 
unity (see Appendix A): 

The constraint  of (B3) can  be  alternatively  expressed as 

Using Lagrange’s multipliers  method, we want  to  maximize 
the following function: 

where h is the Lagrange multiplier.  Differentiating  with re- 
spect to si yields: 

3F 1 -_ 
asi (1 i- Si)2 . - 1 - h + h p i  

Solving aFlasi = 0 yields 

s i=  c f i -  1 

with 

(It is clearly seen  that a2F/asf < 0.) To solve for C, we insert 
(B7) in  (B4),  resulting in a  quadratic  eqaution  for C, whose 
solution is (8). Finally, (9) is obtained  by summing (B7) over 

. . - N ,  and (7) is obtained  by dividing (B7) by (9). 
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Lateral  Mode  Discrimination  and  Control in 
High-Power  Single-Mode  Diode  Lasers 

of the  Large-Optical-Cavity 
( L W  Type 

Abstract-A comprehensive  study  of  lateral  mode  discrimination  and 
control  in weak-laterally-confinivg large-optical-cavity  (L0C)-type 
structures is presented.  The analysis centers on two types  of CDH-LOC 
laser structures:  type A,  which supports  only  the  fundamental  lateral 
mode in both  the passive ind  active regimes; and  type B, which  sup- 
ports several lateral  modes in the passive regime  and  only the  funda- 
mental  mode in the  active regime. The transverse confinement  factor 
r is peaked in the  center of the  structure  and varies significantly  across 
the  lasing region for  both device types. In the passive  regime it is found 
that  the  effective-index  (lateral)  profile is a W-shaped waveguide  for 
type  A devices and  a  positive-index waveguide for  type B devices. A 
discussion and  analysis of losses in  W-guides  is also presented.  Under 
carrier  injection (i.e., active regime) the  evolution of W-guides  in CDH- 
LOC structures is  presented as a  function of increasing  current  density 
up to lasing threshold.  For  both  type A and  type B devices the  effec- 
tive-index  profiles  and  corresponding  lateral  far-field  patterns  are 
analyzed  as  a  function of threshold  mode gain. Carrier-induced  bulk- 
index  depressions  are  found to be  in the -0.02 to -0.04 range  depending 
on the value of the  threshold  mode gain. The  corresponding  antiguid- 
ing parameter, R = k ,  6 n/6g, takes values in the -3 to -4 range, which 
imply values between 6 and 8 for  the linewidth enhancement factor a. 
It is found  that  by  controlling  the  threshold  mode gain (i.e., changing 
the device length  and/or  its  facet(s)  reflectivity) devices of  the  same 
cross-sectional  geometry can be  made  to lase either  multimode  (spatially) 
or in  the  fundamental  mode. 

M ODE-stabilized diode lasers of  the large-optical-cavity 
(LOC) type have received much  attention  in  the  litera- 

ture  [1]-[13].  Generally,  the LOC concept  [14],  [15]  con- 
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sists of introducing  between  the active and cladding layer(s) 
one or two layers of material  with refractive index  inter- 
mediate  between  those  of  the active and cladding layers.  The 
additional layer(s) also called “guide”  layer(s), allow a larger 
transverse spot size than  for  “standard”  3-layer  double-hetero- 
junction (DH) structures and  implicitly  increased capability 
for high-power laser operation.  Indeed,  LOC-type  mode- 
stabilized  devices have provided the highest CW output  power 
from a single semiconductor  diode laser [16] , and  the highest 
power in the  fundamental spatial mode  under 50 percent  duty 
cycle drive conditions [ 171 . 

Aside from increasing the transverse spot size, the presence 
of guide layers  in LOC structures  has  two  important conse- 
quences: 1) increasing the laser’s threshold-current  tempera- 
ture sensitivity  as  a  result of carrier leakage between  the active 
and guide  layer(s) [ 151 and 2) making  the  optical-mode  spot 
size sensitive to  the  index depressions induced  by  injected  car- 
riers in the active layer [l 11 , [12] , since the refractive index 
step  between active and guide layer(s) is relatively small (0.10- 
0.15). Most previous  analyses [5],  [6],  [8]  of transverse- 
and  lateral-mode  control  in  LOC-type  structures have not con- 
sidered the  effect  of  carrier-induced  index depressions, since 
they were thought  to be negligible. However,  recently  it  has 
been  pointed  out  by several workers [ l l ]  , [ 181 -[21]  that 
carrier-induced index depressions reach relatively large values 
(0.02-0.05). Thus,  they  become  of  concern  when  the refrac- 
tive-index differential  between  adjacent  layers is relatively 
small (0.10-0.15) as is the case for  practical LOC structures. 
We have previously reported  briefly in  a letter [ l l ]   o n  the  ef- 
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