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We present results from detailed general relativistic simulations of stellar core collapse to a proto-

neutron star, using two different microphysical nonzero-temperature nuclear equations of state as well as

an approximate description of deleptonization during the collapse phase. Investigating a wide variety of

rotation rates and profiles as well as masses of the progenitor stars and both equations of state, we confirm

in this very general setup the recent finding that a generic gravitational wave burst signal is associated with

core bounce, already known as type I in the literature. The previously suggested type II (or ‘‘multiple-

bounce’’) waveform morphology does not occur. Despite this reduction to a single waveform type, we

demonstrate that it is still possible to constrain the progenitor and postbounce rotation based on a

combination of the maximum signal amplitude and the peak frequency of the emitted gravitational wave

burst. Our models include to sufficient accuracy the currently known necessary physics for the collapse

and bounce phase of core-collapse supernovae, yielding accurate and reliable gravitational wave signal

templates for gravitational wave data analysis. In addition, we assess the possibility of nonaxisymmetric

instabilities in rotating nascent proto-neutron stars. We find strong evidence that in an iron core-collapse

event the postbounce core cannot reach sufficiently rapid rotation to become subject to a classical bar-

mode instability. However, many of our postbounce core models exhibit sufficiently rapid and differential

rotation to become subject to the recently discovered dynamical instability at low rotation rates.
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I. INTRODUCTION

The final event in the life of a massive star is the
catastrophic collapse of its central, electron-degenerate
core composed of iron-peak nuclei. When silicon shell
burning pushes the iron core over its effective
Chandrasekhar mass, collapse is initiated by a combination
of electron capture and photo-disintegration of heavy nu-
clei, both leading to a depletion of central pressure support.
Massive stars in the approximate mass range of about 10 to
100 solar masses (M�) experience such a collapse phase
until their homologously contracting [1,2] inner core
reaches densities near and above nuclear saturation density
where the nuclear equation of state (EoS) stiffens, leading
to an almost instantaneous rebound of the inner core (core
bounce) into the still supersonically infalling outer core.
The hydrodynamic supernova shock is born, travels out-
ward in radius and mass, but rapidly loses its kinetic energy
to the dissociation of infalling iron-group nuclei and to
neutrinos that deleptonize the immediate postshock mate-
rial and stream off from these regions quasi-freely. The
shock stalls, turns into an accretion shock and must be
revived to produce the observable explosion associated
with a core-collapse supernova. Mechanisms of shock

revival are still under debate (a recent review is presented
in [3], but see also [4–6]) and may involve heating of the
postshock region by neutrinos, multidimensional hydro-
dynamic instabilities of the accretion shock, in the post-
shock region, and/or in the proto-neutron star, rotation,
magnetic fields, and nuclear burning. If the shock is not
revived, black-hole formation (on a timescale of �1–2 s
[7]) is inevitable and the stellar collapse event may remain
undetected by conventional astronomy or, perhaps, appear
as a gamma-ray burst if the progenitor star has a compact
enough envelope and sufficiently rapid rotation in its cen-
tral regions [8,9].
Conventional astronomy can constrain core-collapse su-

pernova theory and the supernova explosion mechanism
via secondary observables only, e.g., the explosion energy,
ejecta morphology, nucleosynthesis yields, residue neutron
star or black-hole mass and proper motion, and pulsar
magnetic fields. Neutrinos and gravitational waves, on
the other hand, are emitted deep inside the supernova
core and travel to observers on Earth practically unscathed
by intervening material. They can act as messengers to
provide first-hand and live dynamical information on the
intricate multidimensional dynamics of the proto-neutron
star and postshock region and may constrain directly the
core-collapse supernova mechanism. Importantly, core-
collapse events that do not produce the canonical observa-
tional astronomical signature or whose observational dis-
play is shrouded from view can still be observed in
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neutrinos and gravitational waves if occurring sufficiently
close to Earth.

Gravitational waves, in contrast to neutrinos, have not
yet been observed directly, but an international array of
gravitational wave observatories (see, e.g., [10]) is active
and taking data. Since gravitational waves from astrophys-
ical sources are expected to be weak, their detection is
notoriously difficult and involves extensive signal process-
ing and detailed analysis of the detector output. Chances
for the detection of an astrophysical event of gravitational
wave emission are significantly enhanced if accurate theo-
retical knowledge of the expected gravitational wave sig-
nature from such an event is at hand.

Theoretical predictions of the gravitational wave signa-
ture from a core-collapse supernova are complicated, since
the emission mechanisms are very diverse. While the
prospective gravitational wave burst signal from the col-
lapse, bounce, and the very early postbounce phase is
present only when the core rotates [11–18], gravitational
wave signals with sizeable amplitudes can also be expected
from convective motions at postbounce times, instabilities
of the standing accretion shock, anisotropic neutrino
emission, excitation of various oscillations in the proto-
neutron star, or nonaxisymmetric rotational instabilities
[17,19–23].

In the observational search for gravitational waves from
merging black hole or neutron star binaries, powerful data
analysis algorithms such as matched filtering are appli-
cable, as the waveform from the inspiral phase can be
modeled with high accuracy (see, e.g., [24]) and gravita-
tional wave data analysts already have access to robust
template waveforms that depend only on a limited number
of macroscopic parameters. In contrast, the complete
gravitational wave signature of a core-collapse supernova
cannot be predicted with template-level accuracy as the
postbounce dynamics involve chaotic processes (turbu-
lence, [magneto-] hydrodynamic instabilities) that are sen-
sitive not only to a multitude of precollapse parameters, but
also to small-scale perturbations of any of the hydrody-
namic variables.

While the complete supernova gravitational wave sig-
nature may remain inaccessible to template-based data
analysis, a number of individual constituent emission pro-
cesses, in particular, those involving coherent global bulk
dynamics and/or rotation, allow, in principle, for accurate
and robust waveform predictions that may be applied to
template-based searches. Rotating core collapse and core
bounce as well as pulsations or nonaxisymmetric rotational
deformations of a proto-neutron star constitute this group
of processes. Among them, rotating collapse and bounce is
the historically most extensively studied case (see, e.g.,
[25] for a historical review) and may be the most promising
for becoming robustly predictable in its gravitational wave
emission. Yet, to date, the gravitational wave signal from
rotating stellar core collapse and bounce has not been
predicted with the desired accuracy and robustness.

These deficiencies of previous simulations result from
the fact that the physically realistic modeling of core
collapse requires a general relativistic description of con-
sistently coupled gravity and hydrodynamics in conjunc-
tion with a microphysical treatment of the sub- and
supernuclear EoS, electron capture on heavy nuclei and
free protons, and neutrino radiation transport. Only very
few multidimensional general relativistic codes have re-
cently begun to approach these requirements [17,18]. In
addition, the properties of the EoS around and above
nuclear density are not very well constrained by theory
or experiments. The same applies to the rotation rate and
angular velocity profile of the progenitor core, which are
also not directly accessible by observation and very diffi-
cult to model numerically in stellar evolution codes.
Furthermore, variations with progenitor structure and
mass are to be expected. Therefore, the influence of rota-
tion and progenitor structure on the collapse and bounce
dynamics and thus the gravitational wave burst signal must
be investigated by extensive and computationally expen-
sive parameter studies.
Previous parameter studies have considered a large vari-

ety of rotation rates and progenitor core configurations, but
generally ignored important microphysical aspects and/or
the influence of general relativity. Mönchmeyer et al. [12]
performed axisymmetric Newtonian calculations with pro-
genitor models from stellar evolutionary studies. They
employed the microphysical nuclear EoS of Hillebrandt
and Wolff [26] and included deleptonization via a neutrino
leakage scheme and electron capture on free protons.
Capture on heavy nuclei was neglected, which resulted in
a too high electron fraction Ye at core bounce and a con-
sequently overestimated inner core mass [2,27]. In that
study a limited set of four calculations was computed and
two qualitatively and quantitatively different types of
gravitational wave burst signals were identified. Their
morphology can be classified alongside with the collapse
and bounce dynamics: Type I signals are emitted when the
collapse of the quasihomologously contracting inner core
is not strongly influenced by rotation, but stopped by a
pressure-dominated bounce due to the stiffening of the EoS
near nuclear density �nuc � 2� 1014 g cm�3, where the
adiabatic index �eos rises above 4=3. This leads to a bounce
with a maximum core density �max � �nuc. Type II signals
occur when centrifugal forces, which grow during contrac-
tion owing to angular momentum conservation, are suffi-
ciently strong to halt the collapse, resulting in consecutive
(typically multiple) centrifugal bounces with intermediate
coherent re-expansion of the inner core, seen as density
drops by sometimes more than an order of magnitude; thus
here �max <�nuc after bounce. Type I and II dynamics and
waveforms were also found in the more recent Newtonian
studies by Kotake et al. [15], who employed a more
complete leakage/capture scheme, but still obtained too
high Ye at bounce, and by Ott et al. [16], who performed
an extensive parameter study and for the first time also
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considered variations in progenitor star structure, but ne-
glected deleptonization during collapse.

Zwerger and Müller [13] carried out an extensive two-
dimensional Newtonian study of rotating collapse of ideal-
ized polytropes in rotational equilibrium [28] with a sim-
plified hybrid EoS, consisting of a polytropic and a thermal
component [29]. Electron capture during collapse was
mimicked by an instantaneous lowering of the adiabatic
index �eos from its initial value of 4=3 to trigger the onset
of collapse. At �nuc, the adiabatic index was raised to * 2
to qualitatively model the stiffening of the nuclear EoS.
Zwerger and Müller also obtained the previously suggested
signal types and introduced type III signals that appear in a
pressure-dominated bounce when the inner core has a very
small mass due to very efficient electron capture (approxi-
mated in [13] via a �eos & 1:29 in their hybrid EoS).
Obergaulinger et al. [30] also employed the hybrid EoS,
but included magnetic fields. They introduced the addi-
tional dynamics/signal type IV, which occurs only in the
case of very strong precollapse core magnetization. They
found that weak to moderate core magnetization in agree-
ment with predictions from stellar evolution theory (see,
e.g., [31]) has little effect on the collapse and bounce
dynamics and the resulting gravitational wave signal.
This finding is in agreement with [32] (see also [5,33]),
where magnetorotational collapse simulations were per-
formed, a smaller model set was considered, but the neu-
trino leakage scheme of [15] was employed, and it made
use of two different microphysical EoSs to study the EoS
dependence of the collapse dynamics and gravitational
wave signal.

The first extensive set of general relativistic simulations
of rotating iron core collapse to a proto-neutron star were
presented by Dimmelmeier et al. [14], who employed an
analytic hybrid EoS and polytropic precollapse models in
rotational equilibrium as initial data (but see also the
pioneering early work of [34]). These simulations were
subsequently confirmed in [25,35–37]. Dimmelmeier et al.
studied a subset of the models in [13] in the same parame-
ter space of rotation rate and degree of differential rotation,
and found that general relativistic effects counteract cen-
trifugal support and shift the occurrence of type II dynam-
ics and wave signals to a higher precollapse rotation rate at
a fixed degree of differential rotation.

Recently, new general relativistic simulations of rotating
core collapse in two and three dimensions were carried out
by Ott et al. [17,25,38] who included the microphysical
EoS of Shen et al. [39], precollapse models from stellar
evolutionary calculations as well as an approximate dele-
ptonization scheme [40]. The results of these calculations
indicate that the gravitational wave burst signal associated
with rotating core collapse is exclusively of type I. In
addition, the simulations showed that rotating stellar iron
cores stay axisymmetric throughout collapse and bounce,
and only at postbounce times develop nonaxisymmetric
features.

In a general relativistic two-dimensional follow-up
study, Dimmelmeier et al. [18,41] considerably extended
the number of models and comprehensively explored a
wide parameter space of precollapse rotational configura-
tions. Even for this more general setup they found gravi-
tational wave signals solely of type I form, although for
rapid precollapse rotation some of their models experience
a core bounce due to centrifugal forces only, which how-
ever is always a single centrifugal bounce rather than the
multiple ones observed in earlier work (see, e.g.,
[13,14,16]). They identified the physical conditions that
lead to the emergence of this generic gravitational wave
signal type and quantified their relative influence. These
results strongly suggest that the waveform of the gravita-
tional wave burst signal from the collapse of rotating iron
cores in a core-collapse event is much more generic than
previously anticipated.
In this work, we extend the above study of the gravita-

tional wave signal from rotating core collapse and consider
not only variations in the precollapse rotational configura-
tion, but also in progenitor structure and nuclear EoS. In
this way, we carry out the to-date largest and most com-
plete parameter study of rotating stellar core collapse that
includes all the (known) necessary physics to produce
reliable predictions of the gravitational wave signal asso-
ciated with rotating collapse and bounce. All our computed
gravitational wave signals are made available to the detec-
tor data analysis community in a freely accessible wave-
form catalog [42].
We perform a large number of two-dimensional simula-

tions with our general relativistic core-collapse code
COCONUT and employ 11.2, 15.0, 20.0, and 40:0M�
(masses at zero-age main sequence) precollapse stellar
models from the stellar evolutionary studies of Heger
et al. [31,43]. In addition to the EoS by Shen et al. [39]
used in our previous studies, we also calculate models with
the EoS by Lattimer and Swesty [44]. We describe in detail
and explain comprehensively the qualitative and quantita-
tive aspects of the collapse and bounce dynamics and the
resultant gravitational wave signal. We lay out the individ-
ual effects of general relativity, deleptonization, precol-
lapse stellar structure and rotational configuration, and
nuclear EoS on the gravitational wave signature from
rotating core collapse. We study the prospects for non-
axisymmetric rotational instabilities in our postbounce
cores, which could lead to an enhancement of the gravita-
tional wave signature. Furthermore, we set our model
gravitational radiation waveforms in context with present
and future detector technology and assess their
detectability.
This paper is organized as follows: In Sec. II, we in-

troduce our treatment of the general relativistic spacetime
curvature and hydrodynamics equations. Furthermore, we
introduce our variants of the two microphysical EoS
we employ, the scheme for deleptonization and neutrino
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pressure contributions, our precollapse model set, and the
gravitational wave extraction technique employed.
Section III discusses the numerical methods used in the
COCONUT code and the computational grid setup for the

simulations presented in this paper. In Sec. IV, we present
the collapse dynamics and waveform morphology of our
simulated models, while in Sec. V, we investigate the
stratification of the postbounce core and its impact on the
gravitational wave signal. The detection prospects for the
gravitational wave burst from core bounce are discussed in
Sec. VI, while the rotational configuration of the proto-
neutron star and its susceptibility to nonaxisymmetric rota-
tional instabilities are examined in Sec. VII. Finally, in
Sec. VIII, we summarize and discuss our results.

Throughout the paper we use a spacelike signature
(� , þ, þ, þ) and units in which c ¼ G ¼ 1. Greek
indices run from 0 to 3, Latin indices from 1 to 3, and
we adopt the standard Einstein summation convention.

II. PHYSICAL MODEL AND EQUATIONS

A. General relativistic hydrodynamics

We adopt the Arnowitt-Deser-Misner (ADM) 3þ 1 for-
malism of general relativity to foliate the spacetime en-
dowed with a four metric g�� into spacelike hypersurfaces

[45]. In this approach the line element reads

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where � is the lapse function, �i is the shift vector, and �ij

is the spatial three metric induced in each hypersurface.
The hydrodynamic evolution of a perfect fluid in general

relativity with four velocity u�, rest-mass current J� ¼
�u�, and stress-energy tensor T�� ¼ �hu�u� þ Pg�� is
determined by a system of local conservation equations

r�J
� ¼ 0; r�T

�� ¼ 0; (2)

where r� denotes the covariant derivative with respect to

the four metric. Here, � is the rest-mass density, h ¼ 1þ
�þ P=� is the specific enthalpy, P is the fluid pressure,
and the three velocity with respect to an Eulerian observer
moving orthogonally to the spacelike hypersurfaces is
given by vi ¼ ui=ð�u0Þ þ �i=�. We define a set of con-
served variables as

D ¼ �W; Si ¼ �hW2vi; � ¼ �hW2 � P�D:

(3)

In the above expressions, W ¼ �u0 is the Lorentz factor,

which satisfies the relation W ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� viv

i
p

.
The local conservation laws (2) are written as a first-

order, flux-conservative system of hyperbolic equations
[46]

@
ffiffiffiffi
�

p
U

@t
þ @

ffiffiffiffiffiffiffi�g
p

Fi

@xi
¼ ffiffiffiffiffiffiffi�g

p
S; (4)

with

U ¼ ½D; Sj; �; DYe�; (5)

F i ¼ ½Dv̂i; Sjv̂
i þ 	i

jP; �v̂
i þ Pvi; DYev̂

i�; (6)

S ¼
�
0;
T��

2

@g��

@xj
� @P�

@xj
; T00

�
Kij�

i�j � �i @�

@xi

�

þ T0i

�
2Kij�

j � @�

@xi

�
þ TijKij � vi @P�

@xi
; 0

�
: (7)

Here, v̂i ¼ vi � �i=�, and g and � are the determinant of
g�� and �ij, respectively, with

ffiffiffiffiffiffiffi�g
p ¼ �

ffiffiffiffi
�

p
. �


�� are the

four-Christoffel symbols. Since we use a microphysical
EoS that requires information on the local electron fraction
per baryon Ye, we add an advection equation for the
quantity DYe to the standard form of the conservation
Eq. (4). The radiation stress due to the neutrino pressure
P� (as defined in Sec. II D), is included in the form of an
additive term in the source of both the momentum and
energy equations. Note also that here we use an analyti-
cally equivalent reformulation of the energy source term in
contrast to the one presented in [14].

B. Metric equations in the conformal flatness
approximation

Using the ADM 3þ 1 formalism, the Einstein equations
split into a coupled set of first-order evolution equations for
the three-metric �ij and the extrinsic curvature Kij

@t�ij ¼ �2�Kij þri�j þrj�i; (8)

@tKij ¼ �rirj�þ �ðRij � 2KikK
k
j Þ þ �krkKij

þ Kikrj�
k þ Kjkri�

k

� 8��

�
Sij �

�ij

2
ðSkk � �ADMÞ

�
(9)

and constraint equations,

0 ¼ R� KijK
ij � 16��ADM; (10)

0 ¼ riK
ij � 8�Sj: (11)

In the above equations, ri is the covariant derivative with
respect to the three metric �ij, Rij is the three-Ricci tensor,

and R is the scalar three curvature. The projection of the
stress-energy tensor onto the spatial hypersurface is Sij ¼
�hW2vivj þ �ijP, the ADM energy density is given by

�ADM ¼ �hW2 � P, and Sj ¼ �hW2vi is the momentum
density. In addition, we have chosen the maximal slicing
condition for which the trace of the extrinsic curvature
vanishes: K ¼ 0.
In order to simplify the ADM metric equations and to

ameliorate the stability properties when numerically solv-
ing those equations, we employ the conformal flatness
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condition (CFC) introduced in [47] and first used in a
pseudo-evolutionary context in [48]. In this approximation
the spatial three metric is replaced by the conformally flat
three metric �ij ¼ �4�̂ij, where �̂ij is the flat-space metric

and � is the conformal factor. Then the metric Eqs. (8)–
(11) reduce to a set of elliptic equations for �, �, and �i,

�̂� ¼ �2��5

�
Eþ KijK

ij

16�

�
; (12)

�̂ð��Þ ¼ 2���5

�
Eþ 2Sþ 7KijK

ij

16�

�
; (13)

�̂�i ¼ 16���4Si þ 2�10Kijr̂j

�

�6
� 1

3
r̂ir̂k�

k; (14)

where �̂ and r̂ are the Laplace and covariant derivative
operators associated with the flat three metric, and S ¼
�ijSij. The CFC metric Eqs. (12)–(14) do not contain

explicit time derivatives, and thus the metric components
are evaluated in a fully constrained approach.

Imposing CFC in a spherically symmetric spacetime is
equivalent to solving the exact Einstein equations. For
nonspherical configurations the CFC approximation may
be roughly regarded as full general relativity without the
dynamical degrees of freedom of the gravitational field that
correspond to the gravitational wave content [49].
However, even spacetimes that do not contain gravitational
waves can be not conformally flat. A prime example are the
spacetime of a Kerr black hole [50] or rotating fluids in
equilibrium. For rapidly rotating models of stationary neu-
tron stars the deviation of certain metric components from
conformal flatness has been shown to reach up to �5% in
extreme cases [51], while the oscillation frequencies of
such models typically deviate even less from the corre-
sponding values obtained in full general relativistic simu-
lations [52]. In the context of rotating stellar core collapse
the excellent quality of the CFC approximation has been
demonstrated extensively [17,35,36].

Because of its fully constrained nature, the CFC ap-
proximation permits a straightforward and numerically
more robust implementation of the metric equations in
coordinate systems containing coordinate singularities
(e.g., spherical polar coordinates) compared with a
Cauchy free-evolution scheme. Furthermore, by definition
it allows no constraint violations, which is a significant
benefit in cases where a perturbation is added to the initial
data. More details on the CFC equations can be found in,
e.g., [14].

C. Equations of state

In our simulations we employ two tabulated nonzero-
temperature equations of state, the one by Shen et al.
[39,53] (Shen EoS), and the one by Lattimer and Swesty
[44] (LS EoS). The LS EoS is based on a compressible
liquid-drop model [54]. The transition from inhomogene-
ous to homogeneous matter is established by a Maxwell

construction, and the nucleon-nucleon interactions are ex-
pressed by a Skyrme force. In our version of this EoS, the
incompressibility modulus of bulk nuclear matter is taken
to be 180 MeV and the symmetry energy parameter has a
value of 29.3 MeV. In contrast, the Shen EoS is based on a
relativistic mean field model and is extended with the
Thomas–Fermi approximation to describe the homogene-
ous phase of matter as well as the inhomogeneous matter
composition. The parameter for the incompressibility of
nuclear matter is 281 MeVand the symmetry energy has a
value of 36.9 MeV.
Both EoSs employed in this study are the same as in

Marek et al. [55] and include contributions of baryons,
electrons, positrons, and photons. Furthermore, in this
study the LS EoS has been extended to densities below
� ¼ 5:8� 107 g cm�3 by a smooth transition to the Shen
EoS, which is tabulated down to � ¼ 6:4� 105 g cm�3.
The microphysical EoS returns the fluid pressure (and

additional thermodynamic quantities) as a function of
ð�; T; YeÞ, where T is the temperature. Since the hydro-
dynamic Eq. (4) operate on the specific internal energy �,
we determine the corresponding temperature T iteratively
with a Newton–Raphson scheme and the EoS table. All
interpolations are carried out in trilinear fashion and the
tables are sufficiently densely spaced to lead to an artificial
entropy increase in an adiabatic collapse by not more than
�2%.

D. Deleptonization and neutrino pressure

Electron capture on free protons and heavy nuclei during
collapse reduces Ye (i.e., ‘‘deleptonizes’’ the collapsing
core) and consequently decreases the size of the homolo-
gously collapsing inner core that depends on the average
value of Ye in a roughly quadratic way (see, e.g., [56]). The
material of the inner core is in sonic contact and determines
the dynamics and the gravitational wave signal at core
bounce and in the early postbounce phases. Hence, dele-
ptonization has a direct influence on the collapse dynamics
and the gravitational wave signal, and thus it is essential to
include deleptonization during collapse.
Since multidimensional radiation-hydrodynamics calcu-

lations in general relativity are not yet computationally
feasible, in our simulations we make use of a recently
proposed approximative scheme [40], where deleptoniza-
tion is parametrized based on data from detailed spheri-
cally symmetric calculations with Boltzmann neutrino
transport, for which (as in [18]) we take the latest available
electron capture rates [57]. Following the main assumption
in [40] that the local electron fraction for each fluid ele-
ment during the contraction phase can be modeled rather
accurately by a dependence on the density only, these
simulations yield a universal relation �Yeð�Þ. Furthermore,
we find that this relation varies only slightly with progeni-
tor mass, as shown in Fig. 1, where models with identical
progenitor but different EoS have the same color, but
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different hues (e.g., dark green versus light green for the
s20 progenitor). Consequently, we utilize the 20:0M� pro-
genitor to create such a profile �Yeð�Þ for each of the two
EoSs. This profile is then used to correct the value of Ye

obtained from the advection by an amount

�Ye ¼ min½0; �Yeð�Þ � Ye� (15)

after each time integration step. This procedure assures that
Ye approaches the phenomenological input profile �Yeð�Þ
with the constraint that �Ye must be negative.
Accordingly, in order to model the entropy loss by neutri-
nos escaping the collapsing core, for densities below an
adopted neutrino trapping density �tr ¼ 2� 1012 g cm�3

the internal specific energy � is re-adjusted at constant �
and Ye such that the specific entropy per baryon s is
changed by

�s ¼ ��Ye

�p ��n þ�e � E�

kBT
; (16)

where E� ¼ 10 MeV is an average escape energy for the
neutrinos, kB is the Boltzmann constant and where�p,�n,

and �e are the proton, neutron, and electron chemical
potentials, respectively. Note that when equilibrium be-
tween neutrinos and matter (i.e., � equilibrium) is estab-
lished, this balance requires �� ¼ �p ��n þ�e for the

neutrino chemical potential ��.
We stop deleptonization at the time of core bounce (i.e.,

as soon as the specific entropy s per baryon exceeds 3kB at
the outer boundary of the inner core). After core bounce,
for lack of a simple yet accurate approximation scheme for
treating the further deleptonization in the nascent proto-
neutron star, we advect Ye only passively according to the
conservation Eq. (4), although this effectively prevents the
factual cooling and contraction of the proto-neutron star.

In all collapse phases, however, as in [40] we approxi-
mate the pressure contribution of the neutrinos by that of
an ideal Fermi gas

P� ¼ 4�ðkBTÞ4
3ðhcÞ3 F3

�
��

kBT

�
; (17)

with F3 being the Fermi–Dirac function of order 3. The
neutrino pressure is included only in the regime that is
optically thick to neutrinos, which we define for densities
above �tr.

E. Initial models

All presupernova stellar models available to date are end
products of Newtonian spherically symmetric stellar evo-
lutionary calculations from hydrogen burning on the main
sequence to the onset of core collapse by photo dissocia-
tion of heavy nuclei and electron captures (see, e.g., [58]).
Here, we employ various nonrotating models of [58] with
zero-age main sequence masses Mprog ¼ 11:2M� (core-

model s11.2, here for simplicity labeled s11), 15:0M�
(core-model s15), 20:0M� (core-model s20), and 40:0M�
(core-model s40). Recently, the first presupernova models
that include rotation in a one-dimensional approximate
fashion have become available [31,43], and of these we
select ones with Mprog ¼ 15:0M� (models e15a and e15b)

as well as 20:0M� (core-models e20a and e20b). All
progenitors have solar metallicity (at zero-age main se-
quence), and we generate our initial models by taking the
data obtained from stellar evolution out to a radius Ri,
where the density drops to a value that equals 10�4 of
the initial precollapse central density �c;i. Selected quan-

tities that describe the properties of these stellar cores are
summarized in Table I.
We set those cores that are initially nonrotating (core-

models s11, s15, s20, and s40) artificially into rotation
according to the rotation law specified in [28], where the
specific angular momentum j is given by

j ¼ A2ð�c;i ��Þ: (18)

Here, the length A parametrizes the degree of differential
rotation (stronger differentiality with decreasing A) and
�c;i is the precollapse value of the angular velocity � at

the center. In the Newtonian limit, this reduces to

� ¼ �c;i

A2

A2 þ r2sin2
; (19)

with r sin being the distance to the rotation axis.
In order to determine the influence of different angular

momentum distributions on the collapse dynamics, we
parameterize the precollapse rotation of our models in
terms of A (A1: A ¼ 50; 000 km, almost uniform; A2: A ¼
1; 000 km, moderately differential; A3: A ¼ 500 km,
strongly differential); and �c;i. The model nomenclature

for the precollapse rotation parameters is shown in Table II.
We have selected the rotational configuration of the models
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FIG. 1 (color online). Electron fraction �Ye obtained from de-
tailed spherically symmetric calculations with Boltzmann neu-
trino transport versus the maximum density �max in the
collapsing core. The EoS is encoded in dark hues for the Shen
EoS and light hues for the LS EoS with the basis color specifying
the progenitor mass.
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TABLE I. Properties of the iron core models used as initial data. Mprog is the total zero-age main sequence mass of the progenitor
star, Mcore and Rcore are the mass and radius of the iron core, Mi and Ri are the mass and radius of the initial model on the
computational grid, and �c;i is the precollapse density at the center. The size of the iron core is determined by the condition that Ye

exceeds 0.497, while the initial model extends beyond the iron core to where the density drops to 10�4�c;i. �c;i deviates slightly from

the original value of the models in [58] because of regridding to the more densely spaced central grid of the evolution code.

Core model Mprog [M�] Mcore [M�] Rcore [10
3 km] Mi [M�] Ri [10

3 km] �c;i [10
9 g cm�3]

s11 11.2 1.24 0.99 1.36 1.58 17.71

s15 15.0 1.55 1.94 1.81 3.88 6.50

s20 20.0 1.46 1.69 1.59 3.48 8.77

s40 40.0 1.55 1.62 2.03 4.60 3.88

e15a 15.0 1.47 1.55 1.83 4.45 5.78

e15b 15.0 1.40 1.66 1.56 3.17 8.04

e20a 20.0 1.75 2.41 2.26 5.42 4.27

e20b 20.0 1.38 1.35 1.60 3.18 7.22

TABLE II. Precollapse rotation properties of the core-collapse models. A is the differential rotation length scale, �c;i is the
precollapse angular velocity at the center, and �i is the precollapse rotation rate. Note that the models e15a, e15b, e20a, and e20b have
a rotation profile from the corresponding stellar evolution calculations, while onto all other models an artificial rotation profile is
imposed.

Rotating core

model

A
[108 cm]

�c;i

[rad s�1]

�i

[%]

Rotating core

model

A
[108 cm]

�c;i

[rad s�1]

�i

[%]

Rotating core

model

A
[108 cm]

�c;i

[rad s�1]

�i

[%]

s11A1O01 50.0 0.45 0.01 s15A1O01 50.0 0.45 0.09 e15a — 4.18 0.46

s11A1O05 50.0 1.01 0.06 s15A1O05 50.0 1.01 0.45 e15b — 9.93 2.75

s11A1O07 50.0 1.43 0.12 s15A1O07 50.0 1.43 0.91 e20a — 3.13 0.28

s11A1O09 50.0 1.91 0.22 s15A1O09 50.0 1.91 1.63 e20b — 11.01 2.16

s11A1O13 50.0 2.71 0.43 s15A1O13 50.0 2.71 3.26

s11A2O05 1.0 2.40 0.16 s15A2O05 1.0 2.40 0.30

s11A2O07 1.0 3.40 0.31 s15A2O07 1.0 3.40 0.60

s11A2O09 1.0 4.56 0.56 s15A2O09 1.0 4.56 1.09

s11A2O13 1.0 6.45 1.13 s15A2O13 1.0 6.45 2.18

s11A2O15 1.0 7.60 1.57 s15A2O15 1.0 7.60 3.03

s11A3O05 0.5 4.21 0.20 s15A3O05 0.5 4.21 0.27

s11A3O07 0.5 5.95 0.40 s15A3O07 0.5 5.95 0.53

s11A3O09 0.5 8.99 0.72 s15A3O09 0.5 8.99 0.96

s11A3O12 0.5 10.65 1.28 s15A3O12 0.5 10.65 1.71

s11A3O13 0.5 11.30 1.44 s15A3O13 0.5 11.30 1.92

s11A3O15 0.5 13.31 2.00 s15A3O15 0.5 13.31 2.67

s20A1O01 50.0 0.45 0.05 s40A1O01 50.0 0.45 0.13

s20A1O05 50.0 1.01 0.25 s40A1O05 50.0 1.01 0.64

s20A1O07 50.0 1.43 0.50 s40A1O07 50.0 1.43 1.28

s20A1O09 50.0 1.91 0.90 s40A1O09 50.0 1.91 2.31

s20A1O13 50.0 2.71 1.80 s40A1O13 50.0 2.71 4.62

s20A2O05 1.0 2.40 0.25 s40A2O05 1.0 2.40 0.36

s20A2O07 1.0 3.40 0.50 s40A2O07 1.0 3.40 0.72

s20A2O09 1.0 4.56 0.90 s40A2O09 1.0 4.56 1.30

s20A2O13 1.0 6.45 1.80 s40A2O13 1.0 6.45 2.60

s20A2O15 1.0 7.60 2.50 s40A2O15 1.0 7.60 3.62

s20A3O05 0.5 4.21 0.25 s40A3O05 0.5 4.21 0.29

s20A3O07 0.5 5.95 0.50 s40A3O07 0.5 5.95 0.57

s20A3O09 0.5 8.99 0.90 s40A3O09 0.5 8.99 1.03

s20A3O12 0.5 10.65 1.60 s40A3O12 0.5 10.65 1.84

s20A3O13 0.5 11.30 1.80 s40A3O13 0.5 11.30 2.07

s20A3O15 0.5 13.31 2.50 s40A3O15 0.5 13.31 2.87
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in such a way that for the s20 progenitor they are a
representative subset of the models investigated in
[18,41]. They reflect different properties of the collapse
dynamics and the gravitational radiation waveform dis-
cussed in that work, namely, pressure-dominated bounce
with or without significant postbounce convective overturn
as well as single centrifugal bounce.

Note that models with the same rotation specification
(but different progenitor mass or EoS) have an identical
angular velocity profile, while the precollapse rotation rate
�i ¼ Ti=jWji, which is the precollapse ratio of rotational
energy to gravitational energy, varies. We have decided to
compare models with identical initial angular velocity�c;i

and not precollapse rotation rate �i, as the latter quantity is
rather sensitive to the chosen core radius Rcore in the case of
(almost) uniform rotation.

The models that are based on progenitor calculations
including rotation (core-models e15a, e15b, e20a, and
e20b) are mapped onto our computational grids under the
assumption of constant rotation on cylindrical shells of
constant distance to the rotation axis. We also point out
that due to the one-dimensional nature, none of the con-
sidered models are in rotational equilibrium. Still, in
slowly rotating initial models this effect is small and thus
negligible. For more rapidly rotating models, which exhib-
its the strongest deviation from rotational equilibrium, the
collapse proceeds more slowly due to stabilizing centrifu-
gal forces, and hence the star has more time for the adjust-
ment to the appropriate angular stratifications for its rate of
rotation.

In this study, we focus on the collapse of massive
presupernova iron cores with at most moderate differential
rotation and precollapse rotation rates that except for the
most slowly rotating models lead to proto-neutron stars
that are probably spinning too fast to yield spin periods of
cold neutron stars in agreement with observationally in-
ferred injection periods of young pulsars into the P= _P
diagram [31,59]. However, they may be highly relevant
in the collapsar-type gamma-ray burst scenario [9,59,60].

F. Gravitational wave extraction

We employ the Newtonian quadrupole formula in the
first moment of momentum density formulation as dis-
cussed, e.g., in [14,61,62] to extract the gravitational waves
generated by nonspherical accelerated fluid motions. It
yields the quadrupole wave amplitude AE2

20 as the lowest

order term in a multipole expansion of the radiation field
into pure-spin tensor harmonics [63]. The wave amplitude
is related to the dimensionless gravitational wave strain h
in the equatorial plane by

h ¼ 1

8

ffiffiffiffiffiffi
15

�

s
AE2
20

r
¼ 8:8524� 10�21 AE2

20

103 cm

10 kpc

r
; (20)

where r is the distance to the emitting source.

We point out that although the quadrupole formula is not
gauge invariant and is only valid in the Newtonian slow-
motion limit, for gravitational waves emitted by pulsations
of rotating NSs (i.e., in astrophysical situations comparable
to collapsing stellar cores at bounce in terms of compact-
ness and rotation rates) it yields results that agree very well
in phase and to �10–20% in amplitude with more sophis-
ticated methods [61,64].
In order to assess the prospects for detection by current

and planned interferometer detectors and to specifically
address the issue of detection range and expected event
rates, we calculate the dimensionless characteristic gravi-
tational wave strain hc of the signal according to [65]. We
first perform a Fourier transform of the gravitational wave
strain h,

ĥ ¼
Z 1

�1
e2�ifthdt: (21)

To obtain the (detector dependent) integrated characteristic
signal frequency

fc ¼
�Z 1

0

hĥ2i
Sh

fdf

��Z 1

0

hĥ2i
Sh

df

��1
(22)

and the integrated characteristic signal strain

hc ¼
�
3
Z 1

0

Shc
Sh

hĥ2ifdf
�
1=2

; (23)

the power spectral density Sh of the detector is needed

(with Shc ¼ ShðfcÞ). We approximate the average hĥ2i over
randomly distributed angles by ĥ2, assuming optimal ori-
entation of the interferometer detector. From Eqs. (22) and
(23) the signal-to-noise ratio can be computed as SNR ¼
hc=½hrmsðfcÞ�, where hrms ¼

ffiffiffiffiffiffiffiffi
fSh

p
is the value of the rms

strain noise (i.e., the theoretical sensitivity window) for the
detector.

III. NUMERICAL METHODS

We perform all simulations using the COCONUT code
described in detail in [14,62]. The equations of general
relativistic hydrodynamics are solved in semidiscrete fash-
ion. The spatial discretization is performed by means of a
high-resolution shock-capturing scheme employing a
second-order accurate finite-volume discretization. We
make use of the Harten-Lax-van Leer-Einfeldt (HLLE)
flux formula for the local Riemann problems and
piecewise-parabolic reconstruction of the primitive varia-
bles ð�; vi; �Þ at cell interfaces. For a review of such
methods in general relativistic hydrodynamics, see [66].
The time integration and coupling with curvature are car-
ried out with the method of lines [67] in combination with a
second-order accurate explicit Runge–Kutta scheme. Once
the state vectorU is updated in time, the primitive variables
are recovered from the conserved ones given in Eq. (3)
through an iterative Newton–Raphson method. Note that
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the component associated to Ye in the system (4) of hydro-
dynamic evolution equations is treated as a passive advec-
tion equation, which does not contribute to the
characteristic structure in the form of eigenvalues and
eigenvectors required by some flux solvers.

To numerically solve the metric equations we utilize an
iterative nonlinear solver based on spectral methods. The
spectral grid of the metric solver is split into 6 radial
domains with 33 radial and 17 angular collocation points
each. The combination of high-resolution shock-capturing
methods for the hydrodynamics and spectral methods for
the metric equations (the Mariage des Maillages or ‘‘grid
wedding’’ approach) in a multidimensional numerical code
has been presented in detail in [62]. Even when using
spectral methods the calculation of the spacetime metric
from the system (12)–(14) of elliptic equations is computa-
tionally expensive. Hence, in our simulations the metric is
updated only once every 100=10=50 hydrodynamic time
steps before/during/after core bounce, and extrapolated in
between. The numerical adequacy of this procedure has
been tested and discussed in detail in [14].

In this study we focus on the gravitational wave signal
associated with core bounce. As demonstrated by [17,25],
effects that may break rotational symmetry are most likely
unimportant in this context. Hence, we assume axisymme-
try and in addition impose symmetry with respect to the
equatorial plane.

The COCONUT code utilizes Eulerian spherical coordi-
nates fr; g, and for the computational grid we choose 250
logarithmically spaced, centrally condensed radial zones
with a central resolution of 250 m and 45 equidistant
angular zones covering 90�. A small part of the grid is
covered by an artificial low-density atmosphere extending
beyond the core’s outer boundary defined where � 	
10�4�c;i.

We also note that we have performed extensive resolu-
tion tests with different grid resolutions to ascertain that
the grid setup specified above is appropriate for our
simulations.

IV. COLLAPSE DYNAMICS AND WAVEFORM
MORPHOLOGY

A. Generic waveform type

We begin our discussion with an analysis of the gravi-
tational radiation waveform emitted during core bounce as
an indicator for the influence of the EoS, the progenitor
structure, and the precollapse rotational configuration on
the collapse and bounce dynamics. In Fig. 2, we present
example waveforms for representative collapsing cores
selected from the investigated parameter space of models
(i.e., less or more massive progenitors with slow or rapid
precollapse rotation, varying degree of differential rota-
tion, and using either the Shen EoS or LS EoS). The
waveforms of all models are of type I, and hence exhibit
a positive prebounce rise and a large negative peak, fol-

lowed by a ringdown. In the light of a considerably ex-
tended parameter space in terms of EoS and progenitor
mass of the rotating core-collapse models investigated in
this work, we thus confirm the observation presented in
[17,18,38,41] that in general relativistic gravity all models
with microphysics exhibit gravitational wave burst signals
of type I.
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FIG. 2 (color online). Time evolution of the gravitational wave
amplitude h for representative models with different precollapse
rotation profiles using the Shen EoS (red lines) or LS EoS (blue
lines). Models with slow and almost uniform precollapse rotation
(e.g., s11A1O07) develop considerable prompt postbounce con-
vection visible as a dominating lower-frequency contribution in
the waveform, while the waveform for both models with mod-
erate rotation (e.g., s11A3O13, s15A2O05, s20A2O09,
s40A1O07, or e15a) and rapidly rotating models, which undergo
a centrifugal bounce (e.g., s40A3O13 or e20b), exhibit an
essentially regular ringdown. Time is normalized to the time
of bounce tb.
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As already inferred in [18,41], this signal type can be
classified into three subtypes, which, however, do have in
common the same qualitative features of a type I waveform
described above:

(1) For a slowly rotating core, prompt convective over-
turn at early postbounce times after the pressure-
dominated bounce adds a significant low-frequency
contribution to the regular ringdown signal (see,
e.g., model s11A1O07).

(2) In the case of moderately rapid rotation, which still
leads to a pressure-dominated bounce, this convec-
tion is effectively suppressed due to the growing
influence of angular momentum gradients [33,68]
and does not strongly stand out in the postbounce
ringdown signal (see, e.g., models s11A3O13,
s15A2O05, s20A2O09, s40A1O07, or e15a).

(3) If rotation is sufficiently rapid, the core bounces at
subnuclear or only slightly supernuclear densities
due to the increased effects of centrifugal forces,
reflected by a significant widening of the bounce
peak of the waveform and an overall lower fre-

quency of the signal (see, e.g., models s40A3O13
or e20b).

Figure 2 also demonstrates that for comparable precollapse
rotational configuration (as specified by the parameters A
and �i) the impact of the EoS on the collapse dynamics
and, hence, the gravitational wave signal is small. In Table
III, we mark each model with its type of collapse dynam-
ics, and in Fig. 3 we encode that type in the parameter
space spanned by rotational configuration, progenitor
mass/model, and EoS.
For our set of collapse models, only in four cases (mod-

els s11A1O13, s15A1O07, s20A1O09, and s40A1O05) the
LS EoS yields a signal with dominant convective contri-
bution, while the Shen EoS does not, and only a single
model (s15A2O15) changes its collapse type from a cen-
trifugal bounce to a pressure-dominated bounce when re-
placing the Shen EoS with the LS EoS. However, Fig. 3
shows that the transition between the three different col-
lapse and waveform subtypes occurs at different precol-
lapse rotational configurations for the various progenitor
masses. This is a consequence of differences in the mass
Mic;b of the inner core at bounce as discussed in Sec. IVC.

The growth of the strong prompt early postbounce con-
vection in slowly rotating models depends sensitively on
the seed perturbations resulting from the numerical
scheme/grid. In nature, prompt convection will be influ-
enced by random small-scale to large-scale variations in
the final stages of silicon burning that are frozen in during
collapse. We point out that the duration of the prompt
postbounce convection is most likely overestimated in
our approach, since in full postbounce radiation-
hydrodynamics calculations, energy deposition by neutri-
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FIG. 3 (color online). Collapse dynamics of all investigated
models in the parameter space of precollapse rotational configu-
ration (specified by the precollapse angular velocity �c;i at the

center and the precollapse differential rotation length scale A),
progenitor mass Mprog, and EoS. Models marked by unfilled/

filled circles undergo a pressure-dominated bounce with/without
significant early postbounce convection, while models marked
with crosses show a single centrifugal bounce. The EoS is
encoded as in Fig. 1, while small/medium/large symbols repre-
sent the precollapse rotation parameter A1/A2/A3. For better
visibility, the symbols for the same Mprog but different EoS are

spread a bit in the vertical direction. Note also that in this and the
following plots that encode the precollapse rotational configura-
tion in the form of the parameter �i, we refrain from including
models e15a, e15b, e20a, and e20b, as these have a precollapse
rotation profile that is not given by the analytic rotation law (18).
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FIG. 4 (color online). Mass Mic;b of the inner core at the time
of bounce for all models versus the precollapse initial central
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rotation parameter A, and the collapse dynamics are encoded as
in Fig. 3.
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nos in the immediate postshock region rapidly smooths out
the negative entropy gradient left behind by the shock (see,
e.g., [20,69]) and quickly damps this early convective
instability.

B. Influence of general relativity and deleptonization

The general type of collapse and bounce dynamics of the
core, i.e., pressure-dominated or centrifugal bounce, can be
influenced (provided that the description of gravity and
neutrino effects are identical) by the progenitor core strati-
fication and thermodynamic structure, the amount and
precollapse distribution of angular momentum, and the
properties of the EoS in the density regime just below the
stiffening threshold [18,41]. These conditions influence the
mass Mic;b of the homologously contracting inner core at

bounce, which in turn determined the region that is dy-
namically relevant at bounce and sets the initial size of the
proto-neutron star.

In Fig. 4, we show the resulting variation of Mic;b with

�c;i, progenitor model, precollapse differential rotation

parameter A, EoS, and collapse type (encoded via symbols
as in Fig. 3). The details of the variation of Mic;b with

progenitor, EoS and rotational configuration will be dis-
cussed in Sec. IVC. In the following, without loss of
generality, we focus on a single progenitor and discuss
the influence of general relativity and deleptonization on
the collapse dynamics and the gravitational wave burst
signal along the lines of the discussion in [18,41].

In order to assess the individual influence of relativistic
effects and deleptonization, and to explain the absence of
type II and III burst signals in microphysical general
relativistic models, in [18,41] we compared collapse mod-
els of the s20 progenitor using the Shen EoS and a descrip-
tion for deleptonization with models using a simple hybrid
polytropic/�-law EoS. We selected the adiabatic index �eos

of these simple models in such a way that the transition
between pressure-dominated bounce and centrifugal
bounce occurs at the same precollapse rotation rate �i as
for the microphysical models. With this method we were
able to demonstrate that the influence of deleptonization
can be approximated by a correction ��� ’ 0:03 that must
be applied to the estimate of the average EoS adiabatic
index �eos;Shen ’ 1:32 in the density interval between 1012

and 1014 g cm�3. This leads to a generic value for the
effective adiabatic index �eff;Shen ¼ �eos;Shen � ��� ’
1:32� 0:03 ¼ 1:29, practically independent of the precol-
lapse rotational configuration, both in Newtonian gravity
and general relativity (where relativistic effects are ac-
counted for by a correction ��gr ’ �0:015). A graphic

representation of this argument is shown in the top panel of
Fig. 5, that is identical to Fig. 2 in [18] and Fig. 4 in [41],
and which we include here for completeness.

The estimate �eff ’ 1:29 for microphysical models also
allows us to explain the suppression of multiple centrifugal
bounces with an associated type II waveform in a straight-

forward way, since this type of collapse occurs only in the
respective hybrid EoS models with an effective adiabatic
index that is much closer to 4=3, i.e., �eff � 1:31. Rapid
collapse dynamics that is characterized by a type III burst
signal is also not realized in microphysical models of
massive star collapse, as it requires a mass of the inner
core at bounce Mic;b & 0:3M� [13], which is considerably

smaller than those found in microphysical models with any
of our progenitors, for which we find Mic * 0:4M� (see
Fig. 4, and also the discussion in Sec. IVC). However, in
[25,70] it is suggested that rapid collapse dynamics and a
type III burst signal may be associated with very efficient
electron capture in the accretion-induced collapse of mas-
sive, rapidly rotating white dwarfs.
Finally, we point out that calculations with �eff used in

the hybrid EoS have the tendency to underestimate the
massMic;b at bounce compared with the full microphysical

treatment. This is a consequence of the fact that in these
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FIG. 5 (color online). Boundary between pressure-dominated
and centrifugal bounce in the �eff � �i plane for s20 progenitor
models using the hybrid EoS in Newtonian gravity (dashed lines)
and general relativity (solid lines). The curved dotted lines show
the Newtonian results shifted by ���gr ¼ 0:015. The transition

points for models using the microphysical EoS without and with
deleptonization, again for Newtonian gravity (circles) and gen-
eral relativity (bullets), lie in the shaded areas around �eos;Shen ’
1:32 and �eff;Shen ’ 1:29, respectively, for the Shen EoS (top

panel) and around �eos;LS ’ 1:3225 and �eff;LS ’ 1:285, respec-
tively, for the LS EoS (bottom panel).
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calculations �eff is kept constant throughout the collapse,
leading to a reduction of the inner core massMic already at
much earlier collapse stages than in microphysical models.
The underestimated Mic;b, in turn, leads to gravitational

wave burst signals from bounce in those simple models that
are quantitatively or even qualitatively incorrect (as in the
case of type III signals, which do not occur in micro-
physical models). Hence, while useful for understanding
the collapse dynamics, the �eff approach cannot replace the
full microphysical treatment with a nonzero-temperature
microphysical EoS and deleptonization as performed in the
present work.

C. Influence of the equation of state and progenitor
model

At densities below �nuc the total fluid pressure is domi-
nated by the contribution from the degenerate electrons,
hence the two microphysical EoSs should lead to rather
similar dynamics in the infall phase of collapse. This is also
reflected in the very similar behavior of their adiabatic
indices �eos as shown in Fig. 6.

In the bottom panel of Fig. 5, we demonstrate that the
same influence of general relativistic effects and delepto-
nization as discussed in Sec. IVB applies for the s20
progenitor when the LS EoS is used instead of the Shen
EoS. We obtain values of �eos;LS ’ 1:3225 for the adiabatic
index of the EoS (without deleptonization) and �eff;LS ’
1:285 for the effective adiabatic index (including delepto-
nization), which is in very close agreement with the values
deduced from the simulations using the Shen EoS. As

shown in Fig. 7, now only for general relativistic gravity,
there is some spread of �eff with progenitor mass/model,
but on average, we find �eff ’ 1:28 for the s11, s15, and s40
progenitor models.
Again following the line of arguments presented in

[18,41], the combination of a low effective adiabatic index
�eff < 1:31 and a high inner core mass Mic * 0:4M� at
bounce results in a type I gravitational wave burst signal
for all our models, independent of the EoS or progenitor
model. Note that creating Figs. 5 and 7 we have performed
additional simulations of microphysical models that are
more narrowly spaced in �i;c (and correspondingly in �i)

than the ones listed in Table II. As a result, those figures
reveal a small dependence of the transition between
pressure-dominated bounce and centrifugal bounce (i.e.,
the location of the bullets and circles in the direction of the
abscissa) on the EoS, which is generally not apparent from
Table II.
Although the sensitivity of the deleptonization and col-

lapse dynamics on the progenitor mass and EoS is only
small, Fig. 4 still reveals a dependence of the inner core
massMic;b at bounce both on the EoS and (in particular) on

rotation. Furthermore, Mic;b varies nonmonotonically with

the progenitor massMprog. In the absence of rotation,Mic;b

is solely determined by the mean trapped lepton fraction
Ylep ¼ Ye þ Y� and specific entropy s in the inner core

[1,2,27,71] with a roughly quadratic dependence on both
quantities. Since we employ the same Yeð�Þ parametriza-
tion (based on model s20) for all models with the same
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(red line) and LS EoS (blue line) versus the maximum density
�max in the collapsing core for model s20A2O09. Although �max,
which for this model is located in the center of the core, does not
follow a trajectory of constant specific entropy, s is still approxi-
mately conserved in the prebounce phase. Inset: Magnified view
of �eos in the dynamically most relevant density range between
1012 and 1014 g cm�3. The average value of �eos in this density
regime is roughly 1.32 for both EoSs.
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FIG. 7 (color online). Boundary between pressure-dominated
and centrifugal bounce in the �eff ��c;i plane for models of all

progenitors using the hybrid EoS in general relativity. The
transition points for models using the microphysical EoS with
deleptonization (bullets) lie in the shaded area around �eff ’
1:28. Except for the rotation profile A2 of the s15 progenitor, the
locations of these points are identical for the two EoSs. Note that
for the A1 profiles of any progenitor (and the A2 profile for the
s11 progenitor) we do not observe a centrifugal bounce for any
value of�c;i. In contrast to Fig. 5, we use here the�c;i instead of

�i as parameter for the precollapse rotational configuration (see
the discussion in Sec. II E).
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EoS, the variations inMic;b are caused by differences in the

specific entropy in the precollapse iron core. Generally, the
specific entropy in the iron core increases with progenitor
mass, but, in particular, in the mass range of �18–25M�,
the relationship of progenitor mass and specific core en-
tropy can be nonmonotonic (see, e.g., [58]). However, note
that the systematics for Mic;b with progenitor mass seen in

Fig. 4 are possibly overemphasized by our Yeð�Þ parame-
trization and may be less pronounced in full radiation
transport simulations, which remain to be carried out in
the future.

For a rotating collapse, the variations of Mic;b with

progenitor mass are amplified, while the overall system-
atics are preserved. Obviously, a more massive and hence
more extended inner core is more susceptible to the influ-
ence of centrifugal forces (which scale proportional to the
radius r) than a less massive and thus more compact inner
core. This behavior is confirmed by Fig. 4, which depicts
the dependence of the mass Mic;b of the inner core at

bounce on the precollapse central angular velocity �c;i,

the EoS, and the differential rotation parameter A. Models
with comparably large precollapse iron core specific en-
tropy (and also large iron core mass) and, thus, largerMic;b

already in the nonrotating case, show a more pronounced
increase of Mic;b with rotation than models with lower

precollapse specific entropy (and also smaller iron core
mass). The scaling of Mic;b with �c;i, at fixed differential

rotation parameter A, is linear for small to intermediate
�c;i and turns approximately quadratic for the most rapidly

rotating configurations. On the other hand, when increas-
ing the degree of differential rotation A at fixed �c;i, Mic;b

decreases since then the angular velocity in the outer parts
of the inner core and consequently centrifugal support
drops.

We also observe that the impact of the EoS on the mass
of the inner core manifests itself only via an almost con-
stant positive relative increase in Mic;b of �10% when

changing from the LS EoS to the Shen EoS, practically
independent of rotation and progenitor mass (see Fig. 4).
Again, the mean electron (respectively lepton) fraction and
specific entropy in the inner core are the key to under-
standing these systematics. The representative s20 pro-
genitor model used to parametrize Yeð�Þ in this study
yields minima for Ye in the center of the core at bounce
of �0:249 and �0:241 for the Shen EoS and the
LS EoS, respectively. This relative difference of �3:3%
translates into a difference in Mic;b of �7%, assuming that

the mass of the inner core scales quadratically with Ye,
which slightly underestimates the actual change. We attrib-
ute the remaining difference to variations in the specific
entropy s of the inner core at bounce due to the slightly
more efficient electron capture in the models with the
LS EoS.

We point out that the progenitor models e15a, e15b,
e20a, and e20b, which already come with a rotation profile

from the stellar evolution calculation, are very well repre-
sented in terms of collapse dynamics, waveform, and
postbounce rotation state by members of our model set
with an artificially added precollapse rotation profile, spe-
cifically the models s15A2O09, s15A2O15, s20A2O09,
and s20A2O15. For this reason we refrain from separately
discussing those special models in this paper.

D. Influence of differential rotation

Increasing the degree of differential rotation by lowering
the value of the differential rotation parameter A at fixed
precollapse central angular velocity �c;i results in less

centrifugal support in outer core regions and, as already
pointed out in Sec. IVC, in a smaller mass Mic;b of the

inner core at bounce. Consequently, a higher value of �c;i

is necessary for a stronger differentially rotating precol-
lapse core to become significantly affected by centrifugal
forces during the collapse. This is confirmed by Fig. 7,
which displays the systematics of the transition between
pressure-dominated and centrifugal bounce for our set of
progenitors and the A2 and A3 rotation profiles. Compared
with the transition values of �c;i for the A2 profile, the A3

profile requires a roughly 20–40% higher �c;i (varying

slightly with progenitor model) for a transition from
pressure-dominated to centrifugal bounce.
In previous extensive parameter studies of rotating stel-

lar core collapse (see, e.g., [14–16]) the effect of differen-
tial rotation was studied in model sequences in the
parameter space spanned by the precollapse differential
rotation parameter A and the precollapse rotation rate �i.
At a constant �i, more differentially rotating models re-
quire a larger�c;i than less differentially rotating ones and

experience core bounce at lower densities. Hence, at fixed
�i, more differentially rotating models are generally more
affected by centrifugal effects. Our s20 model series is
constructed as a sequence of fixed �i for each of the
rotation profiles A1, A2, and A3 (see Table II), and there-
fore permits a direct comparison with preceding work. Our
results confirm qualitatively the previously identified sys-
tematics (see Table III). However, in contrast to more
simplistic simulations, the combination of general relativ-
ity and deleptonization in our models weakens the overall
impact of centrifugal effects on the collapse dynamics (see
Sec. IVB), and consequently leads to much smaller quan-
titative changes in the characteristic collapse variables
(such as �max;b, jhjmax, Mic;b, or �b) when varying the

degree of differential rotation.

V. STRUCTURE OF THE POSTBOUNCE CORE
AND IMPACT ON THE WAVE SIGNAL

A. Equation of state at supernuclear densities and
maximum density in the core

From Table III it is apparent that the change from the
Shen EoS to the LS EoS in an otherwise identical model
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results systematically in an increase of the peak maximum
density �max;b at bounce, i.e., �max;b;LS >�max;b;Shen. This

result is in agreement with the previous Newtonian study of
Kotake et al. [32] who compared simulations of a single
model carried out with the Shen EoS and the LS EoS.

For centrifugally bouncing models, which only margin-
ally exceed or even remain below �nuc at bounce, the
absolute increase in the maximum core density at bounce
is small, exhibiting a maximum ��max;b ¼ �max;b;LS �
�max;b;Shen ¼ 0:13� 1014 g cm�3 for model s40A3O09

(leaving aside the exceptional models s40A2O13 and
s40A2O15, which we will discuss separately later). This
is another manifestation of the similarity of the two micro-
physical EoSs at subnuclear densities (see also Sec. IVC).

For slowly or at most moderately fast rotating models
that undergo pressure-dominated bounce and whose center
exceeds supernuclear density at (and also after) bounce,
��max;b can amount up to 1:19� 1014 g cm�3 for model

s11A1O01, the most slowly rotating model of the s11
model series. This strong impact of the EoS can be readily
explained by the fact that at supernuclear densities the LS
EoS is considerably softer than the Shen EoS. Figure 6
shows a difference in the adiabatic index �eos between the
two microphysical EoSs (for a representative model) of
about ��eos ’ �0:5 at those densities, where nuclear
forces have an essential impact on the EoS properties.
The large effect of the EoS seen in �max;b in models

where this quantity exceeds �nuc does not contradict our

TABLE III. Summary of relevant quantities from the rotating collapse of all iron core models. �max;b is the maximum density in the
core at the time of bounce, jhjmax is the peak value of the gravitational wave amplitude for the burst signal, while �b and �pb are the

rotation rates at the time of bounce and late after core bounce, respectively. Models marked by unfilled/filled circles undergo a
pressure-dominated bounce with/without significant early postbounce convection, while models marked with crosses show a single
centrifugal bounce. The values left/right of the vertical separator (j) are for the Shen/LS EoS.

Collapse

model

�max;b

½ 1014

g cm�3�
jhjmax

[10�21 at 10 kpc]

�b

[%]

�pb

[%]

Collapse

model

�max;b

½ 1014

g cm�3�
jhjmax

[10�21 at 10 kpc]

�b

[%]

�pb

[%]

s11A1O01 �j� 3:24j4:43 0:05j0:05 0:1j0:1 0:1j0:1 s15A1O01 �j� 3:28j4:43 0:20j0:20 0:2j0:2 0:3j0:3
s11A1O05 �j� 3:23j4:41 0:26j0:25 0:3j0:3 0:4j0:5 s15A1O05 �j� 3:17j4:20 0:98j0:97 1:0j1:0 1:3j1:2
s11A1O07 �j� 3:22j4:35 0:51j0:49 0:6j0:6 0:8j0:8 s15A1O07 
j� 3:12j4:13 1:84j1:84 2:0j1:9 2:4j2:6
s11A1O09 �j� 3:17j4:21 0:95j0:90 1:1j1:1 1:3j1:4 s15A1O09 
j
 2:97j3:88 3:11j3:08 3:4j3:4 3:7j4:0
s11A1O13 
j� 3:11j4:13 1:77j1:76 2:0j2:0 2:4j2:6 s15A1O13 
j
 2:86j3:56 5:35j5:01 6:2j6:1 6:0j6:6
s11A2O05 �j� 3:16j4:18 1:30j1:35 1:4j1:5 1:6j1:7 s15A2O05 
j
 2:95j3:76 4:04j3:94 4:1j4:1 3:8j4:3
s11A2O07 
j
 3:02j3:92 2:47j2:52 2:8j2:8 2:9j3:0 s15A2O07 
j
 2:81j3:44 6:84j6:33 7:5j7:4 6:7j6:8
s11A2O09 
j
 2:94j3:69 4:08j4:00 4:8j4:8 4:6j4:7 s15A2O09 
j
 2:58j3:05 8:61j7:83 11:8j11:6 10:3j10:4
s11A2O13 
j
 2:76j3:35 6:68j6:09 8:5j8:4 7:9j8:0 s15A2O13 
j
 2:14j2:33 7:07j6:21 18:2j17:5 15:6j15:5
s11A2O15 
j
 2:66j3:15 7:72j7:01 10:9j10:8 9:8j9:9 s15A2O15 �j
 1:80j1:90 4:01j3:73 20:1j19:7 17:9j18:1
s11A3O05 
j
 3:02j3:88 2:96j3:05 3:2j3:2 2:8j3:0 s15A3O05 
j
 2:82j3:46 7:65j7:27 7:2j7:4 5:7j5:8
s11A3O07 
j
 2:89j3:60 5:33j5:30 5:9j6:0 5:1j5:2 s15A3O07 
j
 2:55j2:94 10:06j9:55 12:8j12:7 10:0j9:9
s11A3O09 
j
 2:71j3:25 8:42j7:66 9:7j9:7 8:0j8:2 s15A3O09 
j
 2:17j2:31 9:74j8:48 18:7j18:1 14:8j14:6
s11A3O12 
j
 2:46j2:75 8:92j7:84 14:9j14:7 12:3j12:3 s15A3O12 �j� 1:15j1:26 5:68j4:82 21:1j21:0 18:3j18:9
s11A3O13 
j
 2:36j2:64 8:62j7:73 16:1j15:8 13:2j13:2 s15A3O13 �j� 0:72j0:84 5:33j4:52 21:3j21:3 18:9j19:6
s11A3O15 
j
 2:10j2:23 7:21j6:32 19:4j18:6 16:2j15:8 s15A3O15 �j� 0:25j0:30 4:84j4:53 22:2j22:3 20:3j21:1
s20A1O01 �j� 3:28j4:41 0:13j0:13 0:1j0:1 0:2j0:2 s40A1O01 �j� 3:29j4:42 0:50j0:42 0:4j0:4 0:5j0:6
s20A1O05 �j� 3:21j4:23 0:63j0:64 0:7j0:7 0:9j1:0 s40A1O05 
j� 3:13j4:14 2:12j1:92 1:9j1:8 2:1j2:3
s20A1O07 �j� 3:17j4:23 1:19j1:28 1:3j1:3 1:6j1:9 s40A1O07 
j
 2:96j3:89 3:89j3:57 3:5j3:5 3:7j4:5
s20A1O09 
j� 3:10j4:11 2:20j2:12 2:3j2:3 2:6j3:0 s40A1O09 
j
 2:85j3:64 5:97j5:37 5:9j5:8 5:7j6:5
s20A1O13 
j
 2:95j3:77 3:81j3:68 4:3j4:3 4:5j5:0 s40A1O13 
j
 2:63j3:22 8:30j7:07 10:2j9:9 9:4j9:5
s20A2O05 
j
 3:03j3:94 2:89j2:89 3:0j3:0 2:9j3:1 s40A2O05 
j
 2:81j3:57 7:43j6:79 6:8j6:7 5:7j5:8
s20A2O07 
j
 2:90j3:63 5:04j4:87 5:5j5:5 5:1j5:3 s40A2O07 
j
 2:57j3:06 9:95j8:74 11:8j11:6 9:9j9:9
s20A2O09 
j
 2:75j3:31 7:46j6:73 9:0j8:8 8:0j8:3 s40A2O09 
j
 2:22j2:44 9:22j7:80 17:3j16:7 14:3j14:3
s20A2O13 
j
 2:42j2:75 7:83j7:07 14:8j14:4 12:8j12:9 s40A2O13 �j� 0:91j1:28 4:04j3:30 20:4j20:6 19:2j19:0
s20A2O15 
j
 2:20j2:37 7:00j6:10 17:8j17:2 15:4j15:2 s40A2O15 �j� 0:27j0:40 3:51j3:51 21:1j21:4 20:3j21:0
s20A3O05 
j
 2:92j3:62 5:59j5:53 5:6j5:7 4:6j4:7 s40A3O05 
j
 2:65j3:21 10:19j10:07 10:5j10:6 7:6j7:7
s20A3O07 
j
 2:70j3:20 9:50j8:72 10:1j10:2 8:0j8:1 s40A3O07 
j
 2:21j2:47 10:29j10:09 17:2j16:8 12:7j12:5
s20A3O09 
j
 2:38j2:63 9:67j8:65 15:7j15:4 12:5j12:4 s40A3O09 �j� 1:69j1:72 7:45j7:72 21:6j21:4 16:9j16:8
s20A3O12 
j
 1:93j2:00 6:52j5:98 21:0j20:3 17:6j17:1 s40A3O12 �j� 0:33j0:40 7:36j6:34 22:5j22:8 19:2j20:1
s20A3O13 �j� 1:77j1:79 5:35j4:98 21:3j20:8 18:1j18:0 s40A3O13 �j� 0:23j0:28 7:40j6:51 22:9j23:4 19:8j20:7
s20A3O15 �j� 0:65j0:75 4:62j3:78 21:6j21:5 19:7j20:2 s40A3O15 �j� 0:09j0:11 6:90j6:90 24:4j25:1 21:5j22:4
e15a 
j
 2:66j3:25 9:85j8:30 9:7j9:5 7:6j7:8
e15b �j� 1:61j1:69 3:62j3:57 20:2j20:1 18:0j19:0
e20a 
j
 2:69j3:35 9:41j8:09 8:7j8:5 6:4j6:4
e20b �j� 1:41j1:50 6:40j5:54 21:0j20:4 18:3j17:4
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observation that the EoS has little impact on the collapse
dynamics, since once the core plunges into the supernu-
clear density regime, where stronger differences in the two
microphysical EoSs emerge, the mass Mic;b of the inner

core at bounce is already fixed and the bounce dynamics
(pressure dominated or centrifugal) is already determined.

The impact of the EoS on �max;b is also visualized in

Fig. 8. As expected, for moderately or rapidly rotating
models, whose central parts do not reach high supernuclear
densities at bounce, the difference in �max;b gradually

decreases. Figure 8 also reveals that the two models
s40A2O13 and s40A2O15 (marked by two dark and light
blue crosses at intermediate values of �c;i, respectively)

are the ones that undergo a clear centrifugal bounce for
both EoSs with the lowest value of �c;i of all models with

the A2 rotation profile.
The convergence of �max;b for the two microphysical

EoS with increasing rotation can also be observed in the
relative difference ��max;b;rel ¼ �max;b;LS=�max;b;Shen � 1
shown in Fig. 9, which starting from ��max;b;rel ’
35–40% in the nonrotating limit first declines linearly
with �c;i until it levels off at roughly constant values.

However, the largest values are obtained with ��max;b;rel ’
40% and 48% for the rapidly rotating and centrifugally
bouncing models s40A2O13 and s40A2O15, emphasizing
their exceptional nature. This particular behavior results
from a combination of two effects, exhibited by only these
two models in our entire model set. First, when switching

from the Shen EoS to the LS EoS the inner core massMic;b

at bounce significantly decreases (see Fig. 4). Hence, in the
LS EoS variant the two models experience weaker rota-
tional support (in particular with the differential rotation
parameter A2; see also Sec. IVC). Second, the two models
bounce in a density regime (see Table III and Fig. 6), where
the LS EoS exhibits a smaller �eos than the Shen EoS,
resulting in less pressure support when the LS EoS is used.
The combination of weaker rotational support and pressure
support when using the LS EoS can then readily explain the
excess in �max;b;LS compared with �max;b;Shen in the two

exceptional s40 models.
A higher value of the maximum density �max in the

collapsed core for the LS EoS is not limited to the time
of bounce, but typically also remains in the nascent proto-
neutron star at later postbounce times, as shown in Fig. 10
for models representing the three collapse type and wave-
form subclasses (see Sec. IVA). Only very rapidly and thus
centrifugally bouncing models such as model e20b in
Fig. 10 have a time evolution of �max that is practically
independent of the chosen EoS.
We point out that in our discussion we always make use

of the maximum density �max instead of the central density
�c, since, after bounce, some of the most rapidly rotating
and thus centrifugally bouncing models develop a slightly
toroidal density structure with an off-center density maxi-
mum that is at most 20% larger than �c. This is much less
extreme than for models with the simplified hybrid EoS
treatment, where the maximum density was found to be
several orders of magnitude larger than the central density
in extreme cases [13,14].

0 5 10

Ω
c,i

 [rad s
-1

]

0.0

1.0

2.0

3.0

4.0

5.0

ρ m
ax

,b
 [

10
14

 g
 c

m
-3

]

s11, Shen EoS
s11, LS EoS
s15, Shen EoS
s15, LS EoS
s20, Shen EoS
s20, LS EoS
s40, Shen EoS
s40, LS EoS

FIG. 8 (color online). Maximum density �max;b in the star at
the time of bounce for all models versus the precollapse central
angular velocity �c;i. For moderately fast or rapidly rotating

models, which do not exceed nuclear density at bounce, �max;b is

almost identical for the Shen EoS (dark hues) and the LS EoS
(light hues), while for slowly rotating models the difference
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progenitor mass, the EoS, the precollapse rotation parameter
A, and the collapse dynamics are encoded as in Fig. 3.
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B. Structure of the postcollapse core and peak
waveform amplitude

Since the LS EoS leads to higher central densities at
bounce, one can on the one hand expect higher gravita-
tional wave peak amplitudes in the burst signal from core
bounce, as a denser and more compact core should yield in
an increase of the contribution to the quadrupole moment
from the central parts of the core. Furthermore, the asso-
ciated shorter dynamical times also lead to a more rapid
time variation in the quadrupole formula. On the other
hand, the higher compactness of the inner core of a model
run with the LS EoS results in lower densities at inter-
mediate and large radii than in the less compact core of the
corresponding model with the Shen EoS. In turn, this may

lead to an effectively smaller total quadrupole moment and
thus to a decrease in the signal amplitude compared with
the counterpart model with the Shen EoS. We now test
which of these two competing effects dominates in our
models.
In Fig. 11, we show the peak value jhjmax of the gravi-

tational wave amplitude for the burst signal from core
bounce (see also Table III), where we neglect any possibly
larger contributions at later times for models with strong
prompt postbounce convection. For slowly or at most
moderately rapidly rotating cores, jhjmax rises steeply
with increasing �c;i and covers a range of more than 2

orders of magnitude for our selection of initial models. For
rapid rotation, when centrifugal forces become dynami-
cally important and can be the dominant factor at bounce,
the peak amplitude jhjmax saturates and even decreases
again at very high �c;i. This behavior is a consequence

of centrifugal support, which prevents such rapidly spin-
ning cores from reaching high densities and more extreme
compactness as well as being subject to short variations of
the quadrupole moment (see also the discussion in Sec. VII
and in [16]).
For each precollapse rotational configuration (i.e., at

constant �c;i and differential rotation parameter A in

Fig. 11), the value of jhjmax depends indirectly on the
massMprog of the progenitor via the massMic;b of the inner

core at bounce. As already discussed in Sec. IVC, Mic;b

does not depend in a monotonic way on Mprog, but for our

standard model set increases in the order of the progenitor
models s11, s20, s15, and s40. Therefore, for pressure-
dominated bounce models the amplitude of the gravita-
tional wave signal directly scales with Mic;b in the obvious

sense that more massive inner cores produce stronger
gravitational wave emission.
What cannot be extracted from Fig. 11 is a clear effect of

the choice of the EoS on jhjmax, despite the strong differ-
ence in �max;b we observe between models using the Shen

EoS and the LS EoS. When plotting the relative change
�jhjmax;rel ¼ jhjmax;LS=jhjmax;Shen � 1 obtained by chang-

ing from the Shen EoS to the LS EoS for the same initial
model (as presented in Fig. 12), the majority of models
shows a decrease of jhjmax;LS compared with jhjmax;Shen.

Only six out of the 68 models (s11A2O05, s11A2O07,
s11A3O05, s20A1O05, s20A1O07, and s40A3O09) listed
in Table III exhibit a larger jhjmax when the LS EoS is used.
This behavior is similar to the situation discussed by

Dimmelmeier et al. [14] who compared collapse dynamics
and gravitational waveforms obtained from Newtonian and
general relativistic collapse simulations with the simple
hybrid EoS. They showed that for jhjmax the global density
distribution in the core at bounce is decisive, not the local
maximum density value. In their simulations, the general
relativistic variants consistently produced an increase of
�max;b compared with their Newtonian counterparts. Still,

they found that the peak value jhjmax of the gravitational
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FIG. 10 (color online). Time evolution of the maximum den-
sity �max for representative models with different precollapse
rotation profiles using the Shen EoS (red lines) or LS EoS (blue
lines). While models with at most moderate precollapse rotation
rates (e.g., s11A1O07 or s20A2O09) undergo a pressure-
dominated bounce at supernuclear densities, rapidly rotating
models (e.g., e20b) experience a centrifugal bounce.
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wave amplitude actually decreases for most models when
general relativistic effects are taken into account.

In [14], the negative �jhjmax;rel observed in many mod-

els when comparing Newtonian and relativistic simulations
could be attributed to the ‘‘density crossing’’ that occurs at
some radius inside the inner core at bounce: The general
relativistic simulation of a model yields a higher density
inside that (angle dependent, due to rotation) radius, while
for larger distances from the center, � is smaller compared
with the Newtonian simulation. Here, we vary the EoS
rather than the description of gravity, but we observe a
very similar density crossing in models that show
jhjmax;LS < jhjmax;Shen. In Fig. 13, we demonstrate this for

models s20A3O09 (representative for a pressure-
dominated bounce) and s40A2O13 (representative for a
centrifugal bounce).

Following the argument in [14], we plot the weighted
density �r2 in Fig. 14, since this is the relevant quantity in
the integrand of the quadrupole gravitational wave for-
mula. Although the larger �r2 of the model with the LS
EoS gives a larger quadrupole contribution out to the
crossing radius, in most models the larger �r2 in the outer
parts of the core in the variant with the Shen EoS more than
compensates this and ultimately leads to a larger integral
quadrupole moment and, thus, to a stronger gravitational
wave burst. We note that in [14], allmodels whose collapse
type did not change exhibited lower peak waveform am-
plitudes (�jhjmax;rel < 0) when going from Newtonian to

general relativistic gravity. In contrast, going from the
relatively stiff Shen EoS to the softer LS EoS results in a
less clear trend with a few models exhibiting �jhjmax;rel >

0. This suggests a less dramatic impact of a change from
the Shen EoS to the LS EoS compared with altering the
description of gravity.
For the small set of our models with �jhjmax;rel > 0 we

are neither able to identify any obvious and systematic
correlation with model parameters nor do we find any clear
systematics of �jhjmax;rel > 0 with ��max;b;rel. It appears

that the sign and magnitude of �jhjmax;rel depends sensi-

tively and in a complicated way on the details of the
collapse dynamics in each individual model. Hence, we
can only explain why specific model differences in the
density structure at bounce between the model variants
with the Shen EoS and the LS EoS lead to an observed
�jhjmax;rel, but cannot predict �jhjmax;rel based on precol-

lapse model parameters.

C. Frequency spectrum of the waveform and variation
with the equation of state

In contrast to the somewhat ambiguous impact of the
EoS on the peak waveform amplitude, the effect of replac-
ing the Shen EoS with the LS EoS on the waveform peak
frequency is unequivocal for models undergoing a
pressure-dominated bounce. The increase in the maximum
density at bounce in the models with the LS EoS always
results in a shift of the main peak in the waveform spectrum
to higher frequencies. In the center panel of Fig. 15, we

plot the waveform spectrum (i.e., the Fourier transform ĥ
of h) for model s20A3O09 as a representative pressure-
dominated bounce model. The spectrum of this model
exhibits a distinct and narrow high-frequency peak at
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signal when changing from the Shen EoS to the LS EoS for all
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fmax;Shen ¼ 710 Hz when using the Shen EoS, while the

calculation of the same model with the LS EoS results in a
peak at fmax;LS ¼ 744 Hz. Thus, for this particular model,

the change in EoS shifts the frequency associated with the
bounce peak by �fmax ¼ þ34 Hz. We observe similar
values for �fmax in all models undergoing pressure-
dominated bounce.

At frequencies below about 200 Hz, the waveform spec-
trum of s20A3O09 exhibits a plateau, which is due to the
low-frequency contribution from prompt large-scale post-
bounce convection. Such a contribution is present in many
models with slow to moderate rotation, but gradually de-
creases in magnitude and relevance with increasing rota-
tion. As pointed out in Sec. IVA, our present numerical
scheme has the tendency to overestimate prompt post-
bounce convection compared with full radiation-
hydrodynamics calculations.

The waveform of the slowly spinning model s20A1O05,
whose spectrum is shown in the top panel of Fig. 15, is
dominated by such prompt postbounce convective mo-
tions. Accordingly, for this model, there is a strong con-
tribution to the spectrum at low frequencies, even
exceeding the still clearly discernible bounce peak at
high frequencies. Nevertheless, also in this case the shift
of the high-frequency bounce peak when replacing the
Shen EoS by the LS EoS is obvious and obeys the system-
atics discussed above.

With increasing rotation, centrifugal forces become
more relevant and slow down the late phase of collapse
and bounce. As a consequence, fmax always retreats to
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s20A3O09 (top panel) and model s40A2O13 (bottom panel)
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FIG. 15 (color online). Spectrum of the gravitational radiation
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Shen EoS (red line) and LS EoS (blue line). ĥ is the Fourier
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lower frequencies. This is apparent in the spectrum of the
centrifugal bounce model s20A3O13 shown in the bottom
panel of Fig. 15. For this model, one can still identify the
high-frequency bounce peak, but now at significantly lower
frequencies around 400–500 Hz. Note that the low-
frequency quasicontinuous part of the spectrum in centri-
fugally bouncing models, such as s20A3O13, is due to
rotationally slowed dynamics and stronger postbounce
oscillations, and should not be confused with the low-
frequency contribution from prompt convection in slowly
rotating models.

In Fig. 16, we plot fmax for all models that undergo
pressure-dominated bounce and thus exhibit a clearly vis-
ible high-frequency peak in their spectra that can be asso-
ciated with the gravitational wave burst from core bounce.
For all models the systematic increase of fmax when chang-
ing from the Shen EoS to the LS EoS is apparent, and only
for very few rapidly rotating models close to the threshold
to centrifugal bounce the change of fmax becomes small. In
Table IV, we summarize the arithmetic mean �fmax along
with the respective absolute and relative differences be-
tween models using the Shen EoS and the LS EoS. Note

that when computing fmax we neglect the contribution
below a cutoff frequency fcut ¼ 250 Hz in order to exclude
any influence from the possibly unphysically strong and
prolonged early postbounce convection.
In previous work [18], Dimmelmeier et al. discussed the

detection prospects for the gravitational wave burst emitted
in rotating core-collapse models based on the s20 progeni-
tor and using the Shen EoS. To this end, they simulated a
large set of models with varying precollapse rotation rates
�i in the range from 0.05–4%, approximately logarithmi-
cally spaced in 18 steps for each of the three rotation
profiles A1, A2, and A3. For the current work, we have
repeated the calculations of this model set (which is ex-
tended in terms of precollapse rotation compared with our
standard models stated in Table II, but limited to one
progenitor), this time with the LS EoS. While the models
with the Shen EoS that undergo pressure-dominated
bounce have an arithmetic mean peak frequency
�fmax;Shen � 718 Hz [18], we find �fmax;LS � 758 Hz when

using the the LS EoS. Thus, for this particular model we set
the average relative frequency shift amounts to � �fmax;rel �
5:6%. Both the average peak frequencies and their change
with EoS are consistent with what we find for our standard
model set using the four different progenitors and a more
restricted variety of precollapse rotation rates.

VI. DETECTION PROSPECTS FOR THE
GRAVITATIONALWAVE BURST SIGNAL

In order to assess the detectability of the burst signal
from core bounce, we compute the (detector-dependent)
frequency-integrated characteristic signal frequency fc and
dimensionless characteristic gravitational wave amplitude
hc using Eqs. (22) and (23), respectively. We again exclude
frequencies below 250 Hz from the integrals in an attempt
to filter out dominant contributions from prompt post-
bounce convection in slowly rotating models. In Fig. 17,
we plot hc against fc for the current LIGO detector [72] at a
distance of 10 kpc. For comparison with the detector
sensitivity, we include its rms strain sensitivity curve.
Note that the total energy emitted in gravitational waves
ranges from Egw � 3:5� 10�10 to 5:3� 10�8 in units of
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FIG. 16 (color online). Frequency fmax at the maximum of the
waveform spectrum for all models with a given progenitor mass
versus the precollapse central angular velocity�c;i. Only models

that undergo pressure-dominated bounce are shown. The dotted
lines mark the average �fmax when using the Shen EoS or LS EoS.
The progenitor mass, the EoS, the precollapse differential rota-
tion parameter A, and the collapse dynamics are encoded as in
Fig. 3.

TABLE IV. Average �fmax of the frequency at the maximum of
the waveform spectrum for all models with a given progenitor
mass. � �fmax and � �fmax;rel are the absolute and relative change of

the frequency average, respectively, when changing from the
Shen EoS to the LS EoS.

Collapse

model set

�fmax;Shen

[Hz]

�fmax;LS

[Hz]

� �fmax

[Hz]

� �fmax;rel

[%]

s11 733 777 44 6.0

s15 658 702 44 6.7

s20 690 724 34 4.9

s40 685 716 31 4.5
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M�c2 (including the contribution from convection) for our
standard models.

The distribution of our standard set of models (as listed
in Table II) in the hc � fc plane of Fig. 17 obeys straight-
forward systematics. The clustering in frequency of the
large number of models undergoing a pressure-dominated
bounce (marked by circles in Fig. 17) is obvious. Very
slowly rotating models, whose waveforms are dominated
by the imprint of prompt postbounce convection (unfilled
circles), exhibit the lowest values for hc, which increases
with faster rotation (along arrow 1), reflecting that the inner
core at bounce becomes more massive (cf. Secs. IVC and
VB). Despite the frequency cut at 250 Hz in the integral for
fc, the low-frequency contribution from convection in the
spectrum leads to an fc that is lower than the value ob-
tained for more rapidly rotating models without significant
postbounce convection (filled circles). For the latter model
class, hc simply grows with increasing precollapse rotation
(along arrow 2), now at practically constant fc. Even for
these models, fc is always lower than the average peak
frequency �fmax of their waveform spectra, which amounts
to 715 Hz for the 108 models of our standard model set
(including the e15/e20 models) which exhibit a pressure-
dominated bounce. This is a consequence of the detector
characteristics, whose maximum sensitivity is at much
lower frequencies between 100 and 200 Hz and thus ac-
cordingly lowers fc in comparison with a fiducial flat
sensitivity curve.

For rapid rotation, the influence of centrifugal forces on
the collapse dynamics manifests itself as a centrifugal

barrier that limits the characteristic amplitude hc (see
also the discussion in Sec. VII A and Fig. 11).
Simultaneously, the characteristic frequency fc moves to
increasingly lower values as faster rotation slows down the
collapse (along arrow 3). Models that rotate so rapidly that
they undergo a purely centrifugal bounce (marked by cross
symbols in Fig. 17) constitute a practically separate class
(area 4) in the hc � fc diagram somewhat below the maxi-
mum value of the amplitude hc, but at considerably lower
frequencies fc.
For very rapidly rotating models the imprint of centrifu-

gal effects on various waveform characteristics (such as
fmax, fc, jhjmax, or hc) is quite pronounced and permits one
to infer on the precollapse rotational configuration in the
case of a successful detection of gravitational waves from a
core-collapse event. As already noted in [18], in the case of
moderate or slow rotation, which is the astrophysically
most probable case [31,59], the insensitivity of the wave-
form’s frequency characteristics to variations in the pre-
collapse configuration significantly obstructs the
‘‘inversion problem’’ of gravitational wave detection, i.e.,
the constraining of physical parameters of the precollapse
core or of the nascent proto-neutron star from a detected
waveform, leaving only the (e.g., maximum or integrated
characteristic) amplitude as an indicator of the rotational
configuration. In addition, Fig. 16 also implies that it will
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be very hard, if not impossible, to constrain other possibly
unknown model parameters aside from rotation (such as
EoS or progenitor mass) from the gravitational waveform
of the burst signal from core bounce alone, since their
effect on the burst waveform is small and no clear trends
or systematics are discernible, which adds to the degener-
acy of the inversion problem.

As an example, we again single out the impact of the
EoS on the waveform frequency, while keeping the pro-
genitor model s20 fixed. For the particular, extended set of
models with many precollapse rotation rates already dis-
cussed in Sec. VC, we show in Fig. 18 the location of the
waveform signals in the hc � fc plane for initial LIGO at a
distance of 10 kpc, Advanced LIGO in broadband tuning
[72] at a distance of 0.8 Mpc, and the projected EURO
detector in xylophone mode [73] at a distance of 15 Mpc
(cf. Fig. 4 in [18]). All 54 s20 models of [18] using the
Shen EoS along with the newly computed corresponding
models with the LS EoS are shown.

It is obvious that the spread within the group of models
with either the Shen EoS or the LS EoS is larger than the
variation due to a change in the EoS, since the effect of the
EoS on the characteristic signal frequency fc is small
(comparable to � �fmax;rel, corresponding to a change of a

few percent). The two EoSs considered here bracket the
range from rather soft (LS EoS) to rather stiff (Shen EoS),
and therefore it is unlikely that employing a larger variety
of nonzero-temperature nuclear EoSs would lead to any
more optimistic conclusions.

Based on the relative positions of the models with
respect to the individual detector sensitivities, from
Fig. 18 we conclude (in agreement with previous work
[17,18]) that initial-LIGO-class detectors are sensitive only
to signals coming from an event in the Milky Way, while
Advanced-LIGO-class observatories could marginally de-
tect events from other galaxies in the Local Group (e.g.,
M31 Andromeda at�0:8 Mpc distance). For the proposed
EURO detector in xylophone mode, we expect a very high
signal-to-noise ratio (hc divided by the detector sensitivity
at fc). This detector could also observe many of the com-
puted signals at a distance of 15 Mpc, i.e., in the Virgo
cluster, for which one expects a favorably high event rate.

VII. ROTATION OF THE PROTO-NEUTRON STAR

The calculations presented in this study impose axisym-
metry, hence we are unable to track the development of
rotationally induced nonaxisymmetric structures and dy-
namics. Nevertheless, we can utilize the results from our
simulations to assess the possibility of rotational triaxial
instabilities during the collapse and early postbounce
phase. In this way we can (i) test the reliability of our
present restriction to axisymmetry and (ii) put constraints
on the relevance of the various types of such instabilities in
a core-collapse event.

Nonaxisymmetric rotational instabilities in proto-
neutron stars have long been proposed as strong and po-
tentially long-lasting sources of gravitational waves. In
principle, the gravitational wave emission by a nonaxisym-
metrically deformed proto-neutron star after bounce could
easily exceed (see, e.g., [17,25]) in total emitted energy
(and, hence, in characteristic strain hc) the gravitational
wave burst from core bounce on which this paper is
focussed.
In the context of classical Newtonian theory of fluid

equilibria (see, e.g., [74]), MacLaurin spheroids (i.e., axi-
symmetric, rigidly rotating, equilibrium configurations of
uniform density) become unstable to nonaxisymmetric
deformation when a nonaxisymmetric configuration with
lower total energy exists at a given rotation rate �.
MacLaurin spheroids become dynamically unstable to de-
formation into Riemann ellipsoids at � * �dyn ¼ 27%. At

� * �sec ¼ 14%, they become secularly unstable to triax-
ial ellipsoidal deformation in the presence of dissipative
processes (Jacobi ellipsoids via gravitational wave back-
reaction known as the Chandrasekhar-Friedman-Schutz
(CFS) instability [75,76], or Dedekind ellipsoids via vis-
cous processes). In both the dynamical and the secular
case, the lowest-order deformation in terms of azimuthal
nonaxisymmetric modes proportional to expðim’Þ is the
m ¼ 2 Kelvin (bar-) f-mode, where ’ is the azimuthal
angle and the mode order m is an integer.
Although Newtonian MacLaurin spheroids are highly

idealized configurations, numerical studies (see, e.g., [77]
and references therein) have shown that the above insta-
bility threshold �dyn for the dynamical instability holds

approximately even when differentially rotating compress-
ible fluid configurations in general relativity are consid-
ered. The situation may be different for the gravitational
radiation backreaction driven secular instability, since per-
turbative studies (see, e.g., [78]) predict an onset at sig-
nificantly lower � in general relativity than in the
Newtonian case. However, fully relativistic nonlinear hy-
drodynamic studies of the secular instability remain yet to
be carried out.
Recently, a new kind of dynamical rotational nonaxi-

symmetric instability at a value of � much lower than the
classical threshold has been discovered both in numerical
and perturbative studies (see, e.g., [17,22,25,79–85] and
references therein). This low-� instability (making the
classical MacLaurin instability a ‘‘high’’-� instability)
appears to amplify nonaxisymmetric modes at points
where their pattern speed �m (the eigenfrequency !m

divided by the azimuthal mode order m) coincides with
the local angular velocity of the fluid [22,81–83].

A. The rotational barrier in core collapse

From first principles one can derive that the conservation
of angular momentum during the collapse phase results in
an increase of the angular velocity � of a representative
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Lagrangian mass element proportional to$�2, where$ ¼
r sin is the distance from the rotation axis. Setting for
simplicity $ equal to the spherical radial coordinate r
(which, of course, only holds in the equatorial plane),
this translates into a scaling of the centrifugal force pro-
portional to r�3. The gravitational force, on the other hand,

increases only like r�2. Hence, even in this simple
Keplerian picture, one may expect a dominance of the
centrifugal force over gravity at sufficiently small r. In a
more elaborate approach, employing sequences of
Newtonian self-gravitating equilibrium spheroids,
Tohline [86] demonstrated that such a rotational barrier
at which the collapsing core becomes centrifugally stabi-
lized indeed exists in the context of stellar core collapse.
This rotational barrier marks the hard upper limit for the
contraction of the inner core, hence also puts an upper limit
�rb on the rotation rate that can be reached when varying
�c;i for a given combination of precollapse degree of

differential rotation and progenitor structure.
Tohline’s qualitative conclusions have been confirmed

by multiple numerical studies of rotating collapse (see,
e.g., [12–14,16,25] and our present work), while the quan-
titative results, in particular, the analytic critical rotation
rate for centrifugal stabilization of collapse, do not hold for
a dynamical collapse situation and must be determined via
nonlinear hydrodynamic simulations [18].
In Fig. 19 we plot the time evolution of the rotation rate

� for a sequence of rotating collapse models with increas-
ing precollapse central angular velocity�c;i while all other

model parameters are kept fixed. All models reach their
maximum rotation rate �max close to the time of core
bounce, hence �max ’ �b. After bounce, the inner core
re-expands and settles into a new quasi-equilibrium con-
figuration with �pb <�b. Slowly to moderately rapidly

rotating models experience little rotational support, and
in those cases �b increases roughly linearly with �c;i
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FIG. 19 (color online). Time evolution of the rotation rate �
around the time of core bounce for various models of the s20
progenitor series computed with the Shen EoS at fixed precol-
lapse degree A of differential rotation and varying the precol-
lapse central angular velocity�c;i. Note that we have augmented

this sequence by three extra models s20A3O16 to s20A3O18
(with �i ¼ 3:00, 3.50, and 4.00, respectively) not listed in
Table III.
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FIG. 20 (color online). Rotation rate �b at the time of bounce
for all models versus the precollapse central angular velocity
�c;i. The progenitor mass, the EoS, the precollapse differential

rotation parameter A, and the collapse dynamics are encoded as
in Fig. 3. The lower horizontal line approximately separates
pressure-dominated bounce models with and without strong
prompt postbounce convection, while upper horizontal line
marks the approximate transition between pressure-dominated
bounce and centrifugal bounce.
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FIG. 21 (color online). Rotation rate �pb in the late postbounce
phase for all models versus the precollapse central angular
velocity �c;i. The progenitor mass, the EoS, the precollapse

differential rotation parameter A, and the collapse dynamics are
encoded as in Fig. 3. As in Fig. 20, the horizontal lines again
approximately mark the boundaries between different bounce
dynamics.
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(see also Table III). For higher values of �c;i, centrifugal

forces become relevant and �b saturates at �rb as the
models start to bounce centrifugally. For the s20A3 se-
quence with the Shen EoS considered here we determine
�rb to be �23%.

Figures 20 and 21 provide an overview of the depen-
dences of �b and �pb, respectively, on �c;i for our entire

model set as listed in Table III. Models that start out in
essentially solid-body rotation (A1) never reach a �b in
excess of �10% (with the maximum obtained in model
s40A1O13). With increasing �c;i such rigidly rotating

cores become eventually fully centrifugally supported al-
ready at the onset of collapse and do not collapse at all.
Differentially rotating models may have higher values of
�c;i and thus a more rapidly rotating center, while the core

is still allowed to collapse. As the collapse proceeds,
electron capture reduces the pressure support and the size
of the homologously collapsing inner core stays suffi-
ciently small that centrifugal forces can become dynami-
cally relevant only in the final phase of collapse (see the
discussion in Sec. IVB). Thus, for our model set, the most
differentially rotating configuration A3 leads to the highest
values for �b and �pb. A centrifugal bounce near the rota-

tional barrier occurs only in a small subset of very rapidly
(�c;i * 6:5 rad s�1) and differentially (A2/A3) rotating

models, generally at �b * 20:5%.
At a fixed precollapse degree of differential rotation and

�c;i,�b, and�pb increase with a more massive and radially

extended progenitor iron core (cf. Table I). This is analo-
gous to the systematics found for the rotational enhance-
ment of the inner core mass Mic;b at bounce (see Fig. 4).

The dependence of both �b and �pb on the EoS is small

and shows little systematic trend. The Shen EoS, on the one
hand, systematically yields a more massive and more ex-
tended inner core that bounces with more dynamically
relevant angular momentum than one obtained with the
LS EoS. The LS EoS, on the other hand, leads to more
compact configurations, which provide for stronger cen-
trifugal spinup in the final phase of collapse. The competi-
tion between these two effects results in the nonsystematic
difference between the two EoSs seen in Figs. 20 and 21.

The centrifugal barrier is also evident in Fig. 22, where
we plot the dependence of the peak value jhjmax of the
gravitational wave burst against the rotation rate �b at
bounce. It is noteworthy that centrifugal effects are respon-
sible for an upper limit in jhjmax even before the maximum
rotation rate �b � 25% is reached, which reflects the ob-
servation that the highest values of jhjmax � 1020 at 10 kpc
distance are obtained for models which still undergo a
pressure-dominated bounce, albeit at rapid rotation with
�b � 10%. Below these rotation rates, jhjmax scales line-
arly with �b with remarkable precision, which is important
information for the inversion problem in the case of a
detection. We find a similar linear dependence of jhjmax

on the postbounce rotation rate �pb. In that case, however,

the linear correlation is not as precise for low rotation rates
(as �pb is rather sensitive to angular momentum redistrib-

ution due to convection after core bounce) and, in addition,
the scaling becomes approximately quadratic well before
jhjmax reaches its upper limit.

B. The prospects for dynamical high-� instability in
iron core collapse

We find that none of our models surpass the threshold
rotation rate �dyn for the classical dynamical instability

(see Table III). The overall largest � of �25% is reached
by model s40A3O15, which has the most massive and
extended progenitor iron core (see Table I) in combination
with the strongest precollapse degree of differential rota-
tion and highest precollapse central angular velocity con-
sidered in this study. This value of �b � 25% comes close
to the numerically obtained instability threshold of �dyn *

25:5% reported in [77], but is maintained only for a very
short time, since the core rebounds and settles at a more
expanded quasi-equilibrium state after bounce.
Accordingly, its postbounce rotation rate �pb is �22%,

and thus this model is unlikely to become subject to a
dynamical high-� bar-mode instability. As portrayed by
Fig. 21, the models with less extreme precollapse condi-
tions in general reach a �pb significantly below �20%.

Based on the results from our extensive set of simula-
tions, we consider it unlikely that a proto-neutron star in
nature develops a high-� dynamical instability at or early
after core bounce. On the other hand, during its cooling to
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FIG. 22 (color online). Peak value jhjmax of the gravitational
wave amplitude at 10 kpc distance for the burst signal (neglect-
ing possibly larger contributions from postbounce convection at
later times) for all models versus the rotation rate �b at the time
of bounce. At slow to moderately rapid rotation, jhjmax is
proportional to �b to high accuracy (as marked by the dotted
line with a slope of 1 in the log-log plot), while for �b * 10%
centrifugal effects reduce jhjmax.
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the final cold and condensed neutron star, the proto-neutron
star contracts, and, if angular momentum is conserved and
not redistributed or shed by other means (see, e.g., the
discussion in [31,59]), spins up on a timescale of seconds
to minutes. While many of the proto-neutron stars in our
model calculations could theoretically reach �dyn, it is,

however, more likely that the secular instability driven by
dissipation or gravitational radiation backreaction, which
in proto-neutron stars has a growth timescale on the order
of 1 s [87], will set in first, completely diminishing the
chances for dynamical high-� instability even in the most
rapidly rotating proto-neutron stars.

Finally, we point out that it is in principle possible to
construct precollapse conditions that lead to �b and �pb

above �dyn. This may be achieved by increasing signifi-

cantly the precollapse degree of differential rotation and
�c;i above the values used in our most extreme models.

However, such configurations (including already the rota-
tional setup A3 in our models) are very unlikely to arise in
evolution scenarios of single massive stars, since stellar
evolution proceeds sufficiently slowly for redistribution of
angular momentum toward solid-body rotation to occur on
nuclear-burning timescales [31,43,88].

C. Differential rotation in the proto-neutron star and its
relevance for the low-� dynamical instability

The low-� dynamical instability appears to develop
exclusively in differentially rotating fluid bodies and has
been reported to occur even for rotation rates as low as
�1%, provided the degree of differential rotation is suffi-
ciently large [80].

The nature of the low-� instability remains to be deter-
mined in detail, yet it has been suggested [81] that it is a
type of dynamical shear instability that operates on the
shear energy stored in differential rotation and radially
redistributes angular momentum via the generation of an
azimuthal (nonaxisymmetric, spiral) structure that propa-
gates outward in radius [25,83]. In this picture, nonaxisym-
metric structure is generated by transfer of rotational
energy from the axisymmetric background fluid to an
azimuthal fluid mode at the location where the background
angular velocity matches the mode pattern speed (i.e., at
the corotation point). This proposed corotation mechanism
suggests a close relationship of the low-� instability ob-
served in simulations of stellar models with dynamical
instabilities in disks such as those described by
Papaloizou and Pringle [89].

The importance of differential rotation for the low-�
instability in stars can now be understood by the combina-
tion of two important factors: First, differential rotation
provides the reservoir of shear energy that can be tapped to
generate the nonaxisymmetric structure. Second, despite a
relatively low global rotation rate �, differential rotation
allows the central regions of a star to rotate sufficiently
rapid to be in corotation with the lowest-order unstable

modes that have pattern speeds of Oð2�=�dynÞ, where

�dyn � 2�

ffiffiffiffiffiffiffiffiffi
R3

GM

s
(24)

is the dynamical timescale of the rotating star set by the
Keplerian angular velocity [22,79].
Since solid-body rotation is the state of lowest rotational

energy, neutron stars are very likely to become rigidly
rotating within at most a few dissipative timescales during
their post-supernova cooling evolution. Significant differ-
ential rotation may be expected in early merger remnants
of binary neutron stars (e.g., [90]) and, importantly, is a
consequence of rotating iron core collapse to a proto-
neutron star investigated in the present work.
In Fig. 23, we plot radial profiles of the angular velocity

� in the equatorial plane at 20 ms after core bounce for
several of our models. As a result of quasihomologous
contraction, the near uniform precollapse rotational profile
of the inner core is essentially frozen during collapse [59].
In the outer core, however, the collapse proceeds super-
sonically, resulting in differential rotation at equatorial
radii * 10 km. In all models shown in Fig. 23, � declines
by about 2 orders of magnitude in the radial interval from
10 to 200 km, and roughly obeys a power-law with an
exponent in the range of �1:2 to �1:4. Generally, a
stronger degree of precollapse differential rotation leads
to a steeper radial decline of � after bounce. When in-
creasing �c;i while keeping the degree of precollapse

differential rotation fixed, the outer core regions experi-
ence more centrifugal support during collapse, resulting in
a shallower postbounce slope for � (cf. model s20A2O15
in Fig. 23).
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FIG. 23 (color online). Radial profile of the angular velocity�
in the equatorial plane at 20 ms after the time of core bounce for
a representative subset of the models listed in Table III. Note that
the inner core is in approximate solid body rotation out to about
10 km, while the outer parts of the proto-neutron star and the
postshock region rotate strongly differentially. The dotted lines
mark the approximate range for the characteristic angular fre-
quency �char.
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In general, we find that the central angular velocity �c

after bounce increases monotonically with the precollapse
value �c;i. For our models we obtain values for �c in the

nascent proto-neutron star between about 2 and
6 radms�1, which corresponds to central rotation periods
of about 1 to 3 ms. Assuming a mass range of the proto-
neutron star of �0:6 to 0:8M� for the models considered
here (see Fig. 4) and a fiducial radius of the inner core at
bounce of �20 km, we obtain dynamical times of 1.7–
2.0 ms, which yield characteristic angular frequencies of
�char � 3–4 radms�1. Since the lowest-order unstable
mode is likely to have a pattern speed of the order of
�char, most models whose angular velocity we plot in
Fig. 4 may indeed have corotation points with an unstable
mode, hence could undergo a corotation-type low-� insta-
bility. Slow rotators (with �c;i & 2 rad s�1) do not appear

to reach a sufficiently high angular velocity in the inner
proto-neutron star core to have corotation points with
potentially unstable modes in the first several tens of milli-
seconds after bounce. However, this may change at later
times when the proto-neutron star contracts and spins up.

Finally, we point out that our discussion is based on a
very rough estimate of the pattern speed for the lowest-
order unstable azimuthal mode. More reliable estimates
can be made via multidimensional perturbative analysis
(see, e.g., [83] in the context of idealized models) or by
performing a large set of numerical simulations in three
dimensions, which we plan to carry out in a future study.

VIII. SUMMARYAND CONCLUSIONS

In this article we have presented results from a compre-
hensive set of collapse simulations of rotating stellar iron
cores to proto-neutron stars, using the axisymmetric gen-
eral relativistic hydrodynamics code COCONUT. Our simu-
lations treat all the relevant physics of the collapse phase to
good approximation. They include precollapse iron core
profiles from stellar evolutionary calculations, a highly
efficient approximate treatment of deleptonization, a mi-
crophysical finite-temperature EoS, as well as neutrino
pressure contributions. Magnetic fields are not included,
since their relevance in the collapse and early postbounce
phases is very likely negligible in cores with realistic
precollapse fields [5,31,33,37].

The focus of our study is on procuring accurate and
reliable waveforms of the gravitational wave burst signal
associated with core bounce and on understanding the
dependence of the signal characteristics on progenitor
star mass, precollapse rotational setup, and nuclear EoS.
To this end, we have performed the to-date most extensive
parameter study of this scenario, covering with more than
100 model calculations the parameter space spanned by
(1) progenitor mass and model profile (zero-age main
sequence masses from 11.2 to 40M�, presupernova models
with and without rotation), (2) rotational configuration
(slow and uniform to rapid and differential rotation), and

(3) nuclear EoS prescription (from relatively soft to rela-
tively stiff). Importantly, the parameter space encompasses
and even goes beyond all precollapse rotational configura-
tions that are deemed realistic in the context of collapsing
massive stars.
A central result of this work is the finding that the

gravitational wave burst from core bounce exhibits a ge-
neric waveform shape known as type I in the literature
[12,13], independent of the model parameters. The mul-
tiple centrifugal bounce dynamics and the corresponding
type II waveform found in previous, technically less com-
plete studies (see, e.g., [12–14,16]) do not occur in our
models.
We have demonstrated that all models with precollapse

core angular velocities�c;i below�5 rad s�1 (correspond-

ing periods longer than about 1 s) reach nuclear densities
and experience a core bounce predominantly due to nu-
clear pressure effects. More rapidly rotating cores develop
sufficient rotational support during collapse to undergo
either a mixture of centrifugal and pressure-dominated
bounce or a single centrifugal bounce at subnuclear den-
sities. Centrifugal hangup much below nuclear density or
multiple, damped harmonic oscillatorlike centrifugal
bounces do not occur. Therefore, these models also exhibit
a type I waveform. The detailed analysis of the collapse
dynamics presented in this paper reveals that the combined
effects of general relativity and deleptonization lead to an
increased destabilization of the collapsing core, result in a
relatively small radius and mass Mic;b of the sonically

connected inner core at bounce (but not small enough to
show the type III waveform associated with rapid collapse
found in some previous simplistic models), and diminish
the dynamical importance of centrifugal forces during
collapse.
The key parameter that determines the peak amplitude

jhjmax of the gravitational wave burst has turned out to be
the precollapse central angular velocity �c;i. Slowly rotat-

ing cores with �c;i & 1 rad s�1 produce feeble peak am-

plitudes on the order of 10�22 at a distance of 10 kpc. More
rapidly rotating cores with 1 rad s�1 & �c;i & 6 rad s�1

develop stronger quadrupole deformations and have a
rotationally increased mass Mic;b at bounce, resulting in

sizeable peak amplitudes in the range of 5� 10�22 &
jhjmax & 10�20. The peaks of the waveform spectrum of
such cores cluster in frequency space in the interval of
650–800 Hz. At larger �c;i, centrifugal effects become

strong, significantly decelerate collapse and bounce, and
even lead to a purely centrifugal bounce in a subset of
models. This results in a general decrease of jhjmax and a
shift of the waveform’s spectral peak to frequencies below
�400 Hz at high �c;i.

We have also shown that, in addition to �c;i, the pre-

collapse core mass in combination with the electron frac-
tion sets the mass Mic;b of the inner core at bounce, is an

important quantity influencing the strength of the gravita-
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tional burst. Since more massive progenitors generally
(though with notable nonmonotonicity in the mass range
from about 18 to 23M�) form larger iron cores, we observe
in our model series a general trend to bigger Mic;b and

larger jhjmax with increasing progenitor mass if all other
parameters are kept constant. For instance, the 40M� pro-
genitor yields values of jhjmax, which are up to 4 times
larger than for the lower-entropy 11:2M� counterpart with
the same rotational configuration.

The variations in the degree of differential rotation
considered in this study have only a minor impact on the
collapse dynamics and burst waveform amplitude.
Increasing differential rotation at fixed �c;i generally low-

ers the centrifugal support of outer core regions. However,
since the dynamically most relevant inner core at bounce
consists of only �0:5–1M� located within about 1000 km
at the onset of collapse, the effects of differential rotation
on the gravitational wave burst are small.

Our results further indicate that the nuclear EoS has little
influence on the gravitational wave burst signal. For a
given precollapse configuration, a softer nuclear EoS
yields higher densities at bounce and postbounce times
with shorter variation timescales of the quadrupole mo-
ment, but also leads to greater inner core compactness. In
our simulations, the two effects generally cancel, leading
to no systematic trend in the peak waveform amplitude
jhjmax with the EoS. The peak of the waveform spectrum,
however, shifts to higher frequencies in the case of a softer
EoS. For the models considered here, this frequency shift
amounts to �5:5% on average for models undergoing
pressure-dominated bounce. It is significantly smaller for
models bouncing at subnuclear densities under the influ-
ence of centrifugal effects.

If situated within our galaxy, a large fraction of our
models are comfortably detectable by current gravitational
wave detectors with a signal-to-noise ratio of up to 6 in the
most optimistic case (which is obtained for the most rap-
idly rotating models that still undergo pressure-dominated
core bounce). Advanced detectors could observe them
easily out to �100 kpc and up to several 10 Mpc for
third-generation detectors.

While such a gravitational wave signal may per se be
detectable, the extraction of detailed physical information
from the signal (i.e., solving the ‘‘inversion problem’’)
from the signal will be a formidable task. The very generic
morphology of the burst waveforms and the clustering in
frequency space of most models make it seem unlikely that
a pure waveform-template-based inversion (as, e.g., carried
out in [91] using the waveforms of [16]) can be successful
for determining key physical parameters to significant
precision. Our results, however, suggest that based on
jhjmax and the peak frequency fmax of the waveform spec-
trum alone, it should be possible to discriminate between
purely pressure-dominated bounce (small to large jhjmax at
frequencies fmax significantly above 500 Hz) and centrifu-

gal bounce (large jhjmax at frequencies fmax significantly
below 500 Hz). Furthermore, we find that for not too rapid
rotation jhjmax can be directly used to extract the rotation
rate �b at bounce to good precision.
Making use of the extensive set of postbounce rotational

configurations obtained with our simulations, we have also
studied the prospects for the development of nonaxisym-
metric rotational instabilities in nascent proto-neutron
stars. We find that the rotational barrier imposed by cen-
trifugal forces prohibits the spinup to rotation rates neces-
sary for the classical dynamical bar-mode instability at
high values of �. We find, however, that a large subset of
our postbounce models exhibits sufficiently differential
and rapid rotation to become subject to the recently dis-
covered low-� instability. Still, three-dimensional simula-
tions as in [17,19,22,38] will be necessary to provide
conclusive tests of our predictions. Furthermore, the inter-
action and competition of the low-� instability and other
instabilities operating on the shear energy of differential
rotation, for instance the magneto-rotational instability
(see, e.g., [33,92]), remain to be studied.
Finally, we point out that this study may be regarded as

part—with the presently highest level of sophistication—
of a multidecade effort of our groups [11–14,16–18] to
provide reliable estimates for the gravitational wave burst
emission associated with rotating core collapse and core
bounce. The waveforms presented here are for the first time
not only accurate (i.e., numerically converged), but reliable
and robust, since our calculations take into account all the
necessary physics, including general relativity, deleptoni-
zation, and a microphysical EoS. All waveforms are avail-
able for download in various formats in a publicly
accessible waveform catalog [42].
We point out that the gravitational wave emission pro-

cess considered in this work operates at measurable
strength only if the progenitor core is rotating a lot more
rapidly than expected for ordinary iron cores (see, e.g.,
[31,59]). In slowly rotating core-collapse supernovae, tur-
bulent convective overturn, instabilities of the accretion
shock, and, possibly, proto-neutron star pulsations are
likely to be the dominant emission processes of gravita-
tional waves. The characteristics of these emission pro-
cesses are not as well understood and will require more
extensive and precise modeling to provide accurate esti-
mates of the complete gravitational wave signature of core-
collapse supernovae.
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[36] P. Cerdá-Durán, G. Faye, H. Dimmelmeier, J. A. Font,
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Müller, Phys. Rev. D 71, 064023 (2005).
[63] K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
[64] A. Nagar, O. Zanotti, J. A. Font, and L. Rezzolla, Phys.

Rev. D 75, 044016 (2007).
[65] K. S. Thorne, in 300 Years of Gravitation, edited by S.W.

Hawking and W. Israel (Cambridge University Press,
Cambridge, 1987), p. 330.

[66] J. A. Font, Living Rev. Relativity 6, 4 (2003),
www.livingreviews.org/lrr-2003-4.

[67] J.M. Hyman, Technical Report COO-3077-139, ERDA
Mathematics and Computing Laboratory, Courant

Institute of Mathematical Sciences (New York
University, New York, 1976).

[68] C. L. Fryer and A. Heger, Astrophys. J. 541, 1033 (2000).
[69] R. Buras, M. Rampp, H.-T. Janka, and K. Kifonidis,

Astron. Astrophys. 447, 1049 (2006).
[70] L. Dessart, A. Burrows, C. D. Ott, E. Livne, S.-C. Yoon,

and N. Langer, Astrophys. J. 644, 1063 (2006).
[71] A. Burrows and J.M. Lattimer, Astrophys. J. 270, 735

(1983).
[72] D. Shoemaker (private communication).
[73] www.astro.cardiff.ac.uk/geo/euro.
[74] S. Chandrasekhar, Ellipsoidal Figures of Equilibrium

(Yale University Press, New Haven, 1969).
[75] S. Chandrasekhar, Astrophys. J. 161, 561 (1970).
[76] J. L. Friedman and B. F. Schutz, Astrophys. J. 222, 281

(1978).
[77] L. Baiotti, R. De Pietri, G.M. Manca, and L. Rezzolla,

Phys. Rev. D 75, 044023 (2007).
[78] S.M. Morsink, N. Stergioulas, and S. R. Blattnig,

Astrophys. J. 510, 854 (1999).
[79] J.M. Centrella, K. C. B. New, L. L. Lowe, and J. D. Brown,

Astrophys. J. 550, L193 (2001).
[80] M. Shibata, S. Karino, and Y. Eriguchi, Mon. Not. R.

Astron. Soc. 343, 619 (2003).
[81] A. L. Watts, N. Andersson, and D. I. Jones, Astrophys. J.

Lett. 618, L37 (2005).
[82] S. Ou and J. E. Tohline, Astrophys. J. 651, 1068 (2006).
[83] M. Saijo and S. Yoshida, Mon. Not. R. Astron. Soc. 368,

1429 (2006).
[84] B. Zink, N. Stergioulas, I. Hawke, C. D. Ott, E. Schnetter,

and E. Müller, Phys. Rev. D 76, 024019 (2007).
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