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We derive a class of formulae relating moments of B — X, £# to B — X7 in the shape-function region,

2

where my ~ m;Aqcp. We also derive an analogous class of formulae involving the decay B — X £ ¢~.
These results incorporate Agcp/m;, power corrections, but are independent of leading and subleading
hadronic shape functions. Consequently, they enable one to determine |V,;|/|V,;,V;;| to subleading order

in a model-independent way.
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I. INTRODUCTION

The study of decays of the B meson allows us to probe
QCD and flavor physics. The program’s goals include, on
the one hand, precision measurements of standard model
parameters and, on the other hand, searches for new phys-
ics. Short-distance physics is encoded in Wilson coeffi-
cients of local operators. By comparing measurements of
these coefficients with theoretical predictions, signals of
new physics may be found. High sensitivity to new physics
is provided by the so-called rare decays, namely, those
channels involving flavor-changing neutral currents, since
they do not occur at tree level in the standard model.
Measurements of the inclusive rare process B — X,y [1-
5] have provided significant constraints on extensions to
the standard model. The more complicated decay B —
X,€*€~ is complementary to B — X,vy, as its effective
Hamiltonian includes two extra operators. Moreover, addi-
tional observables are available, such as the q2 spectrum
and the forward-backward asymmetry, which have been
the focus of much work. Recently, it was noted that an
angular decomposition provides a third observable sensi-
tive to a different combination of Wilson coefficients [6].
Belle and BABAR have already made initial measurements
of B— X 7€ [7,8].

Precision measurements also provide determinations of
elements of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix or, equivalently, the angles and sides of the unitarity
triangle. By overconstraining these, the flavor structure of
the standard model is subjected to rigorous examination.
For the decay B — X {7, experimental and theoretical
uncertainties are under control, and consequently |V,,| is
one of the best-determined elements of the CKM matrix.
From B — X, {7, we can also determine |V, | [9-12].

However, inclusive B decays often require a trade-off
between theoretical and experimental difficulty: if phase-
space cuts are necessary experimentally, then the spectra
will be less inclusive and the corresponding theory more
complicated. In this respect, B — X €7 and B — X, {7 are
markedly different. The former is sufficiently inclusive to
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enable the use of a local operator product expansion (OPE)
[13], in which nonperturbative corrections appear as an
expansion in inverse powers of m;. This formalism has
been calculated to order 1/ mz [14] (and recently to order
1/ m‘g [15]), with the relevant nonperturbative matrix ele-
ments defined via the heavy quark effective theory (HQET)
[16-18]. In contrast, in B — X, {7 experimental cuts (e.g.
cuts on E, or m%) are required in order to eliminate the
dominant b — ¢ background. In many cases, we are re-
stricted to a region in which m% ~ myAgep and the local
OPE breaks down. In this so-called endpoint or shape-
function region [19], the set of outgoing hadronic states
becomes jetlike and the relevant degrees of freedom are
collinear and ultrasoft modes. The soft-collinear effective
theory (SCET) [20-23] is then a powerful theoretical
method.

Similarly, B — X,y measurements employ a cut on the
photon energy. In Refs. [24,25] it was shown that the
shape-function region is also relevant for B — X €1 €.
Here, cuts are made in the dileptonic mass spectrum to
remove the largest ¢¢ resonances, namely, the J/W and W'.
These leave two perturbative windows, the low-¢?> and
high-g* regions. At low g¢?, where the rate is higher, an
additional cut is needed: a hadronic invariant-mass cut is
imposed in order to eliminate the background b — c¢(—
s€Tv) D,

At leading order (LO) in Agcp/my, decay rates now
depend upon a nonperturbative, and hence analytically
incalculable, shape function. However, this function is
process independent and appears in both B — X, €7 and
B — X, vy, for example. One can thus measure the leading-
order shape function from the photon energy spectrum of
B — X,y and use the result in the B — X, {7 spectrum, or,
more directly, express the semileptonic rate in terms of the
radiative rate instead of the shape function [26-29]. In this
way, model dependence can be avoided in the determina-
tion of |V ,;].

At subleading order, the situation is far more compli-
cated, with several universal shape functions occurring in
different combinations [30-35]. In this paper, we construct
combinations of shape-function-dependent decay rates that
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are protected from nonperturbative effects to second order
in the power expansion. Through this procedure, we obtain
formulae for |V,,|/|V,, V;;| that are free from the hadronic
uncertainties arising from the leading and subleading shape
functions. This method uses moments of the fully differ-
ential decay spectra of B— X, {7 and B — X,y (and,
optionally, B — X £1€7).

The rest of this paper is organized as follows. In Sec. II,
together with Appendices A and B, we present the basic
formalism needed for our work. This includes power cor-
rections for the triply differential decay spectra of the
semileptonic processes and the photon energy spectrum
of B — X,v. In Sec. III, we derive and discuss our results,
eliminating shape functions from expressions for |V,,| at
next-to-leading order (NLO). We conclude in Sec. I'V.

II. FORMALISM

In this section, we briefly review the formalism and
results from Refs. [24,32,36] that we shall use in this paper
(see these references for further details).

The inclusive decay rate for B — X, €p (B — X,y) is
proportional to W, L*”, where L*” is the leptonic (pho-
tonic) tensor and W,,,, is the hadronic tensor, which can be
written as

W =

= 5 T8y~ q e BULXNN, 1)
X

= —gM,,Wl + vaVWZ + iewaﬁvaqﬁW3
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analogously to Eq. (1), in terms of a current J-(® [37].
Contracting L*” with W#” and neglecting the mass of
the leptons give the differential decay rates

can be defined

dars 8E
B Fgm—£(4Wf — W5 —2E,W3),
Y
d3]__‘u u 96 u u
dEdq%dE, =T% m—%[q2W1 + (QE(E, — ¢*/2)W¥
+ ¢*(E¢ — E,)WY]0(4E(E, — ¢?),
a’rt 96
I I‘€€_[q2w€€ + (ZE,E _ q2/2)W€€
dg*dE,dE_ ° m} ! * 2

+ CIZ(E— - E+)W3“)]0(4E—E+ - qz)’ (2)

for B— X,y, B— X, P, and B — X £ €, respectively,
where Wi = Wi, + Wg,, Wi =wj - Wf, W, =
W.(g% v - q), and the normalization factors are

s — G%’m% % (2 = 21 ~eff(0) 2
I‘() 4 |thVts| aem[mb(mb)] |C7 (mb)l B
327
Gam3, G2 a2
U — B 2 ¢ — Y F'"B “em s |2
0 19273 Wl To 19273 1672 Vi Vil
(3)

In SCET, it is natural to use light-cone coordinates, where
we introduce vectors n and 7 such that n> = 7> = 0 and
n-in=2. A four-vector then has components
(p*,p~,p1)=(n-p,ii-p, p"). Inthe region of interest,
the set of hadronic states X is jetlike, i.e. py < py. For

+ W, + (v +uv Ws. 1
4 Wa T (V4 vdu)Ws O convenience we define the dimensionless variables
Here, v* is the velocity of the B meson and g* is the €7 (7y) , 2E, 2E,
momentum. We use the hadronic current J (e.g. Jj, = A = mg XH = g’
iy, Pb for B— X,€p) and relativistic normalization 7 - 4)
for the |B) states. Similarly, the inclusive decay rate for Yy = pX, H= Px
B— X" (p™)¢~(p~) is proportional to (W5,L}"" + My My
WR,LE"), where L} =2[pYpY + pLp%—  Interms of these variables, the decay rates are
J
dr+ — T 2x17_1 s s Y WS
E = Fom—B{4W1 - W2 - meHWS},
LT G ){(1 )1 - 5Wr + L1 Yor + i — D)W
- =24m —u —u - —(1 —xyg —ugy)lx —
T dxydipduy BUH H H Y)W 3 H H)\XH T YH 2
m _ _
+ 73(1 —up)(l = ) 2xy + uy + yy — Z)Wét}, )

1 &rY
1—‘7({;6 ddedeuH

1
= 24mp(y — UH){(l —up)(1 = 5)Wi + 5(1 —xy — up)(xy + ¥y — HWE

m _ —

where W; = W;(uy, yg). The full phase-space limits are given in Table II of Ref. [32].
The optical theorem relates the W; to forward-scattering amplitudes, which can be calculated by taking time-ordered
products of currents. An important part of the analysis is the separation of short- and long-distance contributions. The
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results, known as factorization theorems, may be written
schematically in the form

AT =HXJ®f,

where ® denotes a convolution. The hard (H) and jet (J)
functions encode perturbative corrections that appear at
two different scales, u;, ~m; and w; ~1/mbAQCD, re-
spectively, whereas the shape function (f) represents non-
perturbative physics.

SCET involves a power expansion in the small parame-

ter A = 1/AQCD /my. Atleading order in A, rates depend on
one shape function, which we denote by f(©:

wém==hxp;,n%,u)jzxdkh7mwp;k+,u)
X Ok + A = p, w), (6)

where A = mp — my, + (A, + 3A,)/(2m,) + .... The first
subleading shape functions occur at order A> and we
denote these by f(()z_)z, gﬂ, and fg. These are common to
the three decays, but appear in different combinations, and
are convoluted with jet functions 7©, 72 and 7%,
respectively, as shown in Eq. (B8). Note that we also have
uy /¥y ~ A2 in the shape-function region.

The shape functions are given by B-meson matrix ele-
ments of nonlocal ultrasoft operators. The definitions used
here follow Ref. [32] and are included in Appendix A. At
tree level, the jet functions are

S(kt) — 8(k3)

TOU) = sk, g = 2R
2 1

oy am [ B0 8 8e)

TENG) = 4 f“’“”[(k;)(k;) &HED GO

- 25(@)5(@)5(@)]. )

1 dI*

s 77
1—‘o dxy X >x,
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At one-loop order, we have

N
TO(w, k*, p) = {6(k*)[1 + “f(ﬁc‘” (21n2 ®Px

2
+
S Tl o G 772)]

M
u?

47 k*

! (41“60:5 -3) <k+1)+]}
X O(py — kT)0(k™), (8)

T (4 /i)

where w = 71 - p is the large partonic momentum.
For convenience we define

Px <
F(p*,p7)= ﬁ) Cdkr TO(pm kL, w O + A= ptLp)
fOA=p*),
F1,2(P+)=f(1,2%(/_\_17+), )
where a prime denotes a derivative, as well as

8(ki") — 8(k3)

A 34
2

[P,
+ A—p*
2meo ( 14 ) mg

Fualp)= [[akt i [t + 2= 0,

ky — ki
v s e e[ O 8(k3)
Fse(p™) ] dky diey dks [(kﬁ(k;) (k7 )(k3)
) s s (k) S(kt
e S AL ]
X okl +A=p"). o

If we use the tree-level expression for 7, then
F(p*, p~) = F(p") is a function of p* only. Then, for
B — X,, the rate dI"* /dx}, in the endpoint region is (321"

=my(CY)[1 = 3(1 = x})JF(mp(1 — x3), mp) + [mp(1 — xy) — AJF (mp(1 = x},)

+ Fy(mp(1 = xp)) = F3(mp(1 = x) + Fy(mp(1 = x37)) — 8ma () F3(mp(1 = x7)), (1D

where 1 — x¢ ~ A% and

2
cH— 1+ A'y(mb’ 0) - ay(m,)Cr {’n’_

+
4 12 6}’

1 s eff(1)
A ,0)=—1—0C
y(mh Q) Cgﬁ(o) (mb) {477 7 (mh)

+ ZCff(“)(mb)rk(e)}. (12)
k

|

The triply differential decay rate for B — X, €% at NLO
[32] is obtained by substituting the W} listed in
Appendix B into Eq. (5). At tree level, this becomes

'This includes ©; — @, and O; — O, contributions only. In
Ref. [38] subleading corrections from O; — Oy are studied and
estimated to contribute between —0.3% and —3% to the total
flavor-averaged decay rate. We do not consider such corrections
in this work.
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6(1 — upy)(xy + ¥y — 1){2m3(2 — Xy — ¥ — ug)F(mguy)

- ﬁ(ﬁ{ — Q2 —xg)yg +2(1 — xg) —uy(2 — xg — uy))F\(mpug)

YH
2

Oy — Q= xp)iy — (4 —uy)xy + ug)yy + 20y + 25y + uy — 1))Fy(mpuy)

Iu(Fy — up)

2
+ —(xy + ¥y + uy — 2)F5(mpuy)

YH
- m;—u,{)(ﬁf — 2 = 23 + 201 = 1) — ug(2 — xy — ug)Fylmpuy)
- m(l = ¥y + Iy — DAma () Fs(mpuy)
; ma — (1 = xy — uH)47Tas(,ul~)Fg(mBuH)}. (13)

Note that we can use the relation [30]
Fi(mguy) = 2(A — mpug)F(mpuy) + O(A*)  (14)

to eliminate F|(mgug), as was done in Eq. (11).

The triply differential decay rate for B — X, £* €~ was
calculated in Refs. [24,36]. The W¢ appearing in Eq. (5)
are also listed in Appendix B.

IIL |V,,| AT NLO
A. Relations between B — X, ¢v and B — X,y

Consider first the process B — X, £ 7. We wish to isolate
or eliminate the subleading shape functions that appear in
the rates. In the following, we shall work at tree level.
Inspection of Egs. (B2) and (B9) shows that the shape
functions appear in the hadronic structure functions W,
to W5 in only two combinations, namely,

1
mel = mBF + §F1 - F2
1
— —(F3 — Fy + 87a(u;)FY),
YH

_ 2052 —uy) = 1)
Fu(l — uy)

2
+ )_T(F4 - 47Tas(:u’i)Fg - 47Tas(:ui)Fg): (15)
H

mgF = F,

£

where we have suppressed the argument mpug.
Specifically,
1 1—u 1 — uy)?
Wy =% sz%fl_%fn,
4 Yu — Uy Fu — un)
1
W3 Fr (16)

 2mp(Gy — up)

Nevertheless, taking integrals of the form

fl dy fl_qu K ( )& 17)
xp K" (Xp, Y, Upg) —————,

i YH - H H YH, Up dxydy yduy,

with suitable choices of the weight function

K"(xy, ¥, uy), we can isolate the following four linearly
independent combinations of the F;:

(4 — 2upy)mpF + F|, (18a)
(1 — up)mgF + Fa, (18b)
F3 — F4 + 8mag(u;)FY, (18¢)
mpF — 3F5y — 3F, + 4o (u;)FL. (18d)

[Recall that we can apply Eq. (14) so that the first combi-
nation involves only the leading-order shape function.]
Here, the treatment of the uy dependence in the rate
requires care. Expanding Eq. (13) in uy; ~ A? when obtain-
ing the weight function will typically result in excessively
large coefficients in the uyF,_¢(mguy) terms (which are
formally of order A*). For example, choosing
K"(xg, ¥u) = —2lxy + 213y + 45x,5y — B 3%, we ob-
tain

1 AT
o [ dxudsike e 5 —S——
Fg [/- xpdyu K" (Xy, Y1) dxydyydig
1
= (1-Tuy)mpF(mpuy) + ZFl (mguy) + O(A*), (19)

so this eliminates all but the leading-order shape function
up to O(A*) corrections. However, we then have the addi-
tional contributions

5 49 109
Z ugk; (mBuH) - 7 “HFz(mB”H) - T ”HF3(mB”H)

57 83
+ Z”HF4(mBuH) 5 U X dzra(u)Fié(mpuy)

+ 1Buy X dma(u;)Fi(mguy). (20)
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TABLE I. Some choices of K“(xy, ¥y, uy) for which the weighted integral Eq. (17) equals mgF + F;/(4 — 2uy).
@)) Ki = 9 ® luH) = x[10(7 )1 — ug)d + 3up)yy — (454 + 247uy — 71u2)xH§H —4(1 — uy)(109 — 4uH)i%_1
+ 105(7 — uH)xHyH]
) K{ =% (2 T=uy) (=u )8[ 10(7 — ug)(1 — ug)(34 — 27ug)yy + 2(1 — ug)(2759 — 449uy)xyyy — 525(7 — MH)xHyH
+2(1 — uH)(341 — 131uy)y%]
3) Ki = H @ 1“H) = )8[ 2(1 — uy)*(288 — 29uy) vy + (1426 — 1793uy + 157uH)xHyH 10(109 — 4uH)x%_,)7H
+ (341 — 131uH)xHyH]
TABLE II. Some choices of K"(xp, ¥, ug) for which the weighted integral Eq. (17) equals (1 — ug)mgF + F,.
(A) Ky = S — 7[ 201 = up)(7 = 15up)yy — (34 + Tlug)xyyy — 16(1 — uy)yy + 105x,5%]
© Kji = ﬁ = )7[ 58(1 — uy)*yy + (26 — 157upy)xyyy — 40x4 5y + 131x55%]
TABLE III.  Some choices of K“(xy, ¥y, ug) for which the weighted integral Eq. (17) equals F3 — F, + 2Fg‘.
(a) K= % = )8[ 2(1 — uy)(58 + 32uy + ISM%,)yH + (158 + 104uy + 53u%1)xHyH + (1 — uy)(149 + 61”H)y%_1
105(2 + up)xyiy]
(b) Ky = =1 L 1201 = ugg) 92 = 12uy — 45u3)55 — 2(1 = ug)(246 + 139u)xy 5 + 1752 + )35
— 2(1 - uH)(IS + 17uy)j%]
(©) Ki, = e )g [2(1 — ug)*(166 + 93uy)vy — 2(483 — 320uy — 268u%)xy iy + 5(149 + 61uy)x iy

- 6(18 + 1Tug)xy3%]

For this reason, when calculating K“, we keep the full
dependence on uy in the rate, rather than dropping terms
that are formally subleading in a strict SCET expansion in
uy/yy ~ A>. (The analysis of my-cut effects in B —
X, €1 €~ [24,25] also retained the full u;; dependence, since
doing so facilitates making contact with the total rate in the
local OPE [39-41].) Thus, subleading shape functions are
eliminated to all orders in uy, and the issue is resolved.
One straightforward method for obtaining K" (xy, ¥y, ugy)
is then to take different moments of the rate with respect to
xy and y, and solve the resulting set of linear equations in
the F;. In Eq. (17), we consider the case where a cut is
imposed on py,i.e. py < m3/my. Different or additional
cuts will change the limits of integration, calling for differ-
ent weight functions. Table I lists several examples of K*’s
that isolate the combination mgF + F/(4 — 2uy), while
Tables II and III give examples that result in (18b) and
(18c), respectively.

Now, the subleading shape functions F5¢ depend upon
the light-quark flavor (see Appendix A). We indicate this
difference between the F's¢’s appearing in B — X, €7 and
B — X,y by using the superscripts ““ #”” and ““ 5.”” In order

to cancel the F¥ contribution to the latter decay,” we can
use approximate SU(3) flavor symmetry, namely, the fact
that

u _ s
FS F5~ mg

Fs Agep

21

is suppressed. This enables us to relate the semileptonic
process to the radiative process and thereby derive an
expression for T'¥, or equivalently |V,,|, to subleading
order. We can write

>The authors of Refs. [33,34] have used model-dependent
arguments to estimate that the effects of f5¢, when integrated
over a sufficiently large region, are comparatively small ( ~
5%), but that they may cause large corrections in the dI'/dp}
spectrum for py = 0.5 GeV. We avoid any need to consider the
reliability of these numerics by simply eliminating fs 4, along
with the other tree-level shape functions.
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d3 Tu
dxydyy

1
— K% — K&t + pK*
Fg[[ 1l mrP I]ddedeuH

1
= mgF(mpuy) — §[F1(mBUH) — 2F;(mguy)]
— [F3(mpuy) — Fy(mpuy) + 2F4(mgug)],  (22)

where

2 = ) — 5 o3
(l—uH+ﬁ

p(uy) =

and F% = 47a (u;)F!. K, K%, and KY; are any weight
functions that give the combinations mgF + F;/(4 —
2uy), (1 = uy)mgF + F,, and F3 — F4 + 2F", respec-
tively (examples of which are presented in Tables I, II,
and III). The shape functions in Eq. (22) appear in the same
linear combination as in the rate dI™/duy. Hence, at NLO
we obtain

3T u

1
F_g f [Kii — Kiiy + pK{] dxydyy

1 1 dI*

— - o 24
(1 = up)® Tp dup, @4

ddedeuH

More generally, we can construct K" such that

A 1
M = — M
I
1 a3’
= [ &G 5 ) 5 —— dxyds
Fg ]/ (XH YH uH)ddedeuH XudYH
= mpF(mpuy) + & (uy)F\(mpuy)
+ &y (ug)[Fy(mpuy) — F3(mguy) + Fy(mguy)
— 2F%(mpuy)] (25)

For example, we can use

K" = Kiy — x3Kiy, (26)
where Ky, is a weight function that gives the linear combi-
nation mgF + k{F + «5F,, examples of which are given

in Table IV in Appendix C (with the corresponding values
of k{ and «’ shown there). We can also use

1 —
K" = BK{' + 17'8(1(1”I — Kjjp), 27)
— uy

with B an arbitrary real number [in which case x| =
B/(4 —2uy) and &5 = (1 — B)/(1 — uy)]. For any such
K", we have

PHYSICAL REVIEW D 78, 013002 (2008)

M+ (1 = ) N

— {(1 — kL) + (mAB - uH)(2K‘1‘ + Kg)}mBF(mBuH)

+ O(ay, 1Y), (28)

where M* = (1/T3)M* = (1/T§)(dl*/duy), i.e. combin-
ing M" and M* in this way gives an expression dependent
only on the leading-order shape function. Taking the ratio
of two such expressions (two choices of K*) at uy # 0
then provides us with a relation independent of both lead-
ing and subleading shape functions. We shall use the super-
scripts (i) and (ii) when we need to distinguish between
quantities in the two expressions. We then obtain

% _ [b(()ii)Mu(i) _ bg)Mu(”)] 29
I [bg’)Kg‘(') - bg)Kg(”)](l — uy) M
where

by =(1— k%) + (A — uH)(ZK‘l‘ + &%).  (30)
mp

Since the right-hand side of Eq. (29) is measurable, it
enables an experimental determination of the CKM ratio
on the left-hand side. Additionally, the factor |V, V;;| in
this ratio can be eliminated by normalizing the photon
spectrum by the total B — X,y rate, which is given in a
local OPE.

There will be loop and power (A*-suppressed) correc-
tions to the rates and hence also to Eq. (29). While these are
not fully known, one can show that the corrections to
Eq. (29) are proportional to

oy bk
b0 — 0 " i ) 0 i

3D

(multiplied by a, or A*). This needs to be taken into
account when selecting {K“?, K“9}: one should avoid
pairs of weight functions that result in Eq. (31) being
excessively large, lest parametrically suppressed terms
acquire excessively large coefficients. For example, one
appropriate choice is to use Eq. (27) for both K*’s, with
BD =1 and B =0, after which the magnitude of
Eq. (31) is less than 1/6 for 0 < uy < m?/m3.

B. Relations involving B — X €€~

We can also try to isolate shape functions in the process
B — X, £ €~ by taking integrals of the form
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ymax l7"4H dSFM
d"[ dxy K (xy, 35, uy) —————,
j;man Y =3y . Gt Y ) dxpdypduy
(32)
where
Zax(min)
ymin(max) =1- m (33)

Here, yy = ¢*/m% and the low-g? region corresponds to
1 GeV? = ¢ = 6 GeV2. However, determining
K (xy, ¥y, uy) in the straightforward manner described
above proves to be problematic in practice. Therefore, we
resort to another method, which is based on the following
observation. Under the transformation xy— x}; =
2 —uy — Fy — xy. we find that 173" dxy = [174" dxly
and

(I —xy —uy) < (xyg+y5— 1),

This symmetry or antisymmetry can be exploited to obtain
K. For example, if K changes sign under the trans-
formation, then we can see from the triply differential rate,
Eq. (5), that integration over xy eliminates the W; and W,
terms, whereas the W3 term remains. Now, Eq. (B10)
shows that F3, Fy, and F3 occur in W3 in the same linear
combination as in the B — Xy rate.

This still leaves the integration over y g, and if we choose
Ky, Y, ug) = Qxy + uy + 5 — 2K Gy, up),
where K (5, uy) satisfies

Ymax

1
dyy(yu — up)® 5 (2Re[C10,C7,]
H

+ Re[CloaCSHJ(l - y%j))kw(yH’ ug) =0, (34
|

Ymin

PHYSICAL REVIEW D 78, 013002 (2008)

then all of the subleading shape functions in Eq. (32)
appear in the same combination as in the B — X, rate,
which can thus be used to eliminate these functions.
Table V in Appendix C shows several examples of K¢ of
this form. We observe that z = cosf = 2xy + uy +
Vu — 2)/(Fy — uy), where 6 is the angle between the B
and €% in the center-of-mass frame of the €*¢~. This
means that a choice of K o« (2xy + uy + yy — 2) is
equivalent to taking moments of the forward-backward
asymmetry,

dzAFB _ fl d Slgn(Z) d3F

dyyduy -1 ¢ I'y dyyduydz
3 1 ar
=— dz 7—————. 35
2T, f,, L B pdupdz (33)

Note also that Cy, is a function of ¢2, and hence of ¥ (see
Appendix B), but in the low-¢* region |Cy,| varies by less
than =1% and we take it to be constant. There is no
problem taking into account the exact dependence, but
integrals over regions of yy must then be performed
numerically.

Let [3M* = dT* /duy, and let M* = TiM" and T§ M
denote the integrals (17) and (32) respectively, with weight
functions from Tables I and V. Then we obtain

1+ ng M
1+ Z(ﬁ — u)k! Mt — ng(l —uy) M’

u
F0

(36)

where ! (k4¢) is the coefficient of F, (F3) in M" (M*").
More generally, by the same methods, we can find K"
and K such that

A 1 B d _
M" = ﬁM" =T [[K"(XH, Vu, uH)dfddeyH = myF(mpuy) + «(up)F\(mpuy) + «5(uy)Fy(mguy),
0 0 xpdyyduy

1 3T u
e Ly LAl
Iy Ty duy

=—(1- MH)3{mBF(mB”H) - %[Fl(mBuH) = 2Fy(mguy)] — [F3(mguy) — Fy(mpuy) + 2F§(m31411)]},

1 1

9i44 144 144 d3F€€
M=M= || K 5 uy) —
Fg€ Fg€ ,/j (XH YH MH) dde_)_)Hdl/tH

dxydyy

1 -
= myF(mpuy) + Eng(uH)[Fl (mpuy) — 2Fy(mpuy)] + k§up)[F3(mpuy) — Fi(mpuy) + 2EFS(mpug)], (37)

where F $ = d4may(u;)F:. Tables IV and VI show (further) examples of such weight functions, along with the correspond-

ing values of the coefficients !, and «%5. Then
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[ng — ng]ll;[“ + KE‘M” - ngg‘q(l — uy)3M°

= {(K% - K3 + K4 + Ky K €)

PHYSICAL REVIEW D 78, 013002 (2008)

Specifically, let

i j\/l”=i.’M”={[K2 —K3€]M” if k5 #0
(o )t = R+ D)y o L if 1t =0
mp
~ e kMY if kb # ke
+ O(ay, A%), (38) M= W”N { P
s0 in this case we have a combination of M*, M*, and M*¢ 1 u e -3 e 00 o0
» M, . 4 1- Mo, if
that is dependent only on the leading-order shape function. M = ﬁj\’l‘T = { KZ(K(31 (_ " 3‘5{3) I7e ’ ;f :2( f i%(,
Taking the ratio of two such expressions [two choices of 0 " ’
{K*, K}, denoted by superscripts (i) and (ii) as previ- (39)
ously] at uy # O then provides us with another relation
independent of both leading and subleading shape
functions. and
|
(k86 — w8 + K+ k) + (A — u) (18— kO 2kt + k%), if k4 #0 and  wSC # kLC
3 2 2K3 g 3 1 2 2 2 3
Co = 1+ 2(m_B - MH)KI, if Kg =0 (40)
(1 + &4, if ¢ = ki
We find that KD = (1), (2), or (3) [Table I]
T [ Cgi)j\/lu(i) _ Cg)mu(ii) and KD =(7), (8), or (9) [Table V];
T | cO (s 1 My — O pgstin) 4y pgeetin ] '
o i r )= ¢ ( r (4)1) K4 = (4), (5), or (6) [TableIV]
y K% = (10), (11), or (12)  [Table VI],
h =13/T%, .
where = 15/I", or and KD =(7),(8), or (9) [Table V].
v — (ii)mu(i) _ g)gvlu(ii)
0 (MWD + MUOY — DM+ My | C. Perturbative corrections
(42) Let us now consider the feasibility of incorporating

In the special case where Kg(i) =0 and ngi) =

Eq. (42) reduces to Eq. (36).
The loop and power (A*-suppressed) corrections to
Eq. (41) can be shown to be proportional to

(i)
K3( 5

Eg)[ng _ ng](ii)

Ef)ii)[ ng _ K€€](i) _ 5(1’)[ Kee _ K€€](ii)

EDrs(1 + w4616
SR (1+ w4O10 — & [w4(1 + k§H)]@

(43)

where = (k8¢ — k8 + e + k4RO + (A my —
up) kbt — K3()(2K + «%). When selecting {K“®, K¢},
{K"i, gD} one should avoid those sets of weight func-
tions that result in Eq. (43) being excessively large. The
following combinations of weight functions are suitable
choices:

perturbative corrections in our relations. In Ref. [32], the
complete set of subleading corrections (to all orders in «;)
for the triply differential spectrum of B — X, £v was de-
rived. It was shown that prohibitively many new shape
functions appear at order a;Aqcp/m,, and hence it 1s
not phenomenologically viable to work to that order.’

However, one may choose to work to order (a;A%, a%A?),
by including perturbative corrections to just the leading-
power terms. Recall that there are two perturbative scales,

wp ~ my, (hard) and w; ~ 4/m, Agep (jet). It is straightfor-

ward to take into account the relevant hard corrections.
Including the effect of corrections to the jet function 7@,
which is convoluted with the shape function f©, is more
involved: one has to “invert” a distribution [see Eq. (8)].
An implementation akin to Refs. [26-29] is left for future

Unless these shape functions appear in the rates in only a
much smaller number of linear combinations.
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work. Nevertheless, before this is done, we can still use the
less direct approach mentioned in the introduction, using
two instances of Eq. (28) or (38), with appropriately modi-
fied right-hand sides. For example, one can extract the
leading-order shape function from the analogue of
Eq. (38), with K*¢ from Table V, and substitute this func-
tion into a second choice, with K* from Table I. Finally, we
note that the extent to which Eq. (29) or (42) varies with
respect to uy or different combinations of the K*’s and
K5 will provide a measure of the effect of a, and A*
corrections.

IV. CONCLUSION

In this paper, we have established a method for obtaining
[Vupl/IV, V5| that includes O(Aqcp/my) corrections in a
model-independent way. Our approach relies upon a class
of relations between the inclusive decays B — X, {7 and
B — X,y that are valid including the first-order power
corrections [see Egs. (24) and (29)]. Alternatively, one
can use a separate class of relations involving B —
X, €1~ [see Egs. (36) and (42)]. Experimentally required
cuts make shape-function effects important in these pro-
cesses. Their differential decay spectra in the shape-
function region have previously been derived to subleading
order with the help of the soft-collinear effective theory.
These rates involve a number of nonperturbative but uni-
versal shape functions in different linear combinations. We
are able to eliminate these sources of hadronic uncertainty
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APPENDIX A: SHAPE FUNCTIONS

The leading-order shape function is

fOUr) =B, |h,8(¢* —in-D)h,|B,),  (Al)

where &, is the heavy quark field. The subleading shape
functions are

(B,10o(E)IB,) = f(£*),
Ve,
(B,IPPNE)IB,) = P fP (),
(BOSP(UT)IB,Y = g3P £ (T, €5),

(B,IPSE(},)IB,) = eiﬁ(m - n”fv)
X fPr ),
nang(B,105P (€], 5)1B,) = £}, €5, €5),

(B,105()|B,) = (vﬂ -

by taking suitable weighted integrals of the triply differen- (g2 — i€x5)(B, |02P(¢},,)1B,) = Ot e, ),
tial rates. Hence, our results incorporate NLO power cor- (A2)
rections while avoiding model dependence. There are
many possible weight functions [see e.g. Eqs. (26) and
(27)]; different choices provide a consistency check on  where g|" = g*” — (1/2)(n*a” + n”i*) and €| =
the determination of |V ,]. (1/2)e#**Bjing. The ultrasoft operators are
dx~ o _
o) = [Goe ¢ [T, EY(E 0 (00, 0))
1 -
O (") = 5 hdiDli, 3(€* = in - Dy}h,
PB(6*) = L i iDB, 5(6* — in - D, )Ty ysh
21 2 us» us) 1Y A Y5M0»
1 -
05P(r,€3) = 5h 8(¢; — in- D) YHiDLe, iDiPYYs(€; — in - D,)h,,
PIP(Er, €)= —EHUS(W in - D,;)gG L 8(tf — in- D)y ysh,
aﬁ(€+2 3) = {ﬁv5(€§— —in- Dus)’Y'BPLTAqﬁ}a(eg— —in- 9){67ﬁ7aPL5(€T —in- Dus)TAhv}r (A3)
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where X* = 71 - xn* /2. Here, O, is the NLO term in the
HQET Lagrangian, Y is an ultrasoft Wilson line, i gGus J_
[iDL*,iDL’] and q". = (if)/4q,,. The operator 05 ,
which appears in the definitions of f5¢, depends upon the
light-quark flavor, u or s.

APPENDIX B: HARD COEFFICIENTS

In this Appendix, we present expressions for the hard
coefficients in B — X, €7 and B — X 7€~ [24,32,36]. At
lowest order, we have

_ Px _
WO = n(px, my, M)[OX dikt JO(pxk*, w)

X fOk* + A = p¥, w). (B1)

For B — X,{PD, we have

=
—=

|
= Z[C(l )]2,
_ (1= upl ™) + ey +
Gy — upy)
. (C(zv))z (1— uH)Z[(C(v))z + ZC(v)C(v)]
4 u — uH)
(C(lv))z
2mp(Fy —

Cgv) Cgv)]

h3

hy — (B2)

“H) ’
where

as(mb)CF
4

+ ln(w)(3 & _6)2) + sl + 6}

12
as(mb)CF{ 2 20 ln(c?))}
47 1-&) (1-—a)?f
as(mh)Cp{(l —2®)® In(®) _ 0] }
4o 1 - a)

C(o, 1) =1- {21n2(c?)) +2Liy(1 — &)

V(1) =

Yo, 1) =

1 —af

(B3)

Here, @ = w/m,.

PHYSICAL REVIEW D 78, 013002 (2008)
For B— X £ €, we have

1 2Re[C,C5] 2|C7|2
hi* =S (Col + [Croa?) + = T,
1 ’ 0 (I=5n) (1=
2(1
gt = 2289 10,2 4 10y, + RelCCi D)
(y — uy
n ICrosl* 81C, 1 (B4
2 (1 =30y — up)’
et — —4Re[C10.C7]  2Re[Cy0,C5] '
P omg(l = 3Gy — up)  mp(y — up)

The full expressions for the coefficients C;gq 19,4105 are
given in Ref. [24]. When we ignore O(a,(m;,)) corrections,
they simplify to

. my ()
Co = Cy, = Cg™, Cr=0C = P ito] CI;IDR(,U«O),
mpg
Ci0a = Cioa = Cho, Ciop =0, (BS)
where o ~ m, and
. 2
C8™ (o) = CYPR (o) + §(3C3 + C4 + 3Cs + Cy)
1
- E[’l(l, S)(4C3 + 4C4 + 3C5 + C6)
+ h(ﬁ, S)(3C1 + C2 + 3C3 + C4 + 3C5
mp
1
+ Co) — Eh(O, $)(C53 + 3Cy) + O(ag(uo)).
(B6)

The function &(z, s) is given by

_8 (mo)_8 8 2
h(z,s)—gln(mb) 91 +27+9§ (2+§)

X /11 — I[H(l —{)(—177+1n1 +\/l_——g:)

1
+0(—1)2 arctani],
JZ=1
8 8 4 4
hO,) =+ In *lns + — i,
(0, 5) 779 (mb) 9ns 9177

(B7)

with ¢ = 4z%2/s and s = ¢*/m3.

In the expressions above, Cy_q, CYOR, C) are the co-
efficients of the corresponding operators in the effective
Hamiltonian for b — s€* €~ (for which the next-to-lead-
ing-log calculations were done in Refs. [42,43]), while
Cyix differs from CST of Ref. [42] by only an O(«,) piece.
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Note that there is a complication in the perturbative power
counting. Above the scale m;, one usually expands in «g,
with a,log(my/m;,) = O(1). Because of mixing with
0,,, Co~log(my/my)~1/a;, whereas C;9~ 1.
However, numerically |Cy(m;)| ~ Cjo. This problem is
exacerbated by the fact that in the shape-function region

J

PHYSICAL REVIEW D 78, 013002 (2008)

only the rate is calculable, not the amplitude. The solution
is to use a “‘split matching” procedure, which decouples
the scale dependence above and below w = m; and
thereby allows us to consider the coefficients as O(1)
numbers in the latter region [24].

At next-to-leading order, we have

h? X
Wi - (” . ,[p dk* TOG - pk*, W k" + ¥, p)

Z

2
4
=3
6
=5

r

f
Z (” p)[dk+dk+dk+j< Y- pk, WO + )+

rf
# I [T 70 pk P )

f
(”lﬂjﬁwdHJ<Wnz%+uvwwf+riﬂ)

(B8)

where j = 1,2 and j/ = 1, 2, 3. The ellipses denote terms that have jet functions 7 that start at one-loop order or higher.

(These terms are given in Ref. [32].) When we keep the full dependence on uy, the hi“ , are
1 (1 —uy)2 =y — uy) 1 1
hlu =_, hlu — _ - , hlu — _ , h2u =—_,
: 8 g 2(yy — up)? : dmg(Yy — up) : 4
o U= ug)((4 = uy)yy — 35 — 2) wo_ 1 1
' = Vo (7 2 ’ h3t = — - , hy -
u(Fy — up) 2mp(Fy — up) 4yu
1 - 1 1
e L ek . b= (B9)
u(¥y — up) 2mpyy (Y — up) 4yy
hgu _ (1- MH)(2 —¥Yu — MH) hg“ _ 1 h?u _ _l
IuGn — up)® 2mpyu(y — up) 2
hgu — 2(1 - MH)(I - .)_]H) hgu — _ 1 h?u -0 hgu _ 2(1 - MH)Z hgu -0
Gy — up)? mp(y — up) Gy — un)?

and the A7, are

013002-11
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h%gg — _ 4|C7u|2 - (|C10a|2 |C9a|2)(1 B yH)2
4(1 — yp)?
hiee = (2 =35 — up)@C7,1* = (1C1041?* + [Cou (1 = F)(1 — uH))
(1 = 3p)Gy — up)?

hlgg - _ Re[ClOaCSa]
mp(yy — up)’
4C74I> = (IC10al* + 1Cou P = 75)?

h2€€ — ,

: 2(1 - 34)?

2 2 — 2
h2€€ = — ﬁ[“'lCﬁlle + 4RC[C7aC9a](2 yH - MH)
Iu(Fy — uy) 1-
+(Cial? + 1CouP)2 = 45 + 5 + S (1~ ) |

p2t — 2RC[C10aCSa]

: mp(Yy — uy)’
pe— _ 4|C41* + 4Re[C7,C5,1(1 — F) + (IC1p,1* + 1Co |1 — Fp)?

1 - b

2yy(1 = yy)?

Pt = 4|C7a|2 = (IC10al* + [Cou 1P = 5)(1 — uy)
yu(l = )y — up)

2Re[C(,C7,] + Re[Cy0,C5, (1 — T)

s

h3€€ =2 - — - , (BlO)
: mpyu(l = $5) Ty — uy)
A — 4|Cy,|* + 4Re[C7,C5,1(1 — 3) + (IC1gal? + [Coul(1 — 35)?
: 255(1 — yy)? '
46¢ 2 22— Yy —uy ) 2 _
R = — — 5| 4G > —————+ 8Re[C7,C5,1(1 — up) + (ICypal* + |Cou )2 — 5 — up)(1 — up) |,
Yu(Fy — up) 1 = yy
pate = _22RC[C10aC§a] + Re[Cy,Cy, J(1 — 911)’
mp¥u (1 = 35) Ty — uy)
h5€€ _ 4'|Cw7a|2 + 4R6[C7ucga](] yH) + (|C10u|2 + |C9a|2)(1 - yH)2
1 (1 —ypu)?
B3t — 4(4|C7a|2 + 4Re[C7,C5,1(1 = 35) + (IC104]* + [Cou|H(1 = 51)2)(1 — MH)
g (1 =30y — up)?
B3 = 2Re[C10dC7g] + Re[cloaC9g](1 Vu) 15t — 0
: mp(1 = 35) Ty — up) !
ot — 44|C7a|2 + 4Re[C7,C5,J(1 — up) + (IC041* + 1Cou D)1 — upy)? R
2 ’ 3 .

Gu — uy)?
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APPENDIX C: WEIGHT FUNCTIONS

TABLE IV. Some choices of K“(xy, ¥, uy) for which the weighted integral Eq. (17) depends
only on the shape functions F, Fy, and F,. The coefficients «%(uy) and «%(uy) are defined in

Eq. (37).
u — 1 Qxytuy+yy=2) 1=35)Q2¥y—uy—1)

4 K N(ug) H(y,,liuﬁl)i (?+“HH7,§HI-)I

N(ug) = 51 — up)*(1 — 14uy — 9%4u3; — 14u3; + ufy) — 2u3 (1 — uj)) loguy

=z k=l

—(7— 5 v 2
) Kty =41 MH()i\H::;H)HM)H] K== K = s
_ 105 [14(1—uy)?* 55 +5Q+Tup)xyyu—45x5% ] _ 2 __ 109—4

(6) Kiv = —1o1 B B K1 = " 101 K3 = 0110

TABLE V. Some choices of K%(xy, ¥y, uy) for which «&(uy) = «&(uy) in Eq. (37).* Here, A = —2Re[C(,C5,), B =
Re[CIOaC;a]’ and )7H> = ymin + ymax-

7)) K= b uttatSnd) Guu il {2 — B[] — (5. = 55 TG — 2m)

N(ug) (Fu—un) (G B
N(ug) = 8(1 — up) fim dyp(5y — uH>2<>H;HVizV""><yH* — 25 A = B = 5)HA - B[l = G — 30)°]}
56 = gﬁé(u””) ff,“:d: dyp (G — ug)*(1 — YH)%()’H* = 2y)B{A — B[1 — (Fu= — yu)*1}

® K= Moy (2xn + ug + ¥y = 2)ps — Iu up)* 5y G = 29u{A — Bl = G — 501}
N(up) = 8(1 = up) [ d5gGy — un) Gue — Iu — ) IuGpx — 25 A — Bl = (Gps — 3u)’IHA — B — 3p)}

Ymin
i = =B fim g5 (5 — ugl (1 = 5) G — 1 — )T Gae — 250 BLA = Bl = Gy — 51t
00— 1 Qxpgtuyg+ip=2) Gu—Ig—un)* _(Fu—25n)
@ K" = Ny T G o) (A-B—50) An
Ymax « = —B(1—y
Nluy) = 81— up) [ d G = uHV%(ym = 290 A a0
€€ _ _ 8 max + = B
K3 g\l(u,u,H f;mm dyH(yH B uH) (- i) )H)’II*HWMH (y["“ 2yH)m

*Note that Example (9) requires a harsher cut, e. g. 2 GeV? =< ¢ = 6 GeV? (rather than 1 GeV? = ¢ = 6 GeV?), so that it is not
singular.

TABLE VI. Some choices of K‘* and the corresponding coefficients «4¢(uy) and «%‘(uy), which are defined in Eq. (37). Here,
A = —2Re[Cyp,C5,], B =1Re[C1y,Ci, ], and Yy = Jin + Imax- Co, may be taken to be constant, in which case the integrals can
be evaluated analytically.

(10) KO = b Grugun =2 N(uy) =2 [l dyy (5 — up) (A — B(1 — yH)}

K= i [ B = O~ = i [ sy A = B )
(11) K = N(tlm) W%Z;m N(uy) =2 fy'"i'x dyyu(Yu — MH)K{J’%\ — B(1 —yu)}

K= N(uH) fy:: dyuB(1 = 3p)Gy — un)’yy K{ = — N(iH) [ dyg(y — ug)*{A — B(1 — jg)}
(12) K = i ety “"@Jﬁy:)") Gre = 25wHA = BU = I + 30}

Nlay) =2 [ A5y = ) 25107 5. = 25,0 A = B = 5)HA = B = + 5y}

ng = — N(uH) fV::f dyu(1 = 5u) 5y — up)? 7(‘”(}[:5;:{’) Gas — 2V)B{A — B(1 — 3y + )} K§€ =
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