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Cross sections corresponding to relaxation times T, and T, measured in microwave transient
experiments are calculated for systems of OCS and nonpolar collision partners, employing the
recently developed semiclassical theory of molecular collisions. Cases in the presence and absence of
static Stark field are described. The over-all agreement with existing experimental results is
encouraging. Similarities and differences between T /T, values in microwave transient experiments
and in molecular beam maser experiments are discussed, together with a role of semiclassical

collisional selection rules.

. INTRODUCTION

In a previous paper1 (which will be referred to as I),
relations have been established between relaxation times
T, and T, measured in low pressure microwave transient
experiments, in the presence and in the absence of static
fields, and various collision cross sections. In this
paper the semiclassical expressions given in Sec. VI of
Part I are applied to study the collision dynamics of the
systems of OCS and various collision partners and the
results are compared with the available experimental
data. In the analysis, comparison is also made between
the results of microwave transient and molecular beam
maser experiments, and a role of collisional selection
rules, which occur semiclassically but not classically,
is described.

{I. THE INTERMOLECULAR POTENTIAL

The intermolecular potential between OCS and a struc-
tureless atom depends on the distance R between the cen-
ters of mass of the atom and OCS, and on the angle ¥
between R and the molecular axis of OCS (Fig. 1).

Let j be the classical rotational angular momentum of
OCS, 1 the orbital angular momentum for the relative
motion, and J the total angular momentum defined by the
vector equation J= 1+J. Let the magnitudes of these
angular momenta be l 7, and J. The calculation of clas-
s1ca1 tra]ectorles is to be specified by these quantities
l ] and J and their conjugate angle variables q,, ¢; and
qy (Fig. 2 of I). x is related to these action-angle vari-
ables by?

COSY = COSg,; COSq; + [(ja_ lAz—-jhz)/ZlAjA] sing, sing, . 2.1)

When London dispersion forces are mainly responsible
for the anisotropic intermolecular interaction, ® the po-
tential is estimated to be%?

V(R, x)= 4 €{(o/R)* - (o/R)1+a, Pylcosx)]} .
In this equation, a, is calculated from the formula®

a,=(a'- a'’)/(a' + 20')

(2.2)

(2. 3)
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where o’ and a’/ are the longitudinal and transverse
polarizabilities of the linear molecule. From the values
given in Ref. 7, a, is found to be 0, 28 for OCS, The
quantities ¢ and € in Eq. (2. 2) are estimated from the
usual combination rules for the Lennard-Jones param-
eters®;

(2. 4)

o= %(Uocs+ ox)
€= (€ocs€x)' /2, (2.5)

where X refers to the perturbing atom. From Ref. 6(b),
it is found that €= 58,5 °K, ¢=3.35 A for OCS-He and
€= 204 °K, o= 3.87 A for OCS-Ar

I, CALCULATION OF CROSS SECTIONS

The cross sections of%. 4 to be calculated are related
to the corresponding relaxation matrix elements by Eq.
(6.1) of I:

Afi o si=N{v0fir ), (3.1)
where 7 and f denote the angular momentum quantum
numbers j; and j, of the absorber before and after light
absorption and before a collision, while i’ and f denote
their values after a collision. N is the number density of
the perturbing gas, and (- -.) denotes a thermal average:

(‘U(T;(:‘:'ﬂ >: [ 4nvzd?)p,,(vo}{.{:,ﬂ) . (3. 2)

Here, v is the relative velocity for the absorber-per-

turber pair and
pv= /21y T) 2exp(- pv?/2k5 T) . (3.3)

The relevant formulas for computing a,’f{.,ﬂ in the gen-
eral case are discussed in Sec, VIof L

FIG. 1. Relative coordi-
nates for describing atom—
rotor collision.
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From Eq. (2.2), it is observed that the potential is
invariant under one or both of the following transforma-
tions:

1= g+ T,
1 1 (3. 4)
q.’ - qj + 7.
Hence, one only has to consider ¢; and gq; in the interval
from O to 7 and symmetry considerations®® reduce the
cross section given by Eq. (6.8) of I to

oKiep= ] 2nb db S(b) (3.5)
)
'di]_ f*f N z
Sb_—'f—]' dtI 27 (00 80 =-P50 7) . (3.6
®) AR zl](ff{i 70.9) )

Throughout this paper, % is set equal to unity. f, f,
and fin (3. 6) denote the initial values of these variables
before a collision; the final values are denoted by
primes; b is the impact parameter defined by

b=1/pg,

where p, is the magnitude of the radial component of
the relative translational momentum, For the usual
semiclassical reason, '™ j I andJ equalj+ 3, I+ 3,
and J+ 3 ; j and J denote the means % (j,+j,) and % (J;
+dJy), respectively; Pj. jis a transition probabilitylike
complex-valued term whose primitive semiclassical
value is'?

(3.7)

P i@, d,0,0)=4 Y |87’ /8@@,/2m) | DEY(aBy) ,

SePe
(3.8)

where the sum is over stationary phase points in a 7 in-
terval in g, space, and where the quantities on the RHS
are evaluated along trajectories with initial angular
momentum j equal to 3(J; +5,) and final angular momen-
tum ' equal to 1(fy + 7/). DE4(@By) is the complex con-
jugate of the rotation matrix D& (aBy), !® and 5/, b are
equal toj;-j{ and j,—j;, respectively. g is the reorien-
tation angle of the vector j (whose magnitude is §) due
to collision, and @ and v describe the collision phase
shift. These angles are given in Eq. (6.11) of I in terms
of the properties of the trajectory, (They are also given
in Figs, 2and 3of 1. )

A. Application to 7,

For the spectral transition i —f, T, for absorption
in the absence of static fields is given by Eq. (4. 32) of
I, which yields

1/Tz=Re A}, , (3.9)

and for the case of linear molecules it involves the cross
section 0}, ,, with K=1, From the spectroscopic selec~
tion rule j, —j;=1, j{-j{=1, one sets 6=6'=1 in Eq.
(3.8). For absorption or emission experiments per-
formed in the presence of a static field, Eqgs. (4.37) and
(4. 42) of 1 indicate that a linear combination of cross
sections of various K’s is required. In particular, for
the (ji,my)= (1, £1)= (j;,ms)= (2, 1) transition, Egs.
(4. 37) and (4. 42) of 1 give

1/Te=Re(} A}, + $4%,4), (3.10)

while T of the (j;,m ;)= (1, 0)«— (j,, m,)= (2, 0) transition
is given by Eq. (4.8) of I:

1/T2=Re(s Ay, + 5 0%, 5)

Hence, the K=1 and K= 3 cross sections are required
for these transitions.

(3.11)

B. Application to 7,

1. General

Here, the cross sections corresponding to T, are con-
sidered. From (3. 37) of I, for the i «f transition,

1/T1= %(Au,ii - Aff,u+ Aff,_ff" Aii,ff) . (3. 12)

According to Eq. {2.2) of I, Ag,;; and A;; 4, are propor-
tional to the S-matrix elements S;; and S;,. However,
symmetry considerations®® on the particular form of
the intermolecular potential (2. 2) impose the collisional
selection rule Aj=0,2,4,... Since j,-j; equals unity
for dipole radiation, Sy; vanishes, Thus, Ay ;;, and
similarly A,; ,; equal zero for any system whose inter-
molecular potential is invariant under one or both trans-
formations of (3.4), i.e., has the property that V(R, x)
=V(R,m-x). For such systems, therefore,

V/Ty= 3D gi,u0+ Aggrp) o (3.13)

For the A’s in Eq. (3.13), 6 and 8’ in Eq. (3.8) are both
zero (they involve j, -j;=0, etc). Since D& (aBy) equals
the reduced rotation matrix d§(8), the cross sections
contributing to Eq, (3. 13) are not affected by the rota-
tional phase shifts o and .

2. Absorption experiments in the absence of static fields

For these experiments described in Sec. V.A of 1,
Footnotes 35 and 36 of I show that to a good approxima-
tion, only the K=0 cross section is needed for T, ex-
cept for the j= 0w 1 transition, For the j=0+ 1 tran-
sition, the expression for T, given in Footnote 35 of
Part Iis

1/Ty= 5[ ((00, 00| A |00, 00)) + ((10,10|A|10, 10))]
=3[ Afo,00+ 5 ALy, 11+ 5 AR 1, (3.14)

where the collisional selection rule discussed above and
Eq. (4.8) of I have been used,

3. Pulse experiments

For pulse experiments discussed in Sec. V. C of 1,
T, is given by Eq. (5. 3) of Ifor m =0 and by Eq. (4. 43)
of I for m #0, For the j=0+ 1 case where the (j,m)
= (0, 0)~ (1, 0) transition is excited by the first m-pulse,
Ty is again given by (3, 14) above, and both the transient
absorption experiment and the pulse method give the
same T;. For thej=1+ 2 case, if the (j,m)=(1,0)
«~ (2, 0) transition is pumped by the 7-pulse, T, is given
by (5.3) of I:

/Ty=3[(3 AY 1+ 2 AfLn)+ G Agz,zz+ ¥ Agz,zz+'§'gA§a,za)] )

(3.15)
while if the (j,m)= (1, +1)— (2, £ 1) transition is pumped
by the 7-pulse, T, is given by Eq, (4.43) of I:
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1/T1 = é[(% A(1)1.11*’L %Af1.11)+ (§ Aga,zz*“%/\gz.az*ls‘g/\gz.zz” .

(3.16)
In Eqgs. (3.15) and (3. 16), the collisional selection rule
discussed above has been used,

When the K-dependence of the A’s in (3.14)-(3. 16) is
Small we have l/Tl._ Z(AOO 00+ A11 11) for (3 14) and
1/T1— 2(Ad1,11+ A2z, 22) for (3,15) and (3. 16).

4. Semicfassical expressions

The required cross section can be written explicitly
from Eqgs. (3.5), (3.6), and (3. 8) as

tdg, (L. s

ola=n [ was [ [ 33 200 -y,

0 T i (3.17)

where now the primitive semiclassical value for P; ; is

P;5(@,d,b,0)=4 |9j'/83,|™dkp) .

S.P.

(3.18)

Here ] ]i and the substition 6= 6’/= 0 has been made.
When K = 0, d(@Bv)=1 and neither reorientation nor
rotational phase shift enters into the cross section,

In Egs. (3.8) and (3. 18), it is assumed that real sta-
tionary phase points exist. For cases where no real
stationary phase points exist but where the final rota-
tional angular momentum does come close to the sta-
tionary phase value, the factor

§ [o7 /07, |™

in the above expressions is replaced by the uniform ap-
proximation value

2n|0j'/8q,|™ p* /2 Ai¥p),
as discussed at the end of Sec. VIof I.

There are situations, however, when the primitive
semiclassical transition probability defined by Eq. (3. 8)
is greater than 1, which is physically unrealistic. For
such cases, a uniform approximation might be invoked,
as has been done in some other rotational energy trans-
fer problems studied in this laboratory. 12 However, for
present purposes, a simpler procedure suffices, namely
to replace Eq. (3. 8) in those cases by

Pr.;—; loj’/0d, -IDo'o(aﬁY)/Z; la7/07,|™ .
(3.19)
Finally, it is convenient to define an effective cross

section by

_6;511'!‘ = (UU!va'ﬂ >/<‘U > , (3. 20)

where (v)= (85 T/mu)'/? is the average thermal velocity.

IV. RESULTS

To obtain the cross sections, the classical equations
of motion were integrated numerically, using the poten-
tial given by Eq. (2.2). Integration was performed in
Cartesian coordinates rather than in action angle coor-
dinates, because of the low j values considered here.

(At low j’s, j can become small at some points along the
trajectory and the angle variables would then become
ill-defined, )

A. Cross section for 7, processes

Effective cross sections defined by Eq. (3. 20) were
calculated by a Monte Carlo procedure summarized in
the Appendix, It is convenient to define a cross section
o(T,) for T, by

1/T,=N{v)o(T,) . (4.1)
First, the case of absorption with no static field pres-

ent was treated. Comparing (4.1) with Egs. (3.1),
(3.9), and (3. 20), one finds

o(Tz)= Re C—Yfli,ﬁ , 4.2)

where Re indicates that the real part is taken, Thus,
only the cross section with K=1 is needed. The results
of the OCS~Ar and OCS~He systems for both the j=0
-1 and 1 2 transitions are given in Table I, together
with experimental results from linewidth measurements.

To investigate the dependence of the collisional process
on impact parameter, a velocity-averaged partial cross
section is defined:

5()=Re (vS®))/(v), (4.3)

where (*++ ) denotes an average over the Maxwell~Boltz-
mann distribution of relative velocity [cf. Egs. (3.2)

and (3. 3)] and S(b) is defined by Eq. (3.6). S() was
evaluated at various impact parameters for both the
OCS-Ar and OCS~He systems for the j= 1 2 transi-
tion and the results are plotted in Fig. 2.

Calculations of o(T,) using (4. 2) for the OCS-H;,
OC8-C0O,, and OCS-N, systems have also been per-
formed for the case that the perturbers are treated as
structureless. The potential of Eq. (2, 2) was then used
with the parameters in it estimated the same way as for
OCS-Ar and OCS-He using the combination rules (2. 4)
and (2. 5). The values of € and ¢ for use in Eq. (2. 2)
were €=111 °K and o= 3. 55 A for the OCS—H, system,
252 °K and 4. 31 A for the OCS-CO, system, and 126 °K
and 3. 99 A for the OCS-N, system. The results are
summarized in Table I, together with experimental mea-
surements®!*® from linewidths.

TABLE I. Cross sections for T, processes at T~ 300°K.
Spectral o(Ty o(T,)
transition (measured) (calculated)

System Ji = ds 3% %)

0OCS-CO, 0—1 200* 195+16

OCS~N, 0—-1 149al 1249

OCS-Ar 0—1 143+11

OCS—Ar 1—~2 125, 91 +4° 146+12

OCS—H, 0—1 66" 445

0OCS—He 0—1 49,2+1.2¢ 33+3

OCS—He 1—2 30,°46.8+1.4° 29+3

dReference 20(a).
*References 4 and 14.
'Reference 20(b).

2Reference 16.
PReferences 4 and 15,
°Reference 3(b).
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FIG. 2. The partial cross section 5 ®) versus impact parame-
ter & (in A).

Next, the case of absorption or emission in the pres-
ence of a static Stark field is considered. From Eq.
(3.10), the cross section for the (j;,m;)=(1, £1)
~— (jg,ms)=(2, £1) transition is given by

o(T )= Re(%a}u it %@i ,/i) s (4.4a)
while that for the (j; ,m;)= (1, 0)— (j,,m,)= (2, 0) transi-
tion is given by

o(Ty)=Re(G T, pu+ 255.51) - (4. 4b)

Both 5,4 and 3}, were calculated for both OCS~Ar
and OCS~He systems and the results are listed in Table
.

B. Cross sections for 7, processes
A cross section ¢(T,) for T, can be defined by
1/Ty=N(v)o(Ty). (4.5)

Then, from Eqgs. (3.1), (3.13), and (3. 20), one has, for
the ¢ — f spectral transition for a transient absorption
experiment performed in the absence of a static field,

o(T,)= %(5?1,{6 +c—72{,/f) , 5,f*0,1, (4.6)
For the j = 0 1 transition, (3.14) gives
o(T1)= (500,00 + 5011,11+ 5021,11) - (4.7)

For T, measured by the pulse technique when the (j,m)
= (1, 0)~ (2, 0) transition is excited by the 7-pulse,
(3.15) gives

10 2 —0 - -
o(Ty)= 2[(Gon, 11+ % 0% 1)+ (3G22,20+ i’agz,zﬁ%'gcéa,zz)] .

(4. 8)
When the (j,m)= (1, £1) = (2, + 1) transition is pumped
by the 7-pulse, (3.16) gives

1 _2 16 4
o(T1)= 2 [(F 07,1+ 3551, 1)+ (302, 20+ + 052,22+ 2 52, 22)] «
(4.9)
TABLE II. Calculated cross sections (in %) for T, for different
m~-transitions, T =300 K.
o{Ty) for o(T,) for
(Fom)=(1,£1) (jsm}=(1,0)
System Re@is )  Re@¥ ) —{2,+1) transition —(2,0) transition
OCS~Ar  146=12 162+ 14 152 156
10CS—He 29+3 38+4 33 34

TABLE III. Calculated cross sections & ;; (in A% used to

calculate Ty. T=300°K.

4
System 00,00 LATRY Biu Thn vh, » G 2,22
OCS-Ar 146 +13 135+11 149+13 125 +11 137 £11 14412
OCS—~He 35+4 263 43+ 4 29+3 38+4 44+ 4

Effective cross sections 5 ;;, defined in Eq. (3.17) for
Ji=0, 1, and 2 of both OCS~He and OCS~Ar systems,
were calculated and are summarized in Table III. Using
Eqs. (4.6)-(4.9), o(T,)sforthej=0—1landj=1+2
spectral transitions for various experiments were eval-
uated, and are summarized in Table IV together with
the values of o(T;) corresponding to the same spectral
transitions,

V. DISCUSSION

Considering the approximate nature of the treatment
for the nonpolar molecules (H;, CO,, N,)in Table I,
the agreement between experimental and calculated val-
ues of T, is surprisingly good for systems with the larg-
er cross sections, If was noted in Part I that the ex-
pression for 1/T; in terms of relaxation matrix elements
is also equal to that for the linewidth measured in line
broadening experiments under nonsaturation conditions,
Such equivalence has been demonstrated experimentally
for the OCS self-broadéning experiments for the j=1
— 2 transition, *"'** That some of the calculated values
in Table I are below the experimental results, particu-
larly at low cross sections, is perhaps an indication that
additional reinforcing anisotropic interaction terms are
present, in addition to the one in the potential (2, 2).

The T,’s for transitions listed in Table II for each
system studied under a static Stark field are about equal,
One can see from Eqs. (3.10) and (3, 11) that it is un-
likely that any m-dependence would be observed: Am 21
and A}, ,, are not very different in value for the cases
treated, and the weight factors in Eqs. (3.10) and (3. 11)

TABLE IV. Comparison of calculated cross sections for T,

and Ty, T=300°K.

O'(T1) O'(Tz)
System Spectral transition (A Ay
A. When the m-levels are degenerate:
OCS—Ar j=0e1 145* 143°
OCS—~Ar j=le2 130¢ 146°
OCS—He j=0e1 36? 33P
OCS~He j=1+2 28° 29°
B. When the m~degeneracy is lifted by a Stark field:
OCS-Ar (7,m)=(1,0) ~(2,0) 1414 156°
OCS—Ar (jom)=(1,£1) = (2,£1) 138* 152¢
OCS—~He (j,m)=(1,0) ~(2,0) 3sd 34¢
OCS—He Gom)=(1,£1) = (2,1) 34! 338

*From Eq. (4,7).
bFrom Eq. (4.2).
°From Eq. (4.6).
dFrom Eq. (4.8).

°From Eq. (4.4b).
fFrom Eq. 4.9).
8From Eq. (4.4a).

J. Chem. Phys,, Vol. 63, No. 1, 1 July 1975

Downloaded 08 Mar 2006 to 131.215.225.174. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



294 W.-K. Liu and R. A. Marcus: Theory of relaxation matrix. |l

tend to reduce any difference.

The physical interpretation of these weight factors,
i.e., of the coefficients of A} 4 and A}, ,; in Eqgs,
(3.10) and (3.11), is fairly straightforward: K (with
z-component Q) is formed vectorially by [Eq. (A36)of I]

(5.1)

As discussed in Sec, IV of Part I, @ is predetermined
to be zero. Now, in Eq. (3,11) the coefficients of Aﬂ i
and A,, .#i €ach equals the square of the Clebsch—Gordan
coefficient {j,,ms;j; ,m;|K,Q), i.e., of (2,0;1,0(1,0)
and (2,0;1,0(3,0), respectively, and is the probability
of finding K=1 and K = 3, respectively, when both j; and
iz have z-component equal to zero. In Eq. (3.10), the
coefficient of A}, 5; (A}, z) equals the sum of the square
of the Clebsch—Gordan coefficients (2,1;1, -1]1,0)
({2,1;1, -13,0)) and (2, -1;1,111,0)

({2, -1;1,113,0)) and given @ = 0, it is the probability
of finding K'= 1(3) when j;, j; have z~components satis-
fying either m;=1, me=—1lorm;=~1, my=1, (Even
in the presence of a Stark field, the states |j,» ) and
|7, —~m ) are degenerate, and one has equal a priori
probabilities of finding m;=~1, m,=1 andm;=1, m,
=-1,)

K:jf_ji °

One assumption made in phenomenologically treating
the data in terms of only two relaxation times 7; and T',
was seen in Part I to be that the collision dynamics of
the 7 and f states arefairly similar. The reasonableness
of this approximation is apparent from the absence of
any major dependence of the calculated cross sections
in Tables I and III on j; (cf. also the data in Ref, 19)
when j; is varied by one unit,

As in the case of T3, no major m-dependence of T,
was found in the calculations (Table IV). The reasons
are similar to those for the absence of #-dependence of
T,. Furthermore, while the values of 7, and T, for the
1 — 2 transition observed in the absence of static fields
are similar to those observed in the presence of a Stark
field for OCS-Ar, this is only approximately true for
OCS—-He (Table 1V). Except for the 0 1 transition,
which is a true 2-level system, comparisons of Eq.
(3.15) or (3. 16) with Eq. (4.32) of I and of Eq. (3.10)
or (3.11) with (3. 9) show that unless the K~dependence
of the relaxation matrix is small (which is the case for
OCS-Ar), T, and T, measured in transient absorption
experiments in the absence of static field would differ
from those measured in transient emission or pulse
method in the presence of a Stark field,

We turn next to the relation between 7'y and T,. It has
been observed experimentally that the values of 7'y and
T, for the OCS—-He system are about the same. % Results
of the present calculations given in Table IV agree with
this observation. This result that 7y~ T, is also ex-
pected directly from a comparison of the expressions for
T, and Ty: Specifically, we first note that T, is given
by (3.12) and T, by (3.10), with A being given originally
in terms of the S-matrix elements by Eq. (2. 2) of I:

Af',‘:'ﬂ = (N/ZW) E dea pa(é_ff' 6”1 - Z S,-a.,ﬂ,S;".,,.,;a) 5
3 a’
(5.2)

where a and a’ denote the states of the perturber (and
include those of the relative motion). From these equa-
tions we see that

7 W/em f dE,,pa[l—*Z (ISiar,al*+ [Sgar,7al®

= Spvial= [Siaee]9)

(5. 3)
_ 1 .
= 0/2m) 3 faBap 153 SparaSiei
SgeSiid|- (5.9)

Apart from usually relatively minor reorientation and
phase shift effects these weighted averages of Sy 4,

X S¥,1aand Sﬂ,. J,aS,,,,. 14 are each approximately equal

to that of ]S4, 4,12 (and 154,.,4,1%), when the collision
dynamics of the ¢ and f states are approximately similar,
Equation (5. 4) then becomes

1

ﬁz- de,,pa [1-]8,:(@)]?] (5.5)

where IS“(a)lz denotes 34+ 1Sz i 1% For this case of
similar collision dynamics of the ¢ and f states, the

‘first and second weighted averages of the S-matrix ele-

meats in (5. 3) are approximately equal, as are those of
the third and fourth. Thus,

de Pall
1

where [S,,(a))? denotes 3,.1Ss,5,!% Using unitarity of
the S-matrix the bracketted terms in (5. 5) and (5. 6) are
found to equal 3 u 1S,:@)12 and (3,1 Sw(@)1+ 1Su(a)i?),
respectively. Thus, the physical difference between T,
and T, is evident from (5. 5) and (5. 6): All collisions
which are inelastic with respect to the absorber’s inter-
nal state contribute to T,, whereas the inelastic colli-
sions which contribute to |Sy(a)!? i.e., which doubly
contribute to reducing the difference in populations of
the 7 and f states to its equilibrium value are doubly
effective in contributing to T;. (The other collisions
are only “singly” effective.) We shall denote the
weighted averages of IS,,(a) {2 and 1Sy (a)1? present in
(5.5) and (5.6) by {1S;;(a)1%)s and {1S,;(@)1?),,, respec-
tively.

- 8i(@) *+ |Sp(@) | (5.6)

Thus, one sees from (5. 5) and (5, 6) that, according
as the term ( lS,.,(a)lz)a, is relatively small or relatively
large, T; will be approximately equal to or appreciably

smaller than T,, respectively. In the present case, it
vanished by virtue of the selection rule Aj=0, 2,

£4, ..., which in turn arose irom the P,(cosy) potential
in (2. 2). (These collisional selection rules arise from
quantum mechanical interferences. The first semiclas-
sical description was given in Ref. 8. They occur semi-
classically but not classically, ) If instead, a P,(cosy)
term were the dominant anisotropic one in the potential,
the collisional selection rule would be Aj=0, £1, +3,
+5,... If, in this case, a collision resulted in the for-
mation of numerous possible states, (1Sy(a)l?),, would
still be small, although no longer zero. Thus, T, and
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T, would still be approximately equal.

However, when a P,(cosy) term dominates the anisot-
ropy and when at the same time essentially only Aj= 0,
+1 prevails in collisions, {1S(a)|?),, can become rel-
atively large, and then Ty would differ considerably from
T,. Other things being equal, small excitations (Aj=0,
+ 1) will tend to be the more likely the larger the value
Of Wi Teori, Where w,, is the rotational frequency of the
absorber and 7., is a typical duration of a collision.
Since w,, increases with decreasing moment of inertia
of the absorber, the ideal conditions for observing a
significant difference between T; and T, are a dominant
Py(cosy) anisotropy and a small moment of inertia of the
absorber.

Experiments have been performedwith OCS as absorb-
er and CH,F as perturber,? While the P,(cosy) term
might be a dominant one in this case, because of the
large dipole moment of CHgF, the other condition, name-
ly that of excitation to very few states is almost certainly
not fulfilled, due to the relatively large moment of iner-
tia of OCS. (The detailed trajectory calculations used to
obtain the cross sections for the systems in Table I sup-
port this view,) Experiments on systems with smaller
moments of inertia would be of interest, therefore,

Both an interesting similarity and a marked difference
occur hetween the results obtained in the microwave
transient experiments® and those obtained in a molec-
ular beam maser system, 2l In poth cases the investi-
gators found Ty= T, for the OCS~OCS and OCS~He sys-
tems. However, while Mider ef al,?® found Ty=T,for
OCS~CH,F, Wang ef al,? found T,=£ T,. 1t has been
noted? that this difference in the results is not necessar-
ily an experimental discrepancy, since the molecular
beam maser experiment measures forward scattering
while the other experiment measures total cross sec-
tions, and the behavior of the two could differ. We shall
proceed to show, using (5.5) and (5. 6), that the simi-
larity (OCS-OCS, OCS-He) and the difference (OCS-
CH;F) in the two experimental results on T,/T, are in-
deed in the direction expected.

First, we note that to treat the molecular beam maser
experiment some changes in detail in the equations in
Part I would have to be made (cf. Ref. 21), partly be-
cause of the initial rotational state selection in the beam
and more importantly because one is now treating differ-
ential rather than total cross sections. Nevertheless,
to make the argument we shall use (5. 5) and (5. 8), but
summed only over the larger orbital angular momenta,
namely over those corresponding semiclassically to the
large impact parameters which provide the forward scat-
tering into the detection system (cf. equation for R,
P. 5273 of Ref, 21). Thus, we are interested now in the
average value of S-matrix elements in (5. 5) and (5. 6)
corresponding to this range of impact parameters.

Both experiments and calculations®%* support the view
that forward scattering involves, as expected, more
elastic collisions than does that for total cross sections
[cf. also the results for 3(b) in Fig. 2, where 5(b) is
defined via (4.3), (3.5), and (3.6)]. Thus, one expects
and finds®*® fewer final collisional states excited in the

forward scattering experiment than that in the total cross
section one. For example, one sees a dramatic de-
crease in inelastic cross sections with decreasing scat-
tering angle in Fig. 5 of Ref, 23, the larger excitations
decreasing the most, Ultimately, at sufficiently low
scattering angles only one or two final postcollision
states will occur, In this case, the conditions become
increasingly appropriate for finding a difference between
Ty and T, in the molecular beam maser experiment when
the OCS is perturbed by a molecule with a large dipole
moment, such as CHgF., In confrast, in the OCS-OCS
and OCS~He systems, the condition that the dominant
anisotropic term be a P;(cosy) one is not fulfilled, judg-
ing from the equality of the 7; and 7, in the molecular
beam experiments [and from the potential (2. 2) for the
OCS-He system]. In this way, the differences and the
similarities of the results in the microwave transient
and molecular beam maser experiments can be under-
stood.

We turn next to the aspect of the theory of collisional
line broadening regarding the behavior of the partial
cross sections §(b) as a function of the impact param-
eter 4. The results in Fig. 2 for the OCS—-Ar and
OCS-He systems provide information on a classifica-
tion of inelastic collisions into strong or weak catego-
ries. Strong collisions are those which interrupt the
radiative process completely?*'®® and so are those
which change the j quantum number. Such events give
zero contribution to P;,; in the RHS of Eq. (3.6), and
contribute a value of unity to 5(b). Weak collisions are
those which do not affect the j quantum number but
change only the reorientation and/or the phase of the
rotor. They would give finite contribution to Pj,; on the
RHS of Eq. (3.6). For OCS-Ar, strong collisions
dominate for impact parameters less than 5 f\., as one
sees from the fact that for 56=5 A in Fig. 2, 5(b) is
close to unity, For the OCS-He system, on the other
hand, the results in Fig. 2 indicate that weak collisions
contribute significantly even at low impact parameters.
This phenomenon is not entirely unexpected, since the
interaction potential for OCS~He is much weaker than
that for OCS~Ar. At large impact parameters, only
elastic collisions are possible, rendering the second
term on the RHS of Eq. (3.6) equal to unity and thus
5(b) decreases to zero at large b,

It is of interest to compare the results in Fig. 2 with
an assumption commonly used in perturbative theories
of line broadening.? In the latter case, the partial prob-
ability term [called S,(b) there] becomes unbounded when
b becomes small. The general treatment then is to set
S,(b) equal to unity when b< by, where b, is determined
by the condition

Salbo) =1 .

One sees from Fig. 2 that such an assumption would not
be unreasonable for the OCS—Ar system. It would be
less accurate for the OCS-He one, The maximum in the
function 27 55(b) is found to occur, using the results in
Fig. 2, at =5 4 and 523 & for the OCS-Ar and
OCS—He systems, respectively,

5.7

Lastly, it is interesting to examine the implications of
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a situation where all collisions are strong for & less than
some given value, b,, and completely ineffective for
b>by; i.e,, where in (5.5) and (5.6), |S;;(a)!? is zero
for all orbital states a corresponding to &< b, and is
unity for all orbital states a corresponding 4> b,. Pro-
vided the collisions are sufficiently strong that [ S (a)l?
is also small for b<¥J, (and for 5> b,) because of colli-
sional excitation from state 7 to many possible states,
one then concludes from (5. 5) and (5. 6) that 7, = 7, for
this model. Several authors!™2” have employed this
strong collision assumption and hence only a single re-
laxation time was needed to accountfor saturationeffects.

VI. CONCLUSIONS

The present results show that the simple potential
(2. 2) provides a reasonable agreement between measured
and calculated cross sections for these systems of non-
polar collision partners, at least for case of the systems
with the larger cross sections. The potential contains no
adjustable parameters. The present calculations also
indicate that any m-dependence of Ty and T, would only
be small (but not because of any selection rule), al-
though calculations should be made in each case. A dif-
ference in the values of 7y and T3, on the other hand,
would be expected when two conditions are simultaneously
fulfilled: The anigotropic part of the interaction poten-
tial should have a dominant P(cosy) term, rather than
mainly a P, term, and the moment of inertia of the ab-
sorber should be sufficiently small. In this case,a col-
lisional selection rule of Aj =0, +1 would be roughly
achieved, and provided (| S;12),, is roughly comparable
with or greater than (1 - | §;;12),,, a significant differ-
ence in 7y and T, would occur, These arguments also
suggest an explanation for the interesting similarity
[for dominant P,(cosx) systems] and the difference [for
a P (cosx) system] in results of recent microwave tran-
sient and molecular beam maser experiments, In the
latter, we have made use of a collisional selection rule
which arises semiclassically but not classically., Fi-
nally, the concept of strong and weak collisions is dis-
cussed in the light of the results in Fig. 2.
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APPENDIX: EVALUATION OF (vof,. )

Two of the integration variables, b and v in Eq. (3.17),
where (3.5) and (3. 6) are used for o/ 4, have an in-
finite domain of integration. It is desirable to transform
the domain to a finite one to perform the Monte Carlo in-
tegration. A new variable x, is introduced via

dx, = - 270" exp( - 1f) dv , (A1)
where 7 is u/2ky T. Integrating (A1) and choosing
xy, =0 at v=o, we have as the new integration variable

%y = (1 +nf) exp( - 1727) .

x, goes from 1 to 0 as v goes from 0 to <,

(a2)

It is useful to transform & to a new variable®®:

x=exp( -/ B), (A3)
where B is a scaling constant, Thus,

dx, =(—2b/B)exp(~ ¥/ B)db , (A4)
and x varies from 1 to 0 as b varies from 0 to ». The

Gaussian weighting factor in (A4) resembles that in
Fig. 2 and so the transformation (A3) is appropriate.
Similarly, the variables x;, related to the cosine of the

angle between [ and 7, and ¥, are introduced®;
xy -4 =(S2=12-72)/417 | (A5)
xq :a—;/ﬂ. (AG)

Equation (3.17) for @£, ; becomes

1,101 01
FEi = fu fo L L (mB/x,) 00210715 = Py 7) dr,dmydn,dix,.
(AT)
The integral (A7) is evaluated by averaging the inte-
grand, denoted by f, over N points X,, randomly select-

ed within a 4-dimensional unit cube where N is a large
number, i.e.,

1 N
T a5 Z; fxz) . (AB)
The error is approximately given by
0°= 3 ) =T P/NN-1) (a9)

In our calculation, N equals 100 and the error estimate
was typically about 10%.
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