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Abstract. In this paper, we consider the unilateral frictional contact problem of a hyperelastic
body in the case of large displacements and small strains. In order to retain the linear elasticity
framework, we decompose the deformation into a large global rotation and a small elastic displace-
ment. This corotational approach is combined with a primal-dual active set strategy to tackle the
contact problem. The resulting algorithm preserves both energy and angular momentum.
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1. Introduction. The simulation of contact in elastodynamic problems involv-
ing large rigid body motions is a well-known modeling challenge. In particular, the
correct definition of a global angle of rotation for an elastic body is not straightfor-
ward and requires costly computations. Moreover, the treatment of high rotational-
velocities poses significant issues regarding finite element discretization and the de-
velopment of suitable time-integration schemes.

Standard geometrically nonlinear formulations handle the situation of large rigid
body motion. Nevertheless, once discretized in time, such formulations become un-
able to render rotations exactly. As a result, when considering high-speed rotation
with large time steps, this method exhibits unsatisfying numerical results; the ap-
proximation of the rotation is quite bad, and spurious oscillations might be observed.
Additionally, even when small strains are considered, the iterative solving procedure
remains quite expensive.

In order to solve the aforementioned problem while keeping track of the global
rotation of the body, of crucial importance is the decomposition of the movement into
large rotations and additional displacements. This idea was first introduced in the
pioneering work [2] dealing with aircraft and spacecraft dynamics. The approach was
put in an abstract framework by de Veubeke [7], where different criteria were presented
to guarantee the uniqueness of the decomposition. Nowadays, the concept is often used
by the engineering community, where it is referred to as “corotational formulation.”
Improvements were given by consistent linearizations [5, 6] and element-independent
corotational approaches [20, 22, 23]. We refer to [9] and [21] for the general overviews
of the corotational approach.
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Contact adds to the complexity of the situation and has led to many research
activities both from the numerical and the theoretical points of view (see [8, 16, 19, 25,
27] and the references therein for an overview of the topic). Let us mention here the key
difficulty in developing energy-conserving time-integration schemes [17, 1, 18, 11] to
handle the nonfrictional components of contact, especially when interested in enforcing
simultaneously the persistency and the nonpenetration conditions.

The goal of the present paper is to develop a framework enabling an exact de-
scription of rotations, and accurate integration of high-speed rotating elastodynamics
with contact. To tackle such problems, we develop a new discretization scheme based
on a global corotational formulation and derive an energy and angular momentum-
preserving time-integration procedure. Indeed, conservation is crucial regarding long-
term accuracy and stability (cf. [12] and references therein).

In the presented approach, we restrict ourselves to the case of large deformations,
which are given by a global rotation with fixed rotation axis and global translation,
and small strains. A typical application is a rotating wheel. In this setting, the
decomposition of the global motion into a rigid part and a purely elastic part allows
us to accelerate the computation of the elastic deformation. The efficiency of our
method comes from the fact that, in the case of small strains, the local displacements
can be handled within the framework of linear elasticity. For the elastodynamic
setting, numerical schemes are presented and analyzed in [24]. In this paper, we
consider the case including frictional contact. Here, we obtain a nonlinear system
where the nonlinearity is restricted to the nodes associated with the contact zone and
to the angle of the global rotation. In order to compute contact at each time step, we
use a mortar approach with dual Lagrange multipliers [26] and a primal-dual active
set strategy as contact solver [15].

The paper is organized as follows. In section 2, we derive our three-dimensional
(3D) corotational model and present the system of equations describing the evolution
of the new unknowns; two variants are proposed, based upon various linearizations.
Section 3 provides energy- and momenta-conserving time-discretization schemes for
the preceding formulations. Space discretization is introduced in section 4, and section
5 presents the algorithms exploited to solve the fully discretized systems. Finally,
in section 6, we show the efficiency and flexibility of our approach through various
numerical tests.

2. Model. In this section, we introduce, analyze, and discuss two corotational
formulations for the elastodynamic evolution of a single elastic body submitted to
frictional contact. After recalling the standard dynamic setting in the presence of
hyperelastic materials, we introduce a corotational decomposition of the deformation
and derive the equations to which the new unknowns obey. Assuming the body
undergoes large rotations but small strains, the decomposition allows us to use a
linear elastic material law; only the rotation angle is described by a nonlinear equation.
Energy and angular momentum conservation are shown. As the angular equation is
linearized, a second model is derived; unlike energy, angular momentum is no more
preserved.

In what follows, the following notation is used:

.
a(x, t) :=

∂

∂t
a(x, t),

..
a(x, t) :=

∂2

∂t2
a(x, t).

A� stands for the transpose of matrix A, and tr(A) for its trace. The identity matrix
in R

3 is denoted by I, RΔ
θ is the matrix in R

3×3 representing the rotation of axis
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Δ ∈ R
3 and angle θ as oriented by Δ. The tangent rotation matrix at θ = 0 is

ΠΔ = ∂θR
Δ
θ |θ=0; for every x ∈ R

3, one has ΠΔx = Δ
|Δ| × x . The usual matricial

scalar product between the matrices A, B ∈ R
3×3 is A : B = tr(A�B), and “·”

denotes the usual scalar product in R
3.

2.1. One-body frictional contact problem. Let Ω ⊂ R
3 be a bounded open

domain with a piecewise smooth boundary Γ := ∂Ω representing the reference con-
figuration of a hyperelastic body of mass density ρ. The coordinate system is chosen
such that the center of gravity has zero coordinates, i.e.,

∫
Ω
ρx = 0. Moreover, we

consider a fixed obstacle occupying the domain Ωr with piecewise smooth boundary
Γr := ∂Ωr.

The boundary of the domain Ω is divided into two disjoint open sets as Γ = ΓN ∪
ΓC . Neumann conditions are prescribed on ΓN . The set ΓC is the boundary region of
the body where contact with the obstacle can occur. Let ϕ : Ω × [0, T ] → R

3 be the
deformation mapping, and let d := ϕ−x be the corresponding field of displacements.
The deformation gradient is denoted by F = ∇ϕ, and the Green–Saint Venant strain
tensor E(d) is given by

(2.1) E(d) :=
1

2

(
(∇ϕ)�(∇ϕ) − I

)
=

1

2
(∇d + ∇d� + ∇d�∇d).

Under the assumption of frame indifference, the stored energy density W of the hy-
perelastic material at a given location x ∈ Ω is necessarily a function of this sole strain
tensor (cf. Ciarlet [4]). The second Piola–Kirchhoff stress tensor Σ is defined by

Σ :=
∂W

∂E
(E(d)),

and the Cauchy stress σ by

σ :=
1

detF
FΣF�.

To express contact conditions, we define the normal pressure σν and the tangential
force στ by

σν :=
(
σν

)
· ν, στ := σν − σν ν,

respectively, and the normal and tangential displacements by

dν := d · ν, dτ := d− dν ν.

Above, ν stands for the outer normal vector of the deformed domain ϕ(Ω).
In order to formulate the nonpenetration condition between the two bodies, we

introduce a gap function γC : ΓC → R that models the distance between the deformed
location of a point belonging to ΓC and its projection onto Γr along the normal ν,
i.e.,

(2.2) γC := (πνϕ− ϕ) · ν,

where πν is the projection along the normal vector, as illustrated in Figure 2.1.
The nonpenetration of ΓC into Ωr expressed by the Karush–Kuhn–Tucker condi-

tions is formulated as:

(2.3) γC ≥ 0, σν ≤ 0, σν γC = 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COROTATIONAL SCHEMES FOR FRICTIONAL CONTACT 2491

Ω

Ω

(x)

x

(x)

r
Ωr

(Ω)ϕ
ϕ

γ
C

ϕ

πϕ

Fig. 2.1. A definition of the gap function γC .

Here, the first condition corresponds to the nonpenetration constraint. The last con-
dition implies that the obstacle only applies an effort on the boundary of the domain
where contact is active, i.e., γC = 0. Observe that, for small displacements d, the gap
function γC can be approximated by γC ≈ γC,0 − dν where γC,0(x) = πν0x− x is the
initial distance; ν0 denotes the outer normal vector of Ω. Then, the condition γC ≥ 0
reads dν ≤ γC,0, the function γC,0 being constant in time.

In case of contact, we obtain πνϕ = ϕ. As this condition is fulfilled, contact is said
to be persistent if normal velocity vanishes as long as the contact pressure remains
positive, which reads

(2.4) σν

.

dν = 0.

The seminal contribution from Laursen and Chawla [17] has established that the per-
sistency condition (2.4) is key as far as energy conservation is concerned. Nevertheless,
for most numerical schemes, conditions (2.3) and (2.4) cannot be fulfilled simultane-
ously. For energy conservation purposes, the authors enforce a discretized version of
(2.4), at the price of violating (2.3) at second order with respect to the time step.

Frictionless contact is characterized by a null tangent force στ = 0 on ΓC . In the
presence of Coulomb’s friction with friction coefficient F, the tangent force is given by

(2.5) |στ | − F|σν | ≤ 0,
.

dτ + β2στ = 0,
.

dτ (|στ | − F|σν |) = 0.

The first equation above provides a bound of the tangential stress as a function of
the contact pressure, the second equation enforces a tangential stress opposite to the
tangential velocity, and the last equation implies that the contact is either sticky, i.e.,
tangential velocity vanishes, or slippy if the tangential stress reaches the maximum
given in terms of the normal stress.

Let us now formulate the evolution equations of the contact problem under inves-
tigation. The body is subjected to volume forces f(x, t) and to boundary tractions
g(x, t) on ΓN . We denote by λ̃ the Lagrange multiplier representing the contact forces
−σν. V stands for the space of displacements, and the space M of Lagrange mul-
tipliers is the dual space of the trace space W of V restricted to ΓC . The mixed
formulation of the problem reads as follows.

Find (d, λ̃) such that, for almost every time t ∈ [0, T ], d(t) ∈ V, λ̃(t) ∈ M(λ̃) and

(2.6)
m(

..

d, η) + anl(d, η) + b(η, λ̃) = F (η), η ∈ V,

bτ (
.

d, μ− λ̃) ≤ 〈γC , μν − λ̃ν〉, μ ∈ M(λ̃),

with the convex set of admissible multipliers

M(λ) := {μ ∈ M : 〈μ, ξ〉 ≤ F〈λν , |ξτ |〉 for any ξ ∈ W such that ξν ≤ 0} .
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We have used the following notation

m(d̈, η) :=

∫
Ω

ρ d̈ · η, anl(d, η) :=

∫
Ω

∂W

∂E
(E(d)) : ((I + ∇d)�∇η),

b(η, μ) := bν(η, μ) + bτ (η, μ) := 〈ην , μν〉 + 〈ητ , μτ 〉 :=

∫
ΓC

ην · μνds +

∫
ΓC

ητ · μτds,

and

F (η) :=

∫
Ω

f · v +

∫
ΓN

g · vds.

Observe that, for small displacements, the contact condition can be approximated by

bν(d, μ− λ̃) + bτ (
.

d, μ− λ̃) ≤ 〈γC,0, μν − λ̃ν〉, μ ∈ M(λ̃).

Doing so, the new right-hand side in (2.6) becomes independent of the deformation.

2.2. Corotational formulation and linear elasticity. Linearized elasticity
assumes that both displacements and strains are small. Small strains imply that the
approximation

(2.7)
∂W

∂E
(E(d)) ≈ ∂2W

∂E2
(0) : E(d);

in the case of isotropic materials, the latter expression reduces to the Saint Venant–
Kirchhoff law (cf. Ciarlet [4]). Furthermore, the assumption of small displacements
entails that

E(d) ≈ ε(d) :=
1

2

(
(∇d)� + ∇d

)
.

Of course, when large rotations are considered, the assumption of small displace-
ments is violated even though strains remain small, and linearized elasticity loses any
interest.

For simplicity, we assume here that the body under consideration will undergo
large rotations with respect to a single axis, of direction Δ, fixed once and for all.
The corotational formulation decomposes the deformation as follows:

(2.8) ϕ(x, t) = Rθ(t) (x + u(x, t)) ,

where Rθ(t) is a global rotation of axis Δ and angle θ, and u(x, t) the field of displace-
ments with respect to the rotated configuration. In order to guarantee the uniqueness
of the decomposition (2.8), an additional constraint has to be considered. Following
the approach of de Veubeke [7], ϕ being given, we choose θ so that the weighted
L2-norm of u, namely

∫
Ω
ρu2, be minimal. This minimization condition is equivalent

[10] to

(2.9)

∫
Ω

ρu · Πx = m(u,Πx) = 0.

Here, Π denotes the tangent rotation matrix ΠΔ for the fixed rotation axis Δ. Conse-
quently u is free from any elementary rotation. We are thus looking for the displace-
ment u in the space:

(2.10) X :=

{
u ∈ V,

∫
Ω

ρu · Πx = 0

}
.
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We remark that another possible decomposition is splitting the deformation into
translation, rotation, and displacement. Indeed, in our decomposition, we do not
isolate explicitly large translations, unlike [7], as the new displacement u can include
global translations.

However, the underlying translation can be computed in a postprocess by

(2.11) T (u) :=

∫
Ω
ρu∫

Ω
ρ
.

Observe that the operator T commutes with the operator Π, i.e., T (Πu) = ΠT (u)
and satisfies the following property:

(2.12) m(T (a), b) = m(T (a), T (b)), a, b ∈ V.

Then, the decomposition into a global rigid body motion and a local deformation
is given by

ϕ = T̃ + Rθ (x + ũ) ,

with ũ := u − T (u) and T̃ := RθT (u) and (θ, u) are given by decomposition (2.8).
Hence, we can use our decomposition into rotation and displacements (including
translations) and postprocess the full decomposition into rigid body motion and
translation-free displacements.

The decomposition (2.8) has the important following property:

(2.13) E(d) = E(u),

where E is the large strain as defined in (2.1). Since the large rotation part has
been filtered out of d, the rotated field of displacements u has small amplitude up
to the addition of a uniform translation. It becomes possible to make the following
approximation:

(2.14) E(d) ≈ ε(u).

Let us now rewrite the weak mixed formulation (2.6) in terms of the new variables
(θ, u). Using (2.13) and x + d = Rθ(x + u) in the definition of anl, the elastic term
becomes

anl(d, η) =

∫
Ω

∂W

∂E
(E(u)) :

(
(I + ∇u)�R�

θ ∇η
)

= anl(u,R
�
θ η).

In order to rewrite the acceleration term, we define the relative velocity by

(2.15) s(x, t) := R�
θ(t)

.
ϕ(x, t) =

.
u(x, t) +

.

θ(t) Πr(x, t),

with

(2.16) r(x, t) := x + u(x, t).

The acceleration term can then be expressed by

..

d(x, t) =
..
ϕ(x, t) = Rθ(t)

(
.
s(x, t) +

.

θ(t) Πs(x, t)
)
,
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R TRν
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(x+u)
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0
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ν0

π

πΩ

Fig. 2.2. Rotated projection. Left: Operator R�
θ πRθν0Rθ. Right: Operator πθ

ν0
.

hence

(2.17) m(
..

d, η) = m(
.
s +

.

θΠs,R�
θ η).

We finally rewrite the frictional contact formulation. As we consider a motion
close to a rigid body motion, we assume that the normal vector can be approximated
by

(2.18) ν ≈ Rθν0.

We first consider the nonpenetration condition γC ≥ 0. Using the approximation
(2.18) in the definition (2.2) of γC , we get

γC(x) ≈ (πRθν0Rθ(x + u) −Rθ(x + u)) ·Rθν0

= (R�
θ πRθν0Rθ(x + u) − (x + u)) · ν0

= (R�
θ πRθν0Rθ(x + u) − x) · ν0 − uν0 ,

where uν0 := u · ν0. To simplify this expression, we first take a closer look to the
operator R�

θ πRθν0
Rθ. Here, a rotated point is projected in the direction of a rotated

vector onto the obstacle. The resulting point is then back-rotated. Applying a rota-
tion, we see that this is equivalent (see Figure 2.2) to a projection with respect to ν0

onto the back-rotated obstacle, i.e.,

R�
θ πRθν0Rθ = πθ

ν0
,

where πθ
ν0

is the projection onto R�
θ (Ωr) in direction ν0. We finally get

γC(x) = γC,θ − uν0 ,

where the function γC,θ is defined by γC,θ := (πθ
ν0

(x + u) − x) · ν0. We remark that,
in the case x + u ≈ x, we obtain

γC,θ ≈ (πθ
ν0
x− x) · ν0,

leading to a right-hand side which only depends on θ. Using this computation of the
gap function, the nonpenetration conditions (2.3) read

(2.19) uν0 ≤ γC,θ, σ̃ν0(u) ≤ 0, σ̃ν0(u)(uν0 − γC,θ) = 0,

where σ̃ = R�
θ σRθ. Defining sτ0 := s − (s · ν0)ν0 and σ̃ν0 := (σ̃ν0) · ν0, σ̃τ0 :=

σ̃ν0 − σ̃ν0ν0, the friction conditions (2.5) can be rewritten as

(2.20) |σ̃τ0(u)|−F|σ̃ν0
(u)| ≤ 0, sτ0 +β2σ̃τ0(u) = 0, sτ0 (|σ̃τ0(u)| − F|σ̃ν0

(u)|) = 0.
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Concerning the persistency condition (2.4), we obtain

(2.21) σ̃ν0
(u) sν0

= 0,

with sν0 := s · ν0. These conditions are the standard contact and friction conditions
with a fixed normal vector. However, for our setting, we have to use a modified gap
function, and have in mind that the conditions are formulated in terms of R�

θ (σ̃(u)ν)

instead of (σ(u)ν) and s instead of
.

d. This motivates the introduction of a different
Lagrange multiplier λ that represents −R�

θ (σ̃(u)ν),

λ := R�
θ λ̃,

and we derive b(η, λ̃) = b(R�
θ η, λ).

We are now in the position to gather the new representation of the inertial term
(2.17), the contact (2.19) and friction conditions (2.20), and obtain the following weak
mixed formulation: Find (u, λ) with u(t) ∈ V, λ(t) ∈ M(λ(t)) such that

(2.22)

m(
.
s +

.

θΠs,R�
θ η) + anl(u,R

�
θ η) + b(R�

θ η, λ) = F (η), η ∈ V,
bν0(u, μ− λ) + bτ0(s, μ− λ) ≤ 〈γC,θ, μν0 − λν0〉, μ ∈ M(λ).

Considering that, in the above formulation, η stands for any variation δϕ =
δθΠRθr + Rθδu of ϕ = R(x + u), variations with respect to u lead to the choice
η = Rθv for any variation v ∈ X of u ∈ X , where X is the space defined in (2.10).
The first line of (2.22) then reads

(2.23) m(
.
s +

.

θΠs, v) + anl(u, v) + b(v, λ) = Fθ(v), v ∈ X ,

where Fθ(v) := F (Rθv). Variations with respect to θ lead to the choice η = ΠRr,
with r defined in (2.16); hence

(2.24) m(
.
s +

.

θΠs,Πr) = Fθ(Πr) − b(Πr, λ).

Altogether, the weak formulation reads as follows: Find (u, λ, θ), with u(t) ∈ X ,
λ(t) ∈ M(λ(t)), θ(t) ∈ R such that

(2.25)

m(
.
s +

.

θΠs,Πr) = Fθ(Πr) − b(Πr, λ),

m(
.
s +

.

θΠs, v) + anl(u, v) + b(v, λ) = Fθ(v), v ∈ X ,

bν0(u, μ− λ) + bτ0(s, μ− λ) ≤ 〈γC,θ, μν0 − λν0〉, μ ∈ M(λ).

Moreover, taking, respectively, into account the linearizations (2.7) and (2.14), we
get

(2.26) anl(u,R
�
θ η) ≈ a(u,R�

θ η),

where a(u, η) :=
∫
Ω
(σ(u) : ε(η)) with (σ(u))ij := Cijml(ε(u))ml. Here (Cijml) denotes

the elasticity tensor of the Saint Venant–Kirchhoff material law. Using this lineariza-
tion in (2.25), we formulate our first corotational model: Find (u, λ, θ), with u(t) ∈ X ,
λ(t) ∈ M(λ(t)), θ(t) ∈ R such that

(2.27)

m(
.
s +

.

θΠs,Πr) = Fθ(Πr) − b(Πr, λ),

m(
.
s +

.

θΠs, v) + a(u, v) + b(v, λ) = Fθ(v), v ∈ X ,

bν0(u, μ− λ) + bτ0(s, μ− λ) ≤ 〈γC,θ, μν0 − λν0〉, μ ∈ M(λ).
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Observe that, in the above formulation, the elastic equilibrium equation is linear in
u. Therefore, the Lagrange multiplier λ represents a linearized contact stress. Thanks
to the described approach, the only nonlinearities remain in the scalar unknown θ and
the frictional contact inequality condition. It’s crucial to note that performing the
proposed linearization after the splitting of the deformation into θ and u gives quite a
different model than the standard linearization. In fact, a formal testing of the second
line of (2.27) with v = Πr would result in a nonvanishing elastic work a(u,Πr) �= 0 in
general. This is a well-known drawback of the standard linear elastic models: Zero-
energy modes are not rigid body motions (cf. [4]). This is remedied by our corotational
approach.

2.3. Energy and angular momentum consistency. To obtain an energy-
consistent algorithm, we use a linearized version of the persistency condition (2.21),
which implies that

bν0(s, λ) = 0.

Then, multiplying the first line of (2.27) with
.

θ, choosing v =
.
u ∈ X in the second

line, and adding the two equations, we obtain the energy-consistency of our approach.
Lemma 2.1. The solution (u, λ, θ) of (2.27) satisfies

.

E = Fθ(s) − bτ0(s, λ),

where the energy E is defined by

E :=
1

2

(∫
Ω

ρ|s|2 +

∫
Ω

σ(u) : ε(u)

)
=

1

2
(m(s, s) + a(u, u)) .

Moreover, from the definition of r and s, we find that
.
r =

.
u and, using the

skew-symmetry of Π, we conclude that 0 = m(Πs, s) = m(Πs,
.
r +

.

θΠr). This gives

m(
.
s +

.

θΠs,Πr) = m(
.
s,Πr) − m(Πs,

.
r) = m(

.
s,Πr) + m(s,Π

.
r), which results in the

following lemma.
Lemma 2.2. Condition (2.24) is equivalent to the consistency of the angular

momentum

(2.28)
.

J = Fθ(Πr) − b(Πr, λ),

where the angular momentum J is defined by

J :=

∫
Ω

ρs · Πr = m(s,Πr).

We will adapt the same techniques to show the energy and angular momentum
consistency of the time-discretized scheme.

2.4. Linearization of the inertial term. For a small local displacement u,
u 
 x, the approximation x + u ≈ x may be used. Since in our corotational model
the deformation u also incorporates translations, we therefore approximate u by the
mean translation (2.11), i.e.,

(2.29) r(x, t) = x + u(x, t) ≈ x + T (u(x, t)) =: r̃.

Replacing r by r̃ in (2.15), we obtain the simplified form

(2.30) s(x, t) ≈ s̃(x, t) =
.
u(x, t) +

.

θ(t)Π(x + T (u(x, t))).
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Using this approximation, the first two lines of (2.27) read

m(
.
s̃ +

.

θΠs̃,Πr̃) = Fθ(Πr̃) − b(Πr̃, λ),

m(
.
s̃ +

.

θΠs̃, v) + a(u, v) + b(v, λ) = Fθ(v), v ∈ X .

The advantage of this linearization consists in the fact that the linearized rotation
Πr̃ does not have any influence on the elastic term; using the skew-symmetry of Π, a
straightforward computation yields a(u,Πr̃) = a(u,Πx) = 0, and hence the two above
equations can be combined into one equation using the unconstrained test space V.
We use condition (2.9) as a constraint to determine the correct value of θ. The weak
formulation of our second corotational model thus reads: Find (u, λ, θ), with u(t) ∈ V,
λ(t) ∈ M(λ(t)), θ(t) ∈ R such that

(2.31)

m(u,Πx) = 0,

m(
.
s̃ +

.

θΠs̃, v) + a(u, v) + b(v, λ) = Fθ(v), v ∈ V,
bν0

(u, μ− λ) + bτ0(s̃, μ− λ) ≤ 〈γC,θ, μν0
− λν0

〉, μ ∈ M(λ).

The energy consistency of the new scheme with linearized r follows analogously
to Lemma 2.1 where the simplified energy is defined by

Ẽ :=
1

2

(∫
Ω

ρ|s̃|2 +

∫
Ω

σ(u) : ε(u)

)
=

1

2
(m(s̃, s̃) + a(u, u)) .

However, the angular momentum consistency does not hold for this approach.
Indeed, let us test the first equation of (2.31) with v = Πr̃, keeping in mind the fact
that

0 = m(Πs̃, s̃) = m(Πs̃, u̇ + θ̇Πr̃).

The inertial term reduces to

m(
.
s̃ + θ̇Πs̃,Πr̃) = m(

.
s̃,Πr̃) + m(s̃,Πu̇) =

.

J̃ + E.

We have denoted by J̃ = m(s̃,Πr̃) the expected angular momentum, and by E =

m(s̃,Π(u̇ −
.
r̃)) the angular momentum consistency error. Using

.
r̃ = T (

.
u), the defi-

nition of s̃, the skew-symmetry of Π, and property (2.12) of T , a simple calculation
shows that the local consistency error is given by

E =
.

θm(Πx,Π(
.
u− T (

.
u))),

which is, in general, not zero but remains small for small variations of velocities.

3. Time-discretized conservative schemes. In this section, we present an
energy- and angular-momentum consistent time-discretization of the previous models.
We first introduce some notation.

3.1. Midpoint time-discretization. Let us denote by n the time index. We
use a midpoint time-discretization which has the property

(3.1)
.
a
n+ 1

2 bn+ 1
2 + an+ 1

2

.

b
n+ 1

2
=

.

[ab]
n+ 1

2

,
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where we have used the following notations:

�n+ 1
2 :=

�n+1 + �n

2
,

.
�
n+ 1

2 :=
�n+1 − �n

Δt
,

with Δt the time step and � a generic time-discretized quantity. The right-hand side
Fθ is discretized at time (n + 1

2 )Δt by

Fn+ 1
2 (v) :=

∫
Ω

fn+ 1
2 ·R

θn+ 1
2
v +

∫
Γ

gn+ 1
2 ·R

θn+ 1
2
v.

3.2. Algorithm. We propose to discretize the two first equations in (2.27) at
time (n + 1

2 )Δt as follows. Assuming un ∈ X , sn and θn ∈ R are given, we look for
un+1 ∈ X and θn+1 ∈ R such that

m(
.
s
n+ 1

2 +
.

θ
n+ 1

2
Πsn+ 1

2 ,Πrn+ 1
2 ) + b(Πrn+ 1

2 , λn+ 1
2 ) = Fn+ 1

2 (Πrn+ 1
2 ),(3.2)

m(
.
s
n+ 1

2 +
.

θ
n+ 1

2
Πsn+ 1

2 , v) + a(un+ 1
2 , v) + b(v, λn+ 1

2 ) = Fn+ 1
2 (v) v ∈ X(3.3)

complemented by the relation

(3.4) sn+ 1
2 =

.
u
n+ 1

2 +
.

θ
n+ 1

2
Πrn+ 1

2 .

The time-discretization of the contact inequality (third line of (2.27)) is, however,
more involved. As mentioned in section 2.1, it is not possible to fulfill the contact
conditions (2.19) and the persistency condition (2.21) simultaneously. To define an
energy-consistent time discretization, we follow the approach by Laursen and Chawla
[3, 17]. The contact condition (2.19) is replaced by a discrete condition depending

only on sn+ 1
2 . For the linearized elastic term, this condition reads

(3.5)
γn
C,θ > 0 ⇒ σν0(u

n+ 1
2 ) = 0,

γn
C,θ ≤ 0 ⇒

(
s
n+ 1

2
ν0 ≤ 0, σν0(u

n+ 1
2 ) ≤ 0, σν0(u

n+ 1
2 )s

n+ 1
2

ν0 = 0
)
,

where γn
C,θ := γC,θn . By this modification, a small penetration (of order sΔt) is

permitted. On the other hand, it can be easily verified that a discrete persistency
condition

(3.6) bν0(s
n+ 1

2 , λn+ 1
2 ) = 0

holds for this modified condition. Condition (3.5) is equivalent to

(3.7) s
n+ 1

2
ν0 ≤ γ̂n

C,θ, σν0
(un+ 1

2 ) ≤ 0, σν0
(un+ 1

2 )(s
n+ 1

2
ν0 − γ̂n

C,θ) = 0,

with

γ̂n
C,θ :=

{
∞ γn

C,θ > 0,

0 γn
C,θ ≤ 0.

In combination with the friction condition, we arrive at the following discretization
of the contact inequality:

(3.8) b(sn+ 1
2 , μ− λn+ 1

2 ) ≤ 〈γ̂n
C,θ, μν0 − λ

n+ 1
2

ν0 〉, μ ∈ M(λn+ 1
2 ).

Observe that the contact condition is now exclusively written in terms of sn+ 1
2 .
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Hence we have the following algorithm for our first corotational formulation:
Given θ0, u0, s0, the external forces (fn+ 1

2 )n∈N and (gn+ 1
2 )n∈N, suppose that θn ∈ R,

un ∈ X , and sn have already been computed. Then, the computation of θn+1 ∈ R,
un+1 ∈ X , sn+1 ∈ V, and λn+ 1

2 ∈ M(λn+ 1
2 ) is carried out by solving

(3.9)

m(
.
s
n+ 1

2 +
.

θ
n+ 1

2
Πsn+ 1

2 ,Πrn+ 1
2 ) + b(Πrn+ 1

2 , λn+ 1
2 ) = Fn+ 1

2 (Πrn+ 1
2 ),

m(
.
s
n+ 1

2 +
.

θ
n+ 1

2
Πsn+ 1

2 , v) + a(un+ 1
2 , v) + b(v, λn+ 1

2 ) = Fn+ 1
2 (v), v ∈ X ,

b(sn+ 1
2 , μ− λn+ 1

2 ) ≤ 〈γ̂n
C,θ, μν0

− λ
n+ 1

2
ν0 〉, μ ∈ M(λn+ 1

2 )

under the additional kinematical constraint (3.4).
As in the continuous setting, we get the energy consistency by multiplying (3.2)

by
.

θ
n+ 1

2
, testing (3.3) with

.
u
n+ 1

2 , adding the two resulting equations, and using a
property (3.1) of the midpoint scheme. We employ the discrete persistency condition
(3.6) and find

En+1 − En =Δt
(
Fn+ 1

2 (sn+ 1
2 ) − bτ0(s

n+ 1
2 , λn+ 1

2 )
)
,

where the discrete energy is defined by

En :=
1

2
(m(sn, sn) + a(un, un)).

By means of the time-discretization of sn+ 1
2 , we find

.
r
n+ 1

2 =
.
u
n+ 1

2 = sn+ 1
2 −

.

θ
n+ 1

2
Πrn+ 1

2 ,

and using (3.1), we conclude that (3.2) is equivalent to

J n+1 − J n = Δt
(
Fn+ 1

2 (Πrn+ 1
2 ) − b(Πrn+ 1

2 , λn+ 1
2 )
)
,

where the discrete angular momentum is defined by:

J n := m(sn,Πrn).

For the second formulation (linearized r), we do not have to work in the space
X but can use equation (2.9) as a constraint. We get the following algorithm: Given

θ0, u0, s0, the external forces (fn+ 1
2 )n∈N and (gn+ 1

2 )n∈N, suppose that θn, un ∈ X ,
and sn have already been computed. Then, the computation of θn+1 ∈ R, un+1 ∈ V,
s̃n+1 ∈ V, and λn+ 1

2 ∈ M(λn+ 1
2 ) is carried out by solving,

(3.10)

m(un+ 1
2 ,Πx) = 0,

m(
.
s̃
n+ 1

2
+

.

θ
n+ 1

2
Πs̃n+ 1

2 , v) + a(un+ 1
2 , v) + b(v, λn+ 1

2 ) = Fn+ 1
2 (v) v ∈ V,

b(s̃n+ 1
2 , μ− λn+ 1

2 ) ≤ 〈γ̂n
C,θ, μν0

− λ
n+ 1

2
ν0 〉, μ ∈ M(λn+ 1

2 )

under the constraint

s̃n+ 1
2 =

.
u
n+ 1

2 +
.

θ
n+ 1

2
Πr̃n+ 1

2 .

Establishing the corresponding discrete energy evolution mimics the proof from the
continuous setting.
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4. Space discretization. In this section, we present a suitable space discretiza-
tion for the time-discretized systems. Standard finite elements are used to provide
an approximation of V, but the construction of a suitable space-discretization of the
space X is more involved. The domain Ω is assumed to be exactly represented by a
mesh consisting of quadrilaterals and/or triangles in the two-dimensional setting and
hexahedra and/or tetrahedra in the 3D. We use a conforming finite element space of
lowest order and denote by φi the nodal vector basis functions; they span the finite
element space Vh. The mass matrix is denoted by M , Mij := m(φi, φj), and the
stiffness matrix for the linearized material law by S, Sij := a(φi, φj). The identity
matrix is denoted by I.

Applying this discretization to the second corotational scheme (with linearized
r), the first two lines of (3.10) read

(4.1)
Mu

n+ 1
2

h · Πx = 0,

M

(
.
s̃
n+ 1

2

h +
.

θ
n+ 1

2
Πs̃

n+ 1
2

h

)
+ Su

n+ 1
2

h + Bλ
n+ 1

2

h = f
n+ 1

2

h ,

with (f
n+ 1

2

h )i := Fn+ 1
2 (φi), and x is the vector whose entries are the vertex coordi-

nates.
For the space-discretization of M, we use the dual Lagrange multipliers space

Mh [26], which is given in terms of the dual basis functions ψi. By the definition of
the dual basis, the coupling matrix B defined by Bij := b(φi, ψj) is then a diagonal
matrix, and the weak inequality constraint (3.8) yields a nodewise inequality. More
details and a suitable discretization of the convex set M(λh) can be found in [14, 15].

4.1. Finite element approximation of the space X . As condition (2.9) is
not fulfilled by standard finite element basis functions, we use a Lagrange multiplier
approach for our first corotational scheme to guarantee (2.9) and state the problem
in a saddle-point framework; see [24].

We define the subspace Xh of X by Xh := X ∩ Vh. To guarantee that u ∈ Vh is
also in Xh, i.e., satisfies (2.9), we introduce a Lagrange multiplier α ∈ R. Equation
(3.3) then reads at the fully discretized level:

M

(
.
s
n+ 1

2

h +
.

θ
n+ 1

2
Πs

n+ 1
2

h

)
+ Su

n+ 1
2

h + Bλ
n+ 1

2

h + αn+ 1
2MΠx = f

n+ 1
2

h ,(4.2)

Mu
n+ 1

2

h · Πx = 0,(4.3) (
M(

.
s
n+ 1

2

h +
.

θ
n+ 1

2
Πs

n+ 1
2

h ) + Bλ
n+ 1

2

h

)
· Πr

n+ 1
2

h = f
n+ 1

2

h · Πr
n+ 1

2

h .(4.4)

This equation system is completed using the contact constraints. Observe that we
now use two Lagrange multipliers, namely, λh representing the contact stress and α
to ensure that uh is in the correct space.

4.2. Equation systems. We recall that the contact and friction conditions are
given only in terms of s. Therefore it is convenient to reformulate the equations with

respect to the unknown s
n+ 1

2

h . We start with the first approach, r = x+ u. From the
relationship

s
n+ 1

2

h =
2

Δt

(
u
n+ 1

2

h − un
h

)
+

.

θ
n+ 1

2
Π(x + u

n+ 1
2

h ),
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we deduce that

u
n+ 1

2

h =

(
2

Δt
I +

.

θ
n+ 1

2
Π

)−1 (
s
n+ 1

2

h +
2

Δt
un
h −

.

θ
n+ 1

2
Πx

)
.

Plugging this into (4.2)–(4.4) and using that un
h ∈ Xh, gives the following system:

As
n+ 1

2

h + Bλ
n+ 1

2

h + αMΠx = frhs,

qx · sn+ 1
2

h = qrhs,

g(
.

θ
n+ 1

2
) = 0,

with

A := M

(
2

Δt
I +

.

θ
n+ 1

2
Π

)
+ SCn, Cn :=

(
2

Δt
I +

.

θ
n+ 1

2
Π

)−1

.

The right-hand side for the first equation is given by

frhs := f
n+ 1

2

h +
2

Δt
Msnh − 2

Δt
SCnu

n
h + θ̇n+ 1

2SCnΠx;

for the second equation, we have

qx := C�
n MΠx, qrhs := θ̇n+ 1

2 (MCnΠx) · Πx− 2

Δt
MCnu

n
h · Πx.

For the third equation, we use

g(
.

θ) := M

(
2

Δt

(
s
n+ 1

2

h (
.

θ) − snh

)
+

.

θΠs
n+ 1

2

h (
.

θ) + Bλ
n+ 1

2

h (
.

θ) − f
n+ 1

2

h (
.

θ)

)
· Πr

n+ 1
2

h (
.

θ).

For the second approach, r̃ = x + T (u), the situation is much simpler. As noted
before, we can work in the space Vh, and thus no Lagrange multiplier α is needed.

Moreover, the representation of u
n+ 1

2

h in terms of s
n+ 1

2

h (and T (u
n+ 1

2

h )) has the simpler
form

(4.5) u
n+ 1

2

h =
Δt

2
s
n+ 1

2

h − Δtθ̇n+ 1
2

2
Π
(
x + T

(
u
n+ 1

2

h

))
+ un

h.

We exploit the fact that Π is skew-symmetric, and T (u
n+ 1

2

h ) is a translation. Thus,

SΠ(x + T (u
n+ 1

2

h )) = 0, and we finally get the following system

As
n+ 1

2

h + Bλ
n+ 1

2

h = frhs,

g

(
.

θ
n+ 1

2

)
= 0,

with

A := M

(
2

Δt
I +

.

θ
n+ 1

2
Π

)
+

Δt

2
S, frhs := f

n+ 1
2

h +
2

Δt
Msnh − Sun

h,
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and

g(
.

θ) := Mu
n+ 1

2

h (
.

θ) · Πx.

Knowing s
n+ 1

2

h , integration yields

T
(
s
n+ 1

2

h

)
=

(
2

Δt
I +

.

θ
n+ 1

2
Π

)
T
(
u
n+ 1

2

h

)
− 2

Δt
T (un

h) ,

and therefore

T (u
n+ 1

2

h ) = Cn

(
T (s

n+ 1
2

h ) +
2

Δt
T (un

h)

)
.

Using this value, u
n+ 1

2

h is computed by (4.5).

5. Solving the nonlinearities. The fully discretized systems are linear in s,
but the nonlinearity in θ and the contact nonlinearities remain. In this section, we
give an algorithm to solve these nonlinearities. Our algorithm consists of an outer
loop to determine the correct contact set and an inner–Newton loop to resolve the
correct value of θ. Within the inner–Newton loop, a linear equation system depending
on the contact set and θ has to be solved.

To solve the contact constraints, we use a primal-dual active set strategy [15].
The adaption to our problem setting is quite straightforward as we are in the case
of a standard frictional contact problem, where only the acceleration term and the
right-hand side is modified. We remark that the application of the active set strategy
can be interpreted as a semismooth–Newton scheme [13]. In this section, we outline
the approach and refer to [15] for further details.

5.1. Primal-dual active set strategy. To solve the friction and contact in-
equalities (2.20), (3.5), respectively, the set of nodes on ΓC is divided into inactive
nodes, sticky nodes, and slippy nodes. The pointwise contact conditions then give rise
to a specific boundary condition for each set of nodes and thus yields a linear equation
system to solve. Knowing the solution of this linear system, the set of inactive, sticky,
and slippy nodes is updated. We note that there are different possibilities to derive
the boundary conditions and to determine the contact sets, especially in the frictional
case. This choice has an influence on the convergence rate of the active set strategy.
To simplify the notation herein, we restrict ourselves to the case of frictionless contact
and refer to [14] for details about the sets and boundary conditions to be used in the
frictional case.

For frictionless contact, the nodes on the contact boundary ΓC are divided into
the set of active nodes A and the set of inactive nodes I. The set of inner nodes
and nodes on the Neumann boundary is denoted by N . For active nodes, we have
homogeneous Dirichlet boundary conditions for s in a normal direction and λp,τ0 = 0,
while for inactive nodes, we impose λp = 0.

5.2. Matricial representation. Let us now detail the matricial representation
of the system to solve at each Newton iteration within one active set prediction. Here,
we assume that both the partition into active and inactive nodes as well as the value
of θ is known. We focus on the first approach with r = x + u and remark that the
second approach can be treated in the same way with a different matrix A, a different
right-hand side, and by omitting the terms introduced by the Lagrange multiplier α.
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We introduce the matrices N and T , which have the normal and tangential vectors
ν0, τ0 of the vertex in the corresponding line, denote the vector MΠx by C and the
vector q�x by Q�, and recall that the matrix D := B is a diagonal matrix. Then, using
the contact condition in a normal direction and zero stress in a tangential direction,
we arrive at the following system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ANN ANI ANA CN 0 0
AIN AII AIA CI DI 0
AAN AAI AAA CA 0 DA
QN QI QA 0 0 0
0 0 NA 0 0 0
0 0 0 0 0 TA
0 0 0 0 II 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

sN
sI
sA
α
λI
λA

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

fN
fI
fA
q
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, using the dual Lagrange multipliers, a static condensation of λ (see [15])
leads to

(5.1)

⎛
⎜⎜⎜⎜⎝

ANN ANI ANA CN
AIN AII AIA CI

0 0 NA 0
TAAAN TAAAI TAAAA TACA
QN QI QA 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
sN
sI
sA
α

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

fN
fI
0

TAfA
q

⎞
⎟⎟⎟⎟⎠ ,

which can be solved by a standard solver. We remark that the Lagrange multiplier λ
can be computed a posteriori by

λ = D−1(fS − αCS −ASN sN −ASSsS),

where the set S is the set of vertices on ΓC , S := I ∪ A.

5.3. Newton scheme. To determine the correct value of θ, we use a standard
Newton scheme

.

θ
n+ 1

2

k+1 =
.

θ
n+ 1

2

k −
g

(
.

θ
n+ 1

2

k

)

g′
(

.

θ
n+ 1

2

k

) .

Here, g is computed by using the values s
n+ 1

2

h and u
n+ 1

2

h , and λ
n+ 1

2

h is obtained by
solving the linear system (5.1).

To compute the derivative of g with respect to
.

θ
n+ 1

2
, the derivative of s

n+ 1
2

h is

needed. Differentiating (5.1) with respect to
.

θ
n+ 1

2
gives

Ã
ds

n+ 1
2

h

d
.

θ
+

dÃ

d
.

θ
s
n+ 1

2

h =
df̃

d
.

θ
,

where Ã is the system matrix and f̃ is the right-hand side of (5.1). Thus,
ds

n+ 1
2

h

d
.

θ
can

be computed by solving system (5.1) with a different right-hand side.
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6. Numerical examples. In this section, we present some two- and three-
dimensional numerical examples making use of the Saint Venant–Kirchhoff stored
energy function. The two-dimensional examples are computed in the plane strain
setting orthogonally to the rotation axis.

We use both corotational formulations presented in section 2 and compare them
with the standard energy-consistent discretization of the Saint Venant–Kirchhoff model
without linearized strains.

6.1. Initial conditions. Let
.

θ0 be an initial angular velocity,
.

T 0 an initial trans-
lation speed, and u0 the initial elastic displacement of the structure. We are interested
in such initial conditions rendering the movement steady. More precisely, in the ab-
sence of external loading or contact forces, the dynamic solution would be given by
the following deformation mapping:

ϕ(x, t) = R
t

.

θ0
(x + u0(x)) + t

.

T 0.

In the presence of the first corotational model, this is tantamount to finding u0 ∈ V
such that

(
.

θ0)
2 m(Π2(x + u0), v) + a(u0, v) = 0, v ∈ V.

We use the initial velocity s0 =
.

θ0Π(x + u0) +
.

T 0. Note the condition u0 ∈ X is
automatically enforced, indeed, using v = Πx above proves that m(u0,Πx) = 0.

For the linearized corotational model, we compute that

a(u0, v) = −(
.

θ0)
2 m(Π2x, v), v ∈ V,∫

Ω

ρu0 = 0, m(u0,Πx) = 0.

Here the two extra conditions imply uniqueness of the solution. The initial velocity

is given by s0 =
.

θ0 Πx +
.

T 0.
For the nonlinear model, the initial deformation ϕ0 can be determined up to a

rotation. To fix this indetermination, we look for ϕ0 ∈ X such that

(
.

θ0)
2 m(Π2ϕ0, v) + anl(ϕ0 − x, v) = 0, v ∈ X .

The initial velocity is then given by
.
ϕ0 =

.

θ0 Πϕ0 +
.

T 0.
Observe that all of these initial velocity fields are rigid body motion velocity fields.

They slightly differ, because the models vary in terms of the linearization of strains
and r. It can be easily verified that the time-discretization for the two corotational
formulations exactly recover this rigid body motion, whereas the midpoint scheme for
the standard nonlinear model does not; see [24].

6.2. A computation of the rotation angle and the translation. In order to
compare the three schemes, we compute in a postprocess the rotation and translation
of the deformed body. For the corotational schemes, the rotation angle appears as
unknown and is therefore a part of the solution. The translation Tn is computed by

Tn := R�
θnT (un) = R�

θn

∫
Ω
ρun∫
Ω
ρ

.
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Fig. 6.1. Ball on plane. Left: Problem setting. Right: Grid.

Fig. 6.2. Ball on plane without friction. Deformed body and effective stress at time t = 0.012,
0.018, 0.024, 0.03, and 0.036.
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Fig. 6.3. Ball on plane without friction. Energies and angular momentum for corotational
(left), linearized r (middle), and standard nonlinear scheme (right).

For the nonlinear scheme, the rotation angle θn is computed from the solution ϕn

through the minimization condition (2.9), i.e.,∫
Ω

ρR�
θnϕn · Πx = 0,

and the translation Tn by

Tn := T (ϕn) =

∫
Ω
ρϕn∫
Ω
ρ

.

6.3. Ball on plane. In our first example, we consider a rotating ball impacting
a rigid plane; see Figure 6.1. We compare our schemes with the standard nonlinear
scheme using a relatively stiff ball and small time steps. The domain Ω is a ball of
radius r = 10 (see Figure 6.1), and the initial distance between the center of the ball
and the plane is 10.5. As material parameters, we use E = 1.62 · 107, ν = 0.2, and
ρ = 1. The initial conditions are given by

.

θ0 = 2,
.

T 0 = V0 = (40,−40)�, and as a
time step we choose Δt = 0.002.

First, we consider the frictionless contact problem. The solution at various time
steps is plotted in Figure 6.2. Figure 6.3 illustrates energy and angular momentum
evolutions for the three schemes. All schemes are energy-conserving and yield almost
the same energy evolution. Moreover, as predicted by the theory, the nonlinearized
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Fig. 6.4. Ball on plane without friction. Translation (left), angular velocity (middle), rotation
angle for corotational, linearized r and standard nonlinear scheme (right).
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Fig. 6.5. Ball on plane without friction. Comparison of iterations per time step. Right: Interval
of contact (zoom).

corotational scheme and the standard nonlinear scheme yield the same angular mo-
mentum conservation, unlike the linearized corotational variant.

The translations, angular velocities, and rotation angles are depicted in Figure 6.4.
All of the schemes are in good agreement with each other regarding the prediction
of the translational component. However, the rotational velocity obtained by the
standard nonlinear scheme differs from both corotational predictions. This can be
explained by the polygonal shape of the discretized domain. Small changes in the
rotation angle therefore suffice to change contact mechanics and lead to different
angular velocities after contact. Hence even small changes in the rotation angle lead
to a different contact behavior and hence to different rotational speeds after contact.
However, as the time step Δt goes to zero, all of the approaches tend to predict the
same dynamics. The efficiency of the three schemes is compared in Figure 6.5, where
the total number of Newton’s iterations per time step is plotted. Before contact,
the corotational schemes only require one iteration per time step, as compared to
three for the standard nonlinear scheme. This is because the constant rigid body
motion is exactly resolved by the corotational schemes. During contact, the number
of iterations per time step increases but remain smaller for the corotational schemes.
In particular, the scheme with linearized r performs much better and barely requires
more iterations than an active-set solver for a linear material model. After contact,
the corotational schemes require two iterations for most time steps compared to three
or four for the standard nonlinear scheme. Altogether, we see that the corotational
schemes require many less iterations as compared to the standard nonlinear scheme,
while giving comparable results.

Within the same setting, we compute the solutions for a frictional contact prob-
lem with Coulomb friction and a friction coefficient F = 0.2. The solution at various
time steps is plotted in Figure 6.6. On Figure 6.7, energy evolution is depicted. Again,
good agreement on energy evolution can be observed between our two schemes and
the standard nonlinear scheme. As far as angular momentum is concerned, the coro-
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Fig. 6.6. Ball on plane with friction. Deformed body and effective stress at time t = 0.012,
0.018, 0.024, 0.03, and 0.036.
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Fig. 6.7. Ball on plane with friction. Energies and angular momentum for corotational (left),
linearized r (middle), and standard nonlinear scheme (right).
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Fig. 6.8. Ball on plane with friction. Translation (left), angular velocity (middle), rotation
angle for corotational, linearized r and standard nonlinear scheme (right).

tational scheme without linearization and the nonlinear scheme give similar results,
while the scheme with linearized r exhibits discrepancy. The three schemes are energy
consistent. Additionally, we compare the translation, angular velocity, and rotation
angle; see Figure 6.8. Due to friction, the rotation direction reverses during contact.
The results for the three schemes almost coincide. We see a slightly larger average
rotation velocity after contact when using the standard nonlinear scheme than for the
corotational schemes. This results in small differences of the rotation angle.

6.4. Ball and ellipse between two planes—multiple contact problem. In
our second example, we use a similar setting. Here a ball moves between two planes
and comes into contact with both planes. The domain Ω is a ball of radius r = 1;
see Figure 6.9, the initial distance is 0.5 between the center of the ball and the upper
plane, and 0.1 between the center and the lower plane. As material parameters, we

use E = 1.62 · 107, ν = 0.2, and ρ = 2. The initial conditions are given by
.

θ0 = 20

and
.

T 0 = V0 = (40,−40)�; as a time step we choose Δt = 0.001. As before, we use
Coulomb friction with a friction coefficient F = 0.2.

Here, we compare our two corotational schemes (with and without the lineariza-
tion of r). The solution at various time steps is plotted in Figure 6.10. The results for
the mean translation, angular velocity, and the angle of rotation can be seen in Figure
6.11. First of all, we see that the dynamic behavior is much more complex than in
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Fig. 6.9. Ball between two planes. Left: Problem setting. Right: Grid.

Fig. 6.10. Ball between two planes. Deformed body and effective stress at time t = 0.003, 0.022,
0.041, 0.07, and 0.095.
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Fig. 6.11. Ball between two planes. Translation (left), angular velocity (middle), rotation angle
for standard corotational and linearized r scheme (right).

the single-contact problem. Nevertheless, our corotational schemes are able to handle
the large rotation and all contact situations. All five contacts can be seen in the first
picture of Figure 6.11. The contact angles vary between contact times. This has also
an effect on the change of the rotation velocity as can be seen in the second graph.
The energy and angular momentum is plotted in Figure 6.12. Again, both schemes
are energy consistent and yield similar results. This can also be observed in the evo-
lution of the mean translation and the mean rotation. However, small differences in
the translation occur.

In the next example, we demonstrate that even small differences can have a strong
influence on the long-time behavior of dynamical contact problems. Instead of a
ball, we use now an ellipse with the same material parameters and initial data as
for the ball. The problem setting and initial grid is depicted in Figure 6.13. We
note that this problem is ill posed in the following sense. A small change in the
initial conditions leads to a different contact situation. Impact after impact, this
small difference amplifies, and a completely different behavior occurs. The solution
at various time steps is plotted in Figure 6.14.

The results comparing our corotational schemes are given in Figure 6.15. For a
long time in the interval (0, 0.8), results groove to be identical. Only small differences
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Fig. 6.12. Ball between two planes. Energies and angular momentum for corotational (left),
linearized r (middle), and standard nonlinear scheme (right).
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Fig. 6.13. Ellipse between two planes. Left: Problem setting. Right: Grid.

Fig. 6.14. Ellipse between two planes. Deformed body and effective stress at time t = 0.004,
0.025, 0.045, 0.071, and 0.099.
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Fig. 6.15. Ellipse between two planes. Translation (left), angular velocity (middle), rotation
angle for standard corotational and linearized r scheme (right).

in the rotation velocity can be observed after the third contact. However, this small
difference leads to a completely different mean translation and thus rotation velocity
after the fourth contact.

6.5. Torus on plane—3D contact example. In the last example, we apply
our corotational scheme to a 3D problem. Here, the domain is given by a torus with
inner radius 6 and outer radius 8; see Figure 6.16. The material parameters are given
by E = 1.6 · 105, ν = 0.2, and ρ = 1. The torus is assumed to impact a plane located
at distance 9 from the initial location of its center. As an initial condition, we use
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Fig. 6.16. Torus on plane. Problem setting (left), angular speed and rotation angle (middle),
eEnergies and angular momentum (right).

Fig. 6.17. Torus on plane. Deformed mesh at time t = 0.05, 0.15, 0.25, 0.35, and 0.45.
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Fig. 6.18. Torus on plane with friction. The change of angular velocity and rotation angle for
different friction coefficients F (left), influence of F on the translation after time of first contact
(tc) (right).

.

θ0 = 5 and
.

T 0 = V0 = (10,−10)�; as a time step, we choose Δt = 0.01. In Figure
6.17, the deformed mesh at various time steps is depicted for the frictionless case. The
angular velocity and energy plots are given in the last two pictures of Figure 6.16.
The results are similar to those from the first example. Additionally, we consider the
case of Coulomb friction and test the influence of the friction parameter F on the
change of rotation speed during contact. In Figure 6.18, the results for F = 0.25, 0.5,
and 0.75 are given. The higher the friction is, the smaller the angular speed is after
contact. As can be expected, the friction coefficient also influences the flight direction
after contact; see the right picture in Figure 6.18.

7. Conclusion. We have introduced two energy-conserving corotational formu-
lations for bodies undergoing large displacements and small deformation in the pres-
ence of frictional contact. Unlike standard schemes, these formulations strictly pre-
serve rigid motions independently of the time step, and the first one also preserves
angular momentum at the price of solving a nonlinear problem on the rotation angle.
Numerical tests demonstrate the efficiency and the accuracy of the proposed approach
as compared to the standard conservative approach.
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[15] S. Hüeber and B. Wohlmuth, A primal-dual active set strategy for non–linear multibody
contact problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 3147–3166.

[16] N. Kikuchi and J. Oden, Contact Problems in Elasticity: A Study of Variational Inequali-
ties and Finite Element Methods, SIAM Studies in Applied Mathematics Vol. 8, SIAM,
Philadelphia, 1988.

[17] T. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic
contact problems, Internat. J. Numer. Methods Engrg., 40 (1997), pp. 836–886.

[18] T. Laursen and G. R. Love, Improved implicit integrators for transient impact problems—
Geometric admissibility within the conserving framework, Internat. J. Numer. Methods
Engrg., 52 (2002), pp. 245–274.

[19] T. Laursen, Computational Contact and Impact Mechanics, Springer, Berlin, 2002.
[20] B. Nour-Omid and C. Rankin, Finite rotation analysis and consistent linearizations using

projectors, Comput. Methods Appl. Mech. Engrg., 93 (1991), pp. 353–384.
[21] M. Nygard and P. Bergan, Advances in treating large rotations for nonlinear problems,

in State of the Art Surveys on Computational Mechanics, A. Noor and J. Oden, eds.,
American Society of Mechanical Engineers, New York, 1989, pp. 305–332.

[22] C. Rankin and F. Brognan, An element-independent corotational procedure for the treatment
of large rotations, ASME J. Pressure Vessel Tech., 108 (1986), pp. 165–174.

[23] C. Rankin and B. Nour-Omid, The use of projectors to improve finite element performance,
Comput. & Structures, 30 (1988), pp. 257–267.

[24] J. Salomon, A. Weiss, and B. Wohlmuth, Energy conserving algorithms for a corotational
formulation, SIAM J. Numer. Anal., 46 (2008), pp. 1842–1866.

[25] K. Willner, Kontinuums- und Kontaktmechanik, Springer, Berlin, 2003.
[26] B. Wohlmuth, A mortar finite element method using dual spaces for the Lagrange multiplier,

SIAM J. Numer. Anal., 38 (2000), pp. 989–1012.
[27] P. Wriggers, Computational Contact Mechanics, John Wiley, New York, 2002.


