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ABSTRACT A new four-parameter elastic potential
function is proposed which represents data on the elastic
deformation of rubbery materials with the same param-
eters in various deformation fields up to break.

We wish to report on a new elastic potential function for
rubbery materials which permits one to predict deformations
up to break in various deformation fields if the four material
parameters of the potential function are known. Our elastic
potential (or strain energy density) function is based on the
generalized measure of strain introduced by Seth (1). In
Lagrangean coordinates, this measure of strain is expressed as

Ea = (Xan - 1)/n a = 1, 2, 3 [1]

where E is the strain, X is the stretch ratio, the as denote the
three principal directions, and n is a material parameter.
Seth's measure of strain is based on the realization that there
is no unique definition of strain; rather, the most convenient
strain measure is a property of the material and of the
geometry of the deformation.
The elastic potential of an isotropic material is customarily

formulated in terms of three invariants of the stretch ratios.
These are generally taken to be the principal invariants, I,, I2,
and I3, of the right Cauchy-Green deformation tensor. How-
ever, this choice is not unique. One may choose any three sym-
metric functions of the stretch ratios. In a general sense one
can define invariants on perfectly arbitrary functions of the
stretch ratios, namely

I= EW(Aa) [2]
a

II=1
II = - E W(Xa)W(X,6)2 a,#

ai5f [3]

We have replaced I in Eq. 6 by

IE = EEaZ
a

[7]

the first principal invariant of the Lagrangean strain tensor
based on Seth's definition of strain. By requiring that WT con-
form to Hooke's law in infinitesimal deformation, we obtain

W = (2G/n)IE [8]

where G is the shear modulus of the material in infinitesimal
deformation. This relatively simple elastic potential function
accurately represents data on elastomeric materials in different
deformation fields (simple tension, biaxial tension, simple
compression, pure shear, torsion, etc.) up to stretch ratios of
about 3 in simple tension.
A particularly simple form of Eq. 6, namely,

W = I [9]

was chosen by Valanis and Landel (2) to represent data on
natural rubber. The same approach has since been used by
Dickie and Smith (3) and by Kawabata (4).
Eq. 9, when written out explicitly, becomes

W = w(Xl) + w(X2) + W(X3) [10 ]

This equation was found (2-4) to represent data in different
deformation fields up to about the same stretch ratios for
which Eq. 8 also gives an adequate description of the data.
Eq. 10 implies separability of the elastic potential into three
principal contributions based on the single function, w(Xa).
Eq. 8 contains the same feature and it is, in fact, easily shown
that

w(Xa) = 2G(Xan- 1)/n [11]

and

III = H W(Xa) [4]
a

The most general elastic potential, therefore, is

HZ = TV(1Y II, III) [5]

in which I, II, and III are given by Eqs. 2 through 4. A special
subset of the possible forms of the elastic potential represented
by Eq. 5 is

it = W(I) [6]

One can evaluate w(Xa) as a function of Xaa experimentally
(2-5). In moderate deformations, therefore, the two ap-
proaches represented by Eqs. (8) and (10) are equivalent, and
a choice can be made only on the grounds of simplicity. There
is no known basis in thermodynamics or statistical mechanics
for concluding that the elastic potential must be separable.
Indeed, we know of no demonstration that a separable
potential function can represent data in different deformation
fields up to the point of rupture.
We have found that such a representation is obtained from

the potential function

W = (2G/n)IE + BIEm [12]

where B and m are two additional material parameters.
Eq. 12 is a special case of Eq. 6 in which the elastic potential
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FIG. 1. Data of Treloar on natural rubber fitted by Eq. 13.

cannot be separated into three principal contributions. The
potential is, however, distinguished by its simplicity. The

parameters G, n, B, and m may be obtained conveniently from
measurements in simple tension. The same parameters will
then describe the behavior in other deformation fields from the
equation

(- - = (kn- XOn) [(2G/n) + mBI"m'-] [13]

where m is the true stress. Eq. 13 is thus a true constitutive
equation.
A fuil discussion of Eqs. 12 and 13 and their application to

experimental data will not be presented here. Here we only
show the application of Eq. 13 to the data obtained by Treloar
(6) on natural rubber at 20'C in simple tension, pure shear
(maximum stress only), and two-dimensional tension. The
latter data were recalculated for simple compression. The
parameters, G = 4.0 kg/cm2,n = 1.64,B = 8.3 X 1O-4 kg/cm2,
and m = 4.0, were derived from the data in simple tension, and
used to predict the observed behavior (solid lines) in simple
tension and compression, and in pure shear. The fit is shown in
Fig. 1. The behavior near X = 1 is shown enlarged in the
insert. A similarly excellent fit has been obtained on the data of
Dickie and Smith (3) on styrene-butadiene rubber (Blatz,
P. J., Sharda, S. C. & Tschoegl, N. W., unpublished).
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