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A generalized formalism for the EXAFS effect is presented. The full T operator in the Lippmann-Schwinger
equation is expanded and the first term and part of the second term are seen to effectively correspond to single
scattering EXAFS processes. The latter term includes secondary scattering by the absorber, and within this
formalism it is this term that introduces the central atom phase shift. The expression obtained for the single
scattering problem is identical with that found by other investigators. A solution to the general EXAFS

problem involving an absorbing atom and two neighboring atoms is also presented. The expression differs
from that previously reported [B. K. Teo, J. Am. Chem. Soc. 103, 3990 (1981)]. Multiple scattering is seen to
contribute increasingly to the EXAFS as the three atoms approach colinearity. Both the amplitude and

frequency of the multiple scattering components are functions of the geometry of the system. The model

systems studied indicate that, in many cases, multiple scattering effects must be considered in the analysis of
non-nearest-neighbor shells. The theory may readily be extended to systems and scattering paths of arbitrary

complexity.

i. INTRODUCTION

Beginning with Kronig in 1932, a number of short-
range order theories!™!! have been proposed to explain
the post-edge fine structure—the extended x-ray absorp-
tion fine structure or EXAFS—of the x-ray absorption
edge (see reviews of this subject by Lee et al., 12
Stern!® and Azaroff!?). With the exception of Lee’s
recent work, 10 211 these studies suffer from difficulties
in their treatment of the outgoing photoelectron wave,
the scattering potential, or the central atom phase shift.
Nevertheless, each study arrives at essentially the same
result for the oscillatory component of the K -edge x-
ray absorption cross section:

x(k)= —_Q“;“ =-2. (- %,)2—~—2—'f(;';k)'
0 i B

X sin[2k7, + 26,(k) + ¢(R)] , (1.1)

where the symbols have the meanings: % =[2m(iw

- E)) % /K is the photoelectron wave number; (E, is the
nominal energy of the edge); f(r, &)= |f(r, B)[e'®? is the
backscattering amplitude; 6,(%) is the I =1 partial wave
phase shift due to the central atom potential; p(%) is the
observed linear absorption coefficient; u o(k) is the hy-

pothetical absorption coefficient in the absence of scat-
tering atoms.

In the case of nonsingle crystal samples, the geo-
metrical factor (2- ?,)2 where ¢ is the polarization vec-
tor of the incident radiation, averages to a constant.
Additional terms to account for thermal effects (the
Debye—-Waller factor!®) and losses due to inelastic scat-
tering® may also be appended to Eq. {1.1).

Equation (1.1) embodies, among other assumptions,
the single-gcattering approximation. That is, the photo-
electron ejected upon absorption of the incident x-ray
photon is assumed to scatter off only one neighboring
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atom. This description is recognized as being inade-
quate for non-nearest neighbor atoms. Lee and Pendry’®
and Ashley and Doniach® have, however, performed de-
tailed multiple scattering calculations. These authors
considered multiple scattering processes with path
lengths similar to those of single scattering involving
more distant atoms. In such instances multiple scatter-
ing introduces an additional EXAFS component near the
single scattering frequency. The effect was noted to be
of particular importance for multiple scattering involv-
ing the first and fourth shells of Cu, which are colinear
with the absorbing atom. The scattering amplitude is
strongly peaked in the forward direction, so that the
presence of the first shell atom causes a significant
amplification in the EXAFS at the frequency correspond-
ing to fourth shell distance. More recently, Teo?®
demonstrated the need to consider multiple scattering
effects in EXAFS., The expression assumed for the
multiple scattering, however, omits important polar-
ization and geometrical factors (see Sec. V).

Our approach separates the single- and multiple-
scattering contributions of the general problem, and
develops computational methods applicable to both. The
general three atom system (an absorbing atom and two
neighboring atoms) is discussed in detail. The applica-
tion of the resulting expression for the EXAFS to the
two-model system is discussed in Sec. V.

Il. THE GENERAL FORMALISM

The x-ray absorption cross section in the one-electron
and dipole approximations is given by!®:

0, =4n%akiw [(f|&- r|i)|*N(w) , (2.1)
where ¢ is the hyperfine structure constant, w is the
photon frequency, and N(w) is the density of final states
of the photoelectron. The initial and final states of the
system (i and f) are both eigenfunctions of an approxi-
mate unperturbed Hamiltonian H:

2 2
g e (2.2)
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FIG. 1.
V. About each atomic site (including the central atom c), there
exists a sphere of radius a beyond which no scattering will

Schematic representation of the final state potential

occur, The atomic potentials are assumed to be spherically
symmetric.

where V is the total potential seen by the final-state
photoelectron. V is represented as a sum of nonover-
lapping, spherically symmetric, finite-range potentials
centered around each atomic site in the system, includ-
ing the absorbing atom c (Fig. 1). The potential between
such gites is assumed to be constant, and represents the
zero of energy.

In order to calculate the matrix element in Eq. (2.1),
it is necessary to find the appropriate eigenfunctions of
H. At energies corresponding to bound K shell electrons
(the only initial state considered here), the potentials of
the neighboring atoms may be ignored, and the eigen-
function of the resulting Hamiltonian is the usual hydro-
genlike wave function:

7 \32
(1'}1'}:11"“2(;;> exp(-Zr/ay) . (2.3)
0

Two factors influence the nature of the final state:
the potentials of the neighboring atoms, and that of the
central atom. For photoelectrons of sufficiently high
energy (approximately three times the plasma frequency
and highers), the attractive potential of the central

atom’s nucleus, together with the influence of the other
bound electrons (though these are not considered ex-
plicitly here), becomes negligible, and the Schrdodinger
equation reduces to

(E-H)|f=V|f,

where H' is the free-particle Hamiltonian. This equa-
tion may be inverted to give the Lippmann~Schwinger
equation‘7

Ifo =8 +G8VIfe) =) +G5T* ),

(2.4)

(2.5)

where (r|k) are the normalized eigenfunctions of H'.

We shall use the minus form of the free-particle Green’s
and T operators, so that (|%) corresponds to the out-
going asymptote of the scattering process described by
{rif). The description of the EXAFS phenomenon is
thus expressed in terms of the state of the photoelectron
after the scattering process. Furthermore, this choice
of asymptote most clearly illustrates the relationship
between EXAFS and the modulations observed in elec-
tron yield-type experiments.

The full T operator may now be expanded in terms of
the operators #; associated with the individual scattering
centers at r=r, '®

T=D t,+D t,Get, +
§ i#}

Note that successive scattering by the same potential
is not permitted.

2 £,GotGoty++ - (2.6)

i#4, 4R

Substitution of the first two terms of Eq. (2.86) into
Eq. (2.5) yields an expression which may be represented
symbolically as shown in Fig. 2. The first diagram in
Fig. 2 represents the simplest single scattering case:
a photoelectron ejected ip the direction #;, and scat-
tered in some direction & by the atomic potential at
r=r;. A similar interpretation applies to the second
diagram. The remaining diagrams represent double
scattering processes, in which the photoelectron is
scattered successively by two atomic potentials.

In particular, the third and fourth diagrams in Fig. 2
represent processes for which the second scattering
center is the central atom potential. In such processes,
the scattering path length is identical with that of the
corresponding single scattering process. Accordingly,
such terms must also be considered within our single
scattering theory. The term corresponding to secondary
scattering by the absorber was first discussed by Lee!?
and allows a rigorous treatment of the central atom po-

> o
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FIG. 2. Diagrammatic representation of the first and second order terms in the expansion of the full T operator Eq. (2.6). The
scattering paths shown are thoge that occur in a system with two neighboring atoms ¢ and j.
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144 Boland, Crane, and Baldeschwieler: Theory of EXAFS

tential. The approach adopted, however, was not suf-
ficiently general to be readily applicable in multiple
scattering problems,

I1l. THE SINGLE SCATTERING FORMALISM

The two single scattering terms of Eq. (2.6) may now
be substituted into the matrix element in Eq. (2.1):

(F-le-rldy=(r|é- r|z)+Z(k!t,Goe- r|d)

+2 LG G |, (3.1)
i)

where we have taken the complex conjugate of Eq. (2.5)
and have noted that #(z*) =[#(2)]".

The first matrix element on the right-hand side of
Eq. (3.1) is responsible for the usual unperturbed photo-
electric effect (i.e., for y,), and is evaluated in Ap-
pendix A with the result:

k|2 r|y=MkE,2)k- &,

Z 5/2
@)% "k(?z’>
T

., kz)
a

(3.2)
M(k,Z)=-

The remaining terms in Eq. (3.1) may be expanded in
complete state to obtain

;(kxt;cge- r|s)

=Zf(k|t;|r1)(r,|cglr>‘e- r(r|i) dr dr, (3.3)
and I
S lesiie- £l =2 [@llwinsGilr

X ry| 8|71y |Gy |7} & - ©(r|i) dr dr drydry . (3.4)

The EXAFS effect may be viewed as arising from a
difference in phase af the ovigin between the unperturbed
photoelectron and one that has scattered off of a neigh-
boring atom. The simplest description of such a phe-
nomenon is one in which all matrix elements are ex-
pressed in terms of their effective values at the origin,
and our coordinate system was chosen accordingly (see
Fig. 3).

It remains to evaluate matrix elements of the forms:
' |Gslr) and ('|g|7) .
The configuration-space matrix element of the Green’s
operator is given by the corresponding free-particle
Green’s function:

ihlr ~rl

"TIT-Tl (3.5)

|Gl =~

Note that [r| is of order ay/Z or smaller while r’ is
restncted to a domain of radius a; about r, (F1g 3).
Hence r'~r, and |r’—r| may be expanded as!®

(3.6)

and the Green’s function in Eq. (3.5) may be approxi-
mated:

[ =r|=7,+%,+ (¢’ =1, -1) +O(a,/7)

=9+

FIG. 3. The vectors pertaining to the eval-
uation of the Green’s function [Eq. (3.5)1.
Upon abgorption of an x-ray photon, tbe
photoelectron propagates freely from r,
within a domain of radius a., to r’, within
radius a; of the atom at »,.

oz

<T'IG5|T>%--2—;%7-%exp[ik,- (r'-1)], 3.7
where k, =k 7, is the direction of propagation of the pho-
toelectron. The error term a,/7; is small because the
core electrons of the neighboring atoms are responsible
for most of the scattering at the energies of interest in
EXAFS problems. 1

Substituting the approximate Green’s function Eq.
(3.7 into the matrix elements Eqs. (3.3) and (3.4)
permits us to perform the space integrals in the man-
ner described in Appendix A, with the results:

2
Zj:(k|t}c;é- rli= _;ﬂ%’i%mk,zxa- k|8 Ry

(3.8)
):<k|tcot,coe rli)= Zm (20! ;I;M(k ACER D,

x(k|tc|k,'>(k,|t,|k,> , (3.9)

where k; = - k7, is the direction of propagation of the

backscattered photoelectron.

We may now relate the matrix elements of ¢j(r,) to
those of t°(0) which represent the 1dent1cal scattering
problem, but centered at the origin®’

(k| ;| k) = explilk, ~ k)« v,k |t]| %) . (3.10)

Only elastic scattering events (i.e., |ki=ik;{) are
of interest, so that the matrix elements of t}’(O) form
an on-shell 7' matrix, which may be expressed in terms
of the scattering amplitude f,(6,)*:

2
(k|| k= (—;i)'z'f,(%) ) (3.11)

where cos 8, =k- k, ke 7.

Equations (3. 8) and (3.9) may now be rewritten as:
1. .
(3.8)=2 Mk, 2) (2 7,)1,(6,)
] )

x explikr;(1 ~ cosb,)], (3.12)
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(3.9)=ZM(k,z>;%(a- 7Y, (n)
3

xflm —8,) exp(2iky,) , (3.13)

where cos(r—6,)=F- ;}"_:_;}. 7.

The complete matrix element in Eq. (3.1) is the sum
of three terms corresponding to the unperturbed photo-
electric effect Eq. {3.2); simple scattering by the atom
at r; Eq. (3.12); and secondary scattering by the ab~
sorber Eq. (3.13):

ou(k) e [(F=[2- r[)]*

=|M(k, Z)k- &+(3.12) +(3.13) |2 . (3.14)

The development above treats the absorption of a
single x-ray photon by an absorber-scatterer system.
In an EXAFS experiment, however, a large number of
such absorptions will occur, and the ejected photoelec-
trons will be scattered into many directions k. Inor-
der to compute the average absorption cross section of
such a macroscopic system, it is necessary to average
over all such directions % in Eq. (3.14):

s a2
flg-l2- o252
= [ 1Mk, 2)(h - a)+(3.1z)+(3.13)|2%%a (3.15)

The four lowest order terms in 7; in this spherical aver-
age are evaluated in Appendix B with the results:

S, 2|26 2952 — 4| me, 292, (3.16)
fz Re[M*(B- 2)x (3. 12)]‘19’*
-~ . -~ 2
=-|M|? Zj:(_ek;;l Im[exp(2ikv,)f,(m) +£,(0)], (3.17)

e G- ZETE [170) 8% .10
~ A-‘ 2
sze[M*(k- é)x(3.13)]%%ﬁ=- |M|2;(317?—)—

x Im{[exp(2i8,) — 1]£,(r) exp(2ikr,)} .

Note that in summing the above expressions, the
forward-scattering term £,(0) in Eq. (3.17) cancels with
Eq. (3.18) by virtue of the optical theorem??

f|f(9)[2ds2k X

(3.19)

Im([£(0)] =

The macroscopic absorption coefficient p =no, is
proportional to

, 1
p=no,o 3|M2 20| M |4 7)) BrE
J

x Im {f,(n) exp|2i(kr, + 6,)]} , (3.20)

_J

FIG. 4. The three-atom system. c is the central (absorbing)
atom and i and j are peighboring atoms, with Ir;| =1rl,
7=« is the bridging angle,

where #n is the number density of absorbing atoms. By
convention, 2 the oscillatory part of the absorption coef-

ficient is normalized to i, 3| M(k, Z)1%:
T
x(k) o er(e 72\ fy(m, B) |

x sin[2kr; +26,(k) + ¢(R)] , (3.21)

where f,(m, k) = If (1, k)| &'*®,

IV. THE THREE-ATOM PROBLEM

The three-atom system to be considered is shown in
Fig. 4. Various scattering paths amongst these atoms
are represented in Fig. 5. Each path corresponds to a
term in the expansion of the full T operator in the
Lippmann-Schwinger equation:

T= Zt, +Zt Goty+ D H,Got,Goly +
i#i,jtk
Low probab111ty amplitude processes involving long path
lengths and/or large scattering angles have been omitted
from Fig. 5, but may be treated in a manner analogous
to that outlined below.

(4.1)

The complete matrix element for the three-atom sys-
tem in the dipole approximation may be written:

(f-le-rldp=(|e-r|i+ Z (k|tGie- |+ E (k|t:Git:Ge2 - v |3

+(k|t;GitiGee -

+ (k|GGG » T |i) + (k| £;Git; Gt 1G

rlz>+<k|ti iGee- r]z)+(k|tGot;Got‘G
2. r|iy+ (k|GGG G - T|D) .

< rli)
(4.2)
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j jO J jo J
c c c C c
+ + nt
(a) 7 G} (b) t Gy (c) 176t Gy (d) 1G] 176G} (e) tGy 1 Gy
(f) £Gy 171Gy (@) 1765 /Gy 1 Gy thotJGtG o 11G; 1] Gy thotJGthG

FIG. 5. Scattering paths within the three-atom system, The operators shown with each diagram is the corresponding term in
the expansion of the full T operator in the Lippmann—Schwinger equation [Eq. (4.1)].

The first term in Eq. (4.2) corresponds to the unperturbed photoelectric effect, and the subsequent two terms cor-
respond to the single-scattering contributions from atoms 7 and j. These terms have been treated in detail in Sec.
IO, and will not be discussed further here. The remaining terms in Eq. (4.2) involve scattering by both neighboring
atoms. Of these, the fourth and fifth terms [those corresponding to diagrams (e) and (f) in Fig. 5] are identical by
virtue of the reciprocity theorem, as are those corresponding to diagrams (g) and (h). The multiple-scattering
terms in Eq. (4.2) may thus be written as

2k |£Git;Ge - T|i) + 2| LGHGHIGE - T |i) + (k| tjGIGt]GE - T|i) + (k| LIGH GG 1Gé - r|i) . (4.3)

Each term of Eq. (4.3) may be expanded in complete states and the resulting Green’s functions evaluated as de-
scribed in Sec., I, where

o'|G3lm = L 5 exlil” (¢ -] (4.4)

2h’2

r is localized about the origin, r’ is restricted to a radius a, about r,, and k; =k#,. Green’s functions representing
free propagation between two neighboring atom potentials may be evaluated by placing one or the other of these
atoms at the origin for the purposes of the calculation.

Equation (4.3) may now be written as:

5. 5 m2(9md
MU 2B 2 BT ) [10y +2 2B EUE T PO G 1y 5 )

Yi¥iy Y%7y

- ”Zfz’(; o (217) AL PICA A LA AL

4 MG, f,l’(g 7)) m (2") O ACATHE AT TR ALY (4.5)
where k,, =k(r; -r1,)/|r, -r,| ==ki;,

k,=k¥,=-k,; n=4,j
and M(k, Z) has been defined in Appendix A.

The matrix elements of £;(»,) associated with the atomic potential at r =r, may be related to those of t%(0) as de-
scribed in Sec. III

(k|t;| Ry =expli(k, = k) - k|| k) . (4.6)

Furthermore, these matrix elements may be expressed in terms of their respective scattering amplitudes:

(kltolk)z—‘jz—rf(f)) (4.7
nifn m(zﬂ) n\Yn/ >

-~

where cos6, =% }3,,=k - #,. Substituting Eqs. (4.6) and (4.7) into Eq. (4.5) and rearranging terms gives:

J. Chem. Phys., Vol. 77, No. 1, 1 July 1982

Downloaded 08 Sep 2006 to 131.215.225.158. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Boland, Crane, and Baldeschwieler: Theory of EXAFS 147

2M(k, 2Z) . . . : . 2M(R,Z) . .
_Tf;{—,_l(e - 7,) exp(~ik - r;) exp(ik|r, —r,\)fi(ek,,,“) explikr,)f (o) + W(e- r,)f,_,(e,,'k;)

x explikr;) explik|r; - r,|)f;(B) explikr)f,(a) + %,(—%;Q(é * 7,) exp(-ik- r,)f,(Ok,,“)
f

X exp(2ik l r,-r,; i)fi (77) eXP(iij)f,(a) + M,V(QI::ZZ) (é . ?j)fc(ek,k{) eXP(zik | r—-ry I )f((n) eXP(Zikﬁ)f§(a) . (4 8)
3744 ’

The average x-ray absorption cross section for the three-atom system is proportional to the matrix element in
Eq. (4.2) averaged over all possible directions % of the photoelectron:

Jir-1e- clo 2%~ [ M@, 2@ - b+ 2

n=i, j

ME2)E-7) 1 (g,)

x exp[2ikr,(1 - cos6,)] + Z
n=f,j

The first three terms in Eq. {4.2) were evaluated in Sec. III, and the results appear in the integrand on the right-
hand side of Eq. (4.9).

The methods required for evaluation of the angular integrals in Eq. (4.9) have been developed in Appendix B,
The results for the lowest order terms in » are:

M ZNC ) £y (- 0,) expleitry) +(4.8) S (4.9)

J1me, 22 22 %2 =3 |k, 2], (4.10)
I . 2. 2
22 -I—M—Izy(il“l f Re{explik,(1 - cos6,)]/,(6,)( - k)}% ==, Ll ,: i Im[exp(2ik7,)f, (1) +£,(0)] (4.11)
n=i,J n n=t,§ n

2. 2 A
22, Wl‘r(*uﬁf Rel/,(nf.(n -0,) exp(2ikr,) (2 - F)) Gt

n=t,§

28, 532 \
—- 3 LG T i lexplzin,) - 117, explier,} (4.12)
2a . A R R
ﬂ”—}j—;(fj—ﬂ f Relexp(ikr,) explik|r, =1, |)f, (@) exp(~ik - #,)(2- R)f, (9,,',!”)] %
2(3 5 e ¥
-- LML r,i)fe ) tnfempliter,) exp( | v, = 1, (@) explibr, (8) + expl- krf(n - I 4.13)

25 . 2 -
HELT) frelexptinr) exslitr,) explitx, -, Vi 0, @110, - 3] S22

LYY
23. 5 (3. 3
-_2 1M ’gi 77‘)(6 71) Im{exp(ikr,) exp(ikr,) exp(ik | r; -, ) (B)f,(@)[exp(2i6,) - 1]}, (4.14)
i73%1y
2s ., N
Z—W—r'ﬂ%ej——”l [ Relexplitr,) exp(2ik|x, —r, )7, (n)f, (@) expl- ik- r,)(2 - B0, )1 5
IMI1%&- 7)? . .

- _k;(.;%gﬁf)_ Im{exp(ikr,) exp(2ik| r, - r,|)f, (n)f, (@) explikr,)f (@) + exp(- k7 )f(r - @)]} (4.15)

21M1%(2- 7))

P f Relexp(2ikr,) exp(2ik |1, — 1, | )f,(n)f (a JACAMICE ,;)]%S:_ra
MA@ #)? , . 2 .
= - ——_k?,;?—,— Im{exp(2ikr,) exp(2ik|r; ~ v, |)f,(n)f 2(a)[exp(2i6,) - 1]} . (@16

Several cancellations occur in the summation of the terms in Eq. (4.9). The nonoscillatory term containing f£,(0)
in Eq. (4.11) cancels with the spherically averaged squared term, | £,(6,) 1%, by virtue of the optical theorem. The
second term in Eq. (4.13) is cancelled by the average of the single scattering cross term arising from atoms i and
j. The corresponding term in Eq. (4.15) also cancels, but, in this instance, with the averaged cross-terms from
the scattering processes shown in diagrams (a) and (e) of Fig. 5.

The expression obtained upon summation of the remaining terms of Eqs. (4.10)-(4.16) is proportional to the ab-
sorption coefficient u of the system, and may be normalized to Ko= M (2, 2)1% to yield the expression for the
EXAFS:

L &2
x(®) = - Z &k—;{rﬂl— |, (7, k}|sin[2kr,, +284(k) + ¢ (k)] -

n=i,J

8(e- #)(@- 7

kr,r,'r” ) If’l(B’ k) | lfj(a, k)l sin[k('r, + 7y +1"”) +251(k)

PR YA
+ ¢ (R) + 0, (k)] ~ %e;z;g—) [fi () [ 1S, R) | sin(2k(r, +7,,) +264(R) + 4 (k) + 20, (k)] , (4.17)
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(a) (b) (c)

ol 4 §8
Jo i'of ok
;\\ . 5 N
Ce \\oC

FIG. 6. (a)—(d) Schematic representation of the terms in the EXAFS expression for a three-atom system [Eq. (4.17)]. (e) Rep-
resentation of a term in the EXAFS expression for a four-atom system [Eq. (5.1)].

where
fn(en) - lfn(en)l eion ; n=7’1] .

Note that arg[f,(6,)]=arg[f,(6,)]; n=4,j (i.e., the phase
of the scattering amplitudes is independent of angle for
systems comprised of spherically symmetric poten-
tials).

In the case of absorption by polycrystalline samples,
an average overall possible polarization directions must
be computed, with the results:

aQ 1
a a2 _
Je et

3
VR
f(e 7@ 7)) 7 5 -

(4.18)

V. DISCUSSION

We have presented a straightforward derivation of the
basic EXAFS equation. The simplicity of our approach
lies in the expansion of the scattering amplitudes of the
neighboring atoms about the origin. Accordingly, the
phase factor reflecting the difference in path length be-
tween unperturbed photoemission and the various scat-
tering processes arises in a natural manner.

kX(k) (Relative Amplitude)

IS
o} ?
a

12 16

k(A
FIG. 7. Synthetic EXAFS spectra for Fe—~O-Fe system;
0=20°, r;=7y4=1.76 A. Curves (a) and (b) are the single
scattering contributions from the oxygen and iron atoms, re-
spectively. (c) and (d) are the contributions from the multiple
scattering terms [the second and third terms in Eq. (4. 171,
(e) is the sum of the above four terms.

The form of the Lippmann—Schwinger equation chosen
is of particular significance. (r|k) represents the out-
going asymptote, and corresponds to the state of the
photoelectron after the scattering process. This form
has permitted us to describe the scattering in a diagram-
matic fashion (Fig. 2). It also emphasizes the inter-
ference nature of the EXAFS effect, expressed in Eq.
(3.1), in which the probability amplitude for absorption
is given by the sum of the amplitudes of three indepen-
dent scattering processes. Such a sum is required due
to the indistinguishability of the individual events: the
ejection of a photoelectron in some direction B upon ion-
ization is completely indistinguishable from a process
whereby the ejected electron scatters off of an adjacent
atom and is subsequently scattered in the same direc-
tion % by the central atom.

Within our formalism, the central atom phase shift
cancels in the interference terms since the direct and
scattered photoelectron waves are both outgoing in na-
ture. It is thus necessary to include the secondary
scattering term in order to retrieve this phase shift.

In the alternative form of the Lippmann~Schwinger equa-
tion [i.e., the use of (xIf+) in Eq. (2.5)], however, the
term corresponding to the scattered photoelectron is an
incoming wave, and no such cancellation occurs. In this
latter approach, (rik) corresponds to the incoming
asymptote of the scattering process, and the phase shift
does not occur explicitly within the formalism.

X (k) (Relative Amplitude)

k

L I

4 12 16
k (A

FIG. 8. Syuthetic EXAFS spectra for the Cu—S—Cu system;

=20, ry=7ry=2.3 A, The individual components are analo-

gous to those in Fig. 7.
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RELATIVE AMPLITUDE

5.0

RELATIVE AMPLITUDE

RELATIVE AMPLITUDE

(e} r(A)
FIG. 9. Representative Fourier transforms of bridged iron and copper systems at different values of the bridging angle. (a)-

(¢) Fe~O~Fe, r;=7ry= 1.761‘-‘1; (d) Cu~8—Cu, 7;=7;=2.3 A
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Solid lines are the single scattering contributions, Dotted and

dashed lines are the second and third order multiple scattering contributions, respectively. (e) Fe—O~Fe system; Fourier trans-

form of the sum of the terms in Eq. (4.17).

An expression for the oscillatory component of the
absorption coefficient for a three-atom system has been
given in Eq. (4.17). The first term corresponds to in-
dependent single scattering by atoms ¢ and j. The sec-
ond term results from consecutive scattering by atoms
i and j, and vice versa. Note that this term retains a
geometrical dependence even for experiments involving

(f) Cu—S—Cu system; Fourier transform of the sum of the terms in Eq. (4.17).

polycrystalline samples {Eq. (4.18)]. The term vanishes
when the central angle 6 is 90°; as will occur when atoms
7 and j both lie in the first shell of a site of octahedral
or square planar symmetry. The expression assumed
by Teo?® omits this geometrical factor and hence over-
estimates the contribution of this scattering process to
the total EXAFS. The third term in Eq, {4.17) results
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3.25 .
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FIG. 10. Peak positions in the Fourier transform as a func-
tion of bridging angle for the three scattering processes in-
volving the second-shell atom. The solid lines refer to the
second-shell, single scattering term, and the dotted and dashed
lines refer to the second and third order multiple scattering
terms, respectively.

from a more complex multiple scattering process: the
photoelectron scatters sequentially off of atom j, atom ¢,
and atom j once again (where we have assumed that

lryl = lr; ).

The cancellation of terms that occur in Eq. (4.9) is
of particular significance, as it insures that each term
in the EXAFS expression is dependent on the sum of the
interatomic distances of the process that it represents.
These processes are shown diagrammatically in Fig. 6:
the first term in Eq. (4.17) corresponds to the sum of
diagrams 6(a) and 6(b), and the second and third terms
correspond to diagrams 6(c) and 6(d), respectively. These
diagrams are analogous to those of Fig. 6, but each is
the sum of several terms. Note that no scattering is
shown by the central atom, and the spherical average of
Eq. (4.9) projects out the return path to the origin
(shown as a straight line).

Consideration of diagrams like those shown in Fig. 6
permits us to write down by inspection the EXAFS ex-
pression resulting from a scattering process of arbitrary
complexity., For example, the expression for the four-
atom sequential scattering path shown in Fig, 6(e) is

Boland, Crane, and Baldeschwieler: Theory of EXAFS

6z )&%
) == SETVET 1oy 11,5, 10, 0

X sin[k(r; +ry; + 7, +7,) +26; + ¢; + ¢;+ ). (5.1)

In order to examine the relative importance of the
terms of Eq. (4.17), two-model systems, Fe~O-Fe and
Cu—S—Cu, have been considered. The respective metal
atoms were taken to be the absorbing atoms, and the
bond lengths fixed at 1.76 A for the iron system {the
distance found in the binuclear complex L -oxo-bis[tetra-
phenoylporphineiron(III)] and similar compounds} and
2.3 A for the Cu system, The scattering amplitudes
were taken from the Infernational Tables for X-Ray
Crystallography, Vol. IV,% and the phase shifts from
the parametrizations of Lee ef al.?® The scattering
amplitudes used were calculated in the Born approxima-
tion. This is an oversimplification, but does not signif-
icantly affect the results presented below.

The contribution of each term to the EXAFS of the
two systems at a particular value (140°) of the bridging
angle are shown in Figs. 7 and 8. The relative ampli-
tudes of the various terms may be seen in the Fourier
transforms of Figs. 9(a)-9(d). The Fourier transforms
of the sum of the four terms contributing to the EXAFS
for both systems are shown in Figs. 9(e) and 9(f). Note
that the modulus of the sum of the individual terms of
Eq. (4.17) is not equal to the sum of their respective
moduli, No corrections were made for damping at large
7 due to inelastic scattering, but any such correction
would affect the three terms involving the second-shell
atom almost equally (the first-shell peak would be rela-
tively higher, however). Compared with the second-
shell, single scattering term, multiple-scattering is
most significant in systems in which the ratio of the
gcattering power of the first- and second-nearest neigh-
bors is large, or when the three atoms are nearly co-
linear,

Note also the relative linewidths of the various terms.
The peaks resulting from multiple scattering processes
are broader, primarily because of the dependence on
additional scattering amplitudes. Scattering amplitudes,
in the Born approximation, have an approximate expo-
nential dependence on %, and the effect on the Fourier
transform is similar to that of a Debye—~Waller factor.

Figures 10 and 11 show the variation of the positions
and amplitudes of the peaks in the Fourier t{ransform
as a function of bridging angle for the iron and copper
systems. Note that, in Figs. 10(a) and 10(b), there is
a point where the effect of the additional phase shifts
incurred during the multiple scattering processes are
exactly offset by the additional path lengths involved in
those processes.

The required condition for this crossover point is

lr,-l—|r,|—|r,.—r,|=Ar¢j, (5.2)

where Ar,, is the effective displacement of the peak in
the Fourier transform due to the scattering amplitude
phase of atom j. Av, ; is independent of the geometry of
the system, and varies over only a limited range for
different atoms types j. The primary dependence of the
crossover point position is on the bond lengths; as the
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FIG. 11, Relative amplitudes of the peaks in the Fourier
transform as a function of bridging angle. The solid lines refer
to the second-shell, single scattering term, and the dotted and
dashed lines refer to the second and third order multiple
scattering terms, respectively, Note that the multiple scat-
tering terms dominate in both systems at bridging angles ex-
ceeding about 120°,

distances in the system increase, the crossover point
occurs at larger values of the bridging angle.

At bridging angles greater than that of the crossover
point, the multiple scattering terms are of particular
importance. As shown in Fig. 11 these terms are of
large amplitude at high angles and, above the crossover
point, the corresponding peaks in the Fourier transform
occur at smaller values of » than does the second-shell,
single scattering peak. In general, the three peaks
involving scattering by the second-shell atom will be
close enough to overlap. The presence of the multiple
scattering terms will then cause an apparent increase in
amplitude of the second-nearest neighbor peak, and will
move it to a smaller value of 7.

At bridging angles smaller than that of the crossover
point, the compound second-shell peak will appear at
larger values of » than would the single scattering peak;
but the effect is less significant because the multiple-
scattering components are smaller in this region.
Multiple scattering effects have recently been observed
by Co et al.?" and are in qualitative agreement with the

theoretical predictions presented above.

In summary, multiple--scattering effects need to be
considered in most problems in which non-nearest
neighbor shells are of interest. This is often the case
in investigations of active sites in metalloproteins and
similar compounds. However, careful analysis of these
effects will permit the elucidation of geometrical infor-
mation which is not otherwise available from the single
scattering theory.
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APPENDIX A

We wish to evaluate the integral

I=f<k|r)é- r(r | dr (A1)

which appears in Eq. (3.1); where {(r|k)=(27)3"?
xexp(ik - r) and {r14) = (1)"V%Zay)*'? exp(-Zv/ay).

Expanding Eq. (Al) in terms of spherical harmonics,
I may be rewritten as

I= (277)'3/‘4‘4(”)“2(Z—>3/2 2> f (=)', (kr)
1 m

ag

xexpl-Zv/a)rt dr Y 1m@)Y,(@)(x - D) a2, ,

(A2)
where dr =7 drds,.

The angular integration in Eq. (A2) may be performed
using the additional theorem for spherical harmonics:

L L [riv@rra)e- an,

» 1 1
=Y T 2 vi@)r @) [Yi@,)vre,) e,

1 m=-1 g=-1

1
47y .
2 V@)Y (Q,)0,,,0,, =7 (R 8) .

=

Substituting Eq. (A3) into Eq. (A2), the expression for.
1 becomes

(A3)

R (4
0

Xf 71 (kr) exp(~Zv/ag)r® dr , (A4)
0

where j,(kv) = (k7) 2 sin kr - (kr)™ cos kr.

Making use of
the definite integral, '

fo e dy=nly ™ Reun>0

the radial integration in Eq. (A4) may be performed to
obtain

I=Mk, Z)(R- 8),
where M(k, Z) = - i[(2)2/n] [8k(Z /ay)*'? /(22 /% + £*)*].
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APPENDIX B

In this appendix, the angular integrals in Eq. (3.16),
(3.17), and (3.19) are evaluated.

The first of these corresponds to ., the hypothetical
absorption coefficient in the absence of neighboring
atoms. Placing € along the z direction:

1 N
Boe :;,;flMlzk'edﬂk

1M
T 47

fcosae,,sinekdekdq)k:ﬂM(k, ).
The following result is required in Eq. (3.17):
- o
=I(. —ik- LALTY
I_f(e k) exp(-ik- r,)f(8,) yral
(e %) may be expanded in spherical harmonics, and

setting r; along the z axis, the azimuthal integration
yields the m =0 component in the expansion. Hence:

I==(2+ )} [dlcost,) cosb,exp(~ik- £)6,),  (BI)

where cosf,= (k" 7). exp(-ik- r,) and f(6,) may be ex-
pressed in terms of Legendre polynomials:

exp(-ik- r,) = 2_(21+1)(= )%, (kr,)P,(cos8,) , (B2)

76, =§:f,.P,.<cosek) , (B3)
and
172
P(cos8,) = 214::1) iR, . (B4)

Substituting the above into Eq. (B1) yields

I= ll\;(e 7221+ 1) (- ,)'(21+1)1/2(§l_,},;,—1>1/2(;_v>1/2

X],(k'r,)f,,fY (Qk)Yl k)Y?(nk)d(" cosf,), (B5)

where dQ, =d(~ cos8,)d¢,, and /3" (d¢,/2m)=1. The
angular integral in Eq. (B5) may be evaluated using the
properties of Clebsch—Gordan coefficients?:

fY @)YYQ)Y(2,) a2,

_ [(21' +1) 3
- 47 (21+1)

where |I~0'| =1=[l+0'| and [ +1’' +1=2n (n an inte-
ger). The summation over ! and !’ may be replaced by
a single sum that has two components I +1. Using the
explicit forms of the Clebsch—Gordan coefficients
above,

PO aafltly.
I=Z(e . T,)f, [(—z)l 1(%5)]”1(k?’3)

1/2
] [ca',1,1;0,0,0))?

+ (=11 (ﬁ%)j!-l(krlﬂ =Z(é : ;’J)fx[gl—j_’f Jr-g(Ber)
- (HE) o] - (B6)

Using the asymptotic form of the spherical Bessel func-
tion:

1
- wk sin(kr; - 31m)

Jrler;) ——
= 1—[sin(krj) cos(zlm) - cos(kr,) sin(z1n)] .
kry

Equation (B6) may be expanded in exp(zikv,). P,(cos0)
=(1)" and P,(cos 7) =(-1)}; and the final form of ] is

I=(2- %) ;:T%i[exp(ikr,)f(n) + exp(—ikr,)f(0)] .

Hence:

fz Re[M*(E - 2)(3. 12)]%9;"

- Mls

The third angular integration necessary is given in
Eq. (3.19):

(e #,)? Im[exp(2ikr ) )f(n) +£(0)] .

r=f@ Ryn-0)h, (B

where f (1 -6 )—( 1)'f.(6,)

—EZ(

m==1

(47r)[exp(215,) -1]YMQ,)Y Q7)) .
Expanding (& - k) in spherical harmonics:

Z YT (R)Y I (Q,) .

m* =1

(- k)=
Equation (BT may be written'
r=l T T3 enplioy) - 11 (@) ¥F (@)

21,k 3 me=1 m*=-1

L [exp(2idy) ~1)(2- 7,)

X[ YR@)Y ™ @), = - 5

due to the orthogonality of spherical harmonics. Hence:

fz Re[M*(k, Z)( - )(3. 13)]%*

s, 22
=-|M|? zj:ggk—;z;i Im{{exp(2i8,) = 1] fy(n) exp(2ikr,)}
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