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FLICKERING AND THERMAL FLICKER WAVES ON CATALYTIC WIRES
AND GAUZES AND IN CHEMICAL REACTORS*

DONALD S. COHENt AND S. ROSENBLAT

Abstract. We present a theoretical investigation of flickering (local temperature fluctuations) and
thermal flicker waves in chemical reactors and on catalytic wires and gauzes. It is shown that these phenomena
can be caused by harmonic coupling between the chemical kinetics and oscillations in the ambient field. The
oscillations can be modeled either by fluctuations in the heat and mass transfer coefficients, or by fluctuations
in the gas temperature and concentration.

1. Introduction. Local temperature fluctuations (flickering) are observed in
chemical reactors (for example, in ammonia oxidation convertors) and on catalytic
wires and gauzes [1], [2]. Ervin and Luss [1] have argued that these temperature
oscillations of the catalytic surface are due to the coupling between the chemical
reaction and the random fluctuations of the turbulent flow past the wire. They have
proposed that the coupling is effected through fluctuations in the turbulent transport
coefficients. For the special case of a catalytic wire in which longitudinal conduction of
heat is ignored, they present some numerical and experimental results to support this
proposition. Until now no theoretical investigation has been conducted of flickering in
chemical reactors or, apart from [1], on catalytic wires; moreover, no theory has been
given for the more usual cases where longitudinal heat conduction is present.

We shall show that Ervin and Luss [1] may be correct, in the sense that the
hypothesis of fluctuating transport coefficients can provide an explanation of flickering.
On the other hand, we shall show that an alternative hypothesis, namely that the
temperature and concentration in the gas phase surrounding the wire are fluctuating
rather that uniform, leads eventually to the same mathematical model, and therefore
provides an equally plausible explanation of flickering. We show also that either
hypothesis leads to an interaction which is responsible for steady and slowly-varying
thermal flicker waves. Indeed, other mechanisms such as fluctuations in the concen-
trations of the reacting species [8] which have been suggested as causes of flickering lead
to similar mathematical problems.

In 2 we present the governing equations and pose the problems we study. The
demonstration of flickering is presented in 3, and finally in 4 we study the thermal
flicker waves. To be specific our analysis is presented for the catalytic wire, and we shall
interpret all quantities relative to this situation. However, since the mathematical
equations, when longitudinal heat conduction is present, are the same as those for
tubular reactors, our results apply equally well to this situation also.

2. The catalytic wire. Following Aris [2] we first consider the simplest situation, in
which the wire is infinitely long and impermeable, but capable of conducting heat. This
heat is generated by reaction on the surface which is exposed to constant ambient
conditions. Aris presents the governing equations as

(2.1) pkc(c,- c) pr(c, T),
2dT

(2.2) kA-z2 +ph(T- T)+(-zXH)pr(c, r)=0,
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where p perimeter of cross-section, A area of cross-section, kc--mass transfer
coefficient, h heat transfer coefficient, z--position on wire, AH heat of reaction,
k --conductivity of wire, c(z)= concentration on the wire, T(z)= temperature on the
wire, cr ambient concentration, Tr ambient temperature, and r(c, T) reaction rate
function. The standard non-dimensionalization of these equations is accomplished by
setting

c T r(c, T) kccru=--, v=-- F(u, v)=,
cl: Tf’ r(c:, Tf r(cf, Tf)’

hTrz (-AH)r(c, Tw)’
Then (2.1)-(2.2) become

(2.3)

[(-AH)pr(c, Tr)]
1/2

x z
kA

,(1-u)=F(u,v),

d21)
(2.4) dx2+z(1-v)+F(u, v)=0.

To study time-dependent phenomena such as flickering and flicker waves we shall need
the time-dependent (or transient) equations, which are

OU
(2.5) --=,(1-u)-F(u,v),

Ot

Ov O2v
(2.6) L z + tx (1- v + F(u, v ),

3t 3x

where the heat capacity parameter is given by

L=
CpATr

(-ZkH)pcr"

Here Cp is the heat capacity per unit volume. We have assumed that the wire is so fine
that radial gradients are unimportant. We shall consider n-order Arrhenius kinetics.
Thus

(2.7) F(u, v)= P,(u) e -r/v,
where Pn (u) is an nth degree polynomial in the concentration u, and , dimensionless
activation energy (E/RT).

We now relax our assumption that the wire is exposed to constant ambient
conditions. First of all, following Ervin and Luss 1], we assume that turbulent flow past
the wire affects the wire through instantaneous changes in the heat and mass transfer
coefficients h and kc. The velocity fluctuations should be represented by a complete
spectrum of frequencies. However, as was originally suggested by Lighthill [3], a simple
model to study the theoretical effect of coupling these fluctuations to the chemical
kinetics can be obtained by assuming that all fluctuations have the same frequency, and
that these fluctuations are small perturbations on a constant free stream flow. Thus we
take the mass and heat transfer coefficients to be

kc (1 + ce sin mot),

h(1 + O2 sin o)0t), 0<c2< 1,
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respectively. Therefore, the governing equations (2.5) and (2.6) become

(2.8) u(1 + e/31 sin oot)(1- u)-F(u, v),
Ot

(2.9) L
OV 021.)
--=+/(1 + e/32 sin Wot)(1-v)+F(u, v),
Ot OX 2

with 0 < e < 1.
These equations are based on the hypothesis that the ambient gas temperature and

concentration are constant. An alternative model can be obtained by assuming that
these quantities fluctuate sinusoidally, while the heat and mass transfer coefficients are
constant. In this model we take the ambient concentration and temperature to be of the
form

cr(1 + a sin oot),

T(1 + a2 sin oot), 0<a2<l,

respectively. Then (2.5)-(2.6) become

OU
(2.10) u(1 + S/l sin wot-u)-F(u, v),

Ot

(2.11)
(/2 02/2

L---+/x(1 + e3z sin wot- v) + F(u, v).
Ot --OX 2

The systems (2.8)-(2.9) and (2.10)-(2.11) are similar, but not quite identical. They
can be combined in the form

(2.12) u[1 u + e/3a(1 -/u) sin wot]-F(u, v),

0/2
(2.13) L--

02/2
Ox 2 +/x[1-v + e/32(1 +,v) sin wot]+ F(u, v),

where h 1 in the case (2.8)-(2.9) and , 0 in the case (2.10)-(2.11).
Finally, we note that in tubular reactors in which diffusive terms in the concen-

tration are important and which often operate nonadiabatically, the governing equa-
tions would become

(2.14)

(2.15)

OU_DlO2U+u[1 u + e/3(1 -/Xu) sin wot]-F(u, v)
Ot OX 2

02LOV=D2 v
+tx[1-v+efl2(1-hv)sinwot]+F(u,v)

3t 3X 2

Although our main goal is to account for the observations of flickering on catalytic wires
and to predict other related phenomena, our results are true for the more general
situations described by equations (2.14)-(2.15).

3. Flickering. We shall consider the full system (2.14)-(2.15) of partial differential
equations in 4. First, however, we examine the simplified situation for the catalytic
wire in which longitudinal conduction of heat is ignored or, equivalently, where
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solutions independent of x are sought. Thus we study

(3.1)
du

[1 u + efi(1 -,u) sin Oot]-F(u, v),
dt

(3.2) t
dv

dt
tz[1 v + efl(1 -,v) sin coot]+ F(u, v).

For the case of constant ambient conditions (e -0) with the first-order Arrhenius
kinetics (F(u, v)- ue-V/), Ervin and Luss [1] have shown that (3.1)-(3.2) possesses
three steady-state solutions for a certain range of the ambient gas temperature T, which
is proportional to both the Lewis number L and the dimensionless heat transfer
coefficient/. Furthermore, they have shown that the high temperature steady state,
denoted by (U, V), is stable at very large gas temperature T by virtue of two real
negative eigenvalues of the linear stability matrix. Decreasing T induces complex
conjugate eigenvalues with negative real parts; with further decrease in T, the real parts
of the eigenvalues become positive and the state (U, V) loses its stability.

Ervin and Luss [1] have taken into account the effect of fluctuations in the case, 1 and fll- fie. They perform numerical integrations of (3.1)-(3.2) at parameter
values where the eigenvalues of the stability matrix are complex conjugates with
negative real parts. They find an oscillatory response (i.e., flickering) of resonance type
when Oo is near the imaginary part of the stability eigenvalues. On the basis of their
computations they conclude that their conjecture is correct.

We now extend Ervin and Luss’s study analytically in order to isolate and identify
the features and parameters controlling the coupling between the chemical kinetics and
the fluctuating ambient conditions. We shall confirm Ervin and Luss’s results on the
maximum response at the resonant frequency when the stability eigenvalues have
negative real parts. In addition, however, we shall demonstrate a far more dramatic
effect when the real parts of the stability eigenvalues tend to zero.

We transform (3.1)-(3.2) by moving the origin of (u, v) to the high temperature
steady state solution (U, V). Thus we set

uU+u, v V+v,

whereupon (3.1)-(3.2) take the form

du
(3.3) - (-,-Fu)u -F v + e,fll(1-,U) sin o)ot-e,fl, u sin oot-G(u, v),

(3.4)L
dv
--d=F, u +(-tx +F)v+eflz(1-h V) sin wot-elxfl2h v sin ooot + G(u, v),

where FuF denote the partial derivatives of F with respect to u, v evaluated at (U, V),
and where G O(u2+ v2). A simple linear transformation enables (3.3)-(3.4) to be
replaced by

du
(3.5)

dt Tu -wv + e61 sin wot + 63/(011/1 +012/2) sin mot + f(u, v),

(3.6)
dv

O)U nt- ]/V + e82 sin mot + e’y(p21u t- 022/3) sin mot + g(u, v).
dt

Here the 8i are constants depending on A which do not in general vanish when either
0 or 1; the Pit are constants depending on/x, ,, and i but not on , and we have
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explicitly isolated the eigenvalues 3’ :t: io of the linearized stability matrix. The functions
f and g are O(u 2 + v2); in fact, for first-order Arrhenius kinetics it is easily shown that

f OgllblU-ar-Og12V2-k-O[(b12-Jr. 1.)2)3/2], g-- og21bll.)-Jr. Og22U2-+-O[(b12.-k.;1.)2)3/2],
where the a0 are constants. The procedure for solving (3.5)-(3.6) is by a standard
multiple sealing perturbation technique. As is well known, the slow scale is determined
by the leading order resonant interaction which is necessarily cubic since quadratic
nonlinearities cannot interact resonantly. In other words, it is the cubic, not the
quadratic nonlinearities which yield the desired behavior of the system in the neigh-
borhood of a bifurcation point. Therefore, we suppress the quadratic nonlinearities,
and for algebraic simplicity we consider in place of (3.5)-(3.6) the system

(3.7)
du
dt

yu -wv + e61 sin wot + eyu sin wot-2U 3

(3.8)
dv 2ou + 3,v + e62 sin ooot + ear sin wot- 2u v.
dt

This is the simplest model which reveals the desired underlying structure of the general
problem, namely the resonant interaction between the cubic terms and the imposed
oscillation.

When 3’ O(1) as e 0, the system (3.7)-(3.8) has a periodic solution which can
be determined as a regular perturbation in powers of e:

2(3.9) u(t) eUo(t) + e ul(t) +" ",

The equations for the leading terms are

duo(3.10) yUo-OoVo+61 sin mot,
dt

2v(t) eVo(t) + e vl(t) +

dvo
dt

(-OUo q- 3,VO q" 62 sin wot;

the solution of this system is easily obtained, and we refrain from giving the details.
However, for the purposes of comparison with Ervin and Luss [1], we note that in the
case 3’ < 0 and with transients neglected, the amplitudes of the responses are found to be

{ (610)0)2q..dq_20))2 }1/2(3.11) luol-(7o
_

+43"2o20
)2 1/2

(3.12) IVol (-57 75 + 43,2o92
The value of a)o at which these attain their maximum values can be computed when the
other parameters are specified. It is obvious, however, that the value at which these
maxima occur approaches o as 3’ -+ 0; this agrees with the numerical result of Ervin and
Luss.

As 3’ increases through zero the solution (3.9) becomes unstable and bifurcation
into a stable modulated limit cycle occurs. When e 0 the limit cycle has the form

u(t) Uo(t), v(t) Vo(t),

where Uo, Vo are periodic functions with period T 2rr/o)[1 + 0(3"2)] when 3’ is small.
For e # 0 the solution is modified into the form

u(t)= Uo(t)+eUl(t)+. v(t)= Vo(t)+eVl(t)+.

and is quasipe’iodic with periods T and To 2 rr/a)o. This regular perturbation breaks
down at resonance (w Oo) when 3, 0.
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The limit /0 is singular because the denominators in (3.11)-(3.12) become
unbounded at the resonance value 0) 0)0. To study the behavior of the system near
resonance as 3/ 0, we need to perform a suitable rescaling. We set

2/3 2/3(3.13) 0)o=0)+cs y=o’s

and employ a standard multi-scale perturbation procedure. Thus we let

(3.14) 2/3u(t) u(t*, r)= el/3Uo(t*, rl+e u(t*, r)+eu2(t*, r)+"

(3.15) 1/3 2/3/9v(t) v(t* r) e Vo(t*, ’) + e l(t* r) + ev2(t* ’) +’"

where

2/3)t 2/(3.16) t* (0) +c r e 3t,
and we seek bounded functions Ui(t*, "r), vi(t*, "r), 0, 1, 2, . Then

+e2/3) 19 2/3 19

Upon inserting (3.13)-(3.16) into (3.7)-(3.8) and equating coefficients of like powers of
e, we obtain

19Uo 19120(3.17) w0-+ 0)Vo 0, w--- wUo O,

(3.18) 0) 0---’- -- 0)121 O,

19Uo OUo19192 + 0)122(3.19) 0)

Ot* Ot* 0"
+ O’Uo- 2U3o + 61 sin t*,

19v2 OVo 19Vo(3.20) 0) 0---)"’-wu2=-a0t* Or
+ CrVo- 2UoVo + 2 sin t*.

The solution of (3.17) is

(3.21) Uo(t*, -)= R(r) cos (t* + b (r)),

(3.22) Vo(t*, r) R (r) sin (t* + b (-)),

where the unknown functions R (r) and b(r) will be determined at a later stage of the
perturbation procedure. Similarly, the solution of (3.18) is

(3.23) Ul(t*, ’) S(r) cos (t* + 4(r)),

(3.24) vt(t*, ’)= S(r) sin (t* + 4(r)).

Using (3.21)-(3.22) we find that (3.19)-(3.20) become

19u2(3.25) 0) -O-i- + 0)122 R + o’R R 3 cos * + c
+(Rb’ + aR) sin (t* + b) + 61 sin t* + other harmonics,

0122(3.26) 0)

19t*
0)u2 (-R cR) cos (t* + b)

+(-R’ +oR -1/2R 3) sin (t* + b)+ 62 sin t* +other harmonies.
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The right-hand sides of (3.25)-(3.26) come from expanding the right-hand sides of
(3.19)-(3.20) in Fourier series, or alternatively, by simply employing trigonometrical
identities. We have retained only those harmonics which correspond to forcing at
resonance; these terms must be eliminated or they will produce unbounded solutions u
and Vl. The elimination is achieved by applying the Fredholm alternative (see Cohen
[4]) and leads to the following two conditions:

(3.27) (R’- o’R + R 3) sin & + (Rd)’ + aR) cos & + 1/281 0,

(3.28) (R’-crR +R3) cosd)-(Rd)’+ceR)sin-1/22=O.
These can be rearranged to read

(3.29)
dR
dr

(3.30)

=o’R-R3- sin 0,

dO
R-S -cR -/3 cos 0,

where

(3.31) /3 1/242 +, 0 &-arctan (2/1).

Therefore to leading order in e the solution of (3.7)-(3.8) is given by (3.14)-(3.15),
where the evolution equations for the amplitude R (r) and the phase &(r) are given by
(3.29)-(3.30).

We examine the nature of the solutions of (3.29)-(3.30). To begin with we consider
the special case ce 0 which corresponds to exact resonance between the natural
frequency to and the forcing frequency too, and therefore represents the worst case of
failure of the regular perturbation.

When c 0 the equilibrium solutions of (3.29)-(3.30) are obviously given by

(3.32) F(R)R3-crR- =0, 0 -,
and

(3.33) G(R - R 3 erR + [3 O, 0 -.
2

Since F(R) +c as R --> +/-, and since F(0) -/3 < 0, it is clear that (3.32) always has
at least one real positive root, R, say, for all values of tr. Moreover, F(R) has no extrema
when o-<0, and has extrema at R +/-cr/x/ when tr>0. In the latter case the
maximum is at the negative value of R and the minimum at the positive value. From
these observations we conclude that R1 is the unique positive real root of (3.32).

Similarly, (3.33) always has one negative real root (which is unphysical), and has
either no positive root or two positive roots. The transition occurs when

(3.34) G(R) 0, G’(R) 0

hold simultaneously. A simple calculation shows that, in terms of the parameter tr, this
transition is identified by o-= rc, where trc is given by

3 27/32
(3.35) o- 4
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Equation (3.33) is easily seen to have two real roots R2 and R3 when r > rc and no real
root when

Combining these results we see that (3.29)-(3.30) with c 0 have three equili-
brium solutions when o- > o’c, and one solution when r < rc. In particular there is only
one solution when r 0.

To determine the stability of these solutions we set

(3.36) R R + O, 0 0 + r/

in (3.29)-(3.30), where R denotes any of the solutions Ra, R2, R3, and 0 the
corresponding values 3zr/2 or 7r/2. Linearizing the equations we obtain

(3.37)
dn fl
T, cos 0 - cos ff

sin ff

or upon using the critical point relationships,

(3.38)
-3/ a/ O

dr/ -a- o’-R

It is now easy to establish that the solution R is always stable, while R2 and R3, when
they exist, are both unstable. Figures 1 and 2 illustrate the character of these solutions.

To summarize, we see that as cr (or 3’) increases towards zero through negative
values the regular perturbation solution (3.9) is replaced by the multi-scale solution
(3.14)-(3.15) at resonance. It is important to note that the response to the ambient
fluctuations is O(e) when 3’ is not close to zero, but increases to O(e 1/3) at resonance.
when 3’ 0; this is relatively a very large response.

As 3’ increases through zero, (or > 0), solutions of the form (3.14)-(3.15) persist
and eventually merge with the modulated null solution and modulated limit cycles
described above. A detailed account of how these mergings are effected will be given in
[5].

Finally we note that the structure of the solutions is the same when , 0 or A 1.
This means that the flickering can be explained in terms of either variable transport
coefficients or variable ambient temperature and concentration.

stable

unstable

R2

O
FIG.
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stable

unstable

’=0

FIG. 2

Qualitatively similar results are obtained when a # 0, but the analysis is more
formidable. When a 0 the equilibrium solutions of (3.29)-(3.30) are given by

(3.39) R 3 o-R +/3 sin 0 0, aR + 3 cos 0 0,

which can be combined to give the single equation

H(R =- R 6 20-R 4 + (0-2 -i- aZ)R 2 2 O.

Equation (3.40) has at least one real positive root R1 for all 0-; this follows since
H(R) oe as R +oe and H(O) -/32 < 0. Now H(R) always has a minimum at R 0;
its other extrema are given by

R 2 {2 + 41 3a2/0-2}.

Hence there are no extrema when 0- < /-a, so that when this inequality holds there is
only one positive root R 1. Actually, new positive roots first appear at the value 0-c of 0-

for which H(R) 0, H’(R) 0 hold simultaneously. The determination of 0-c requires
the numerical solution of a sixth degree polynomial. We shall not perform this
calculation since the qualitative behavior is similar to that for the case a 0.

4. Thermal flicker waves. We now consider the full system (2.14)-(2.15) of partial
differential equations. For the catalytic wire this amounts to recognizing that longi-
tudinal conduction of heat occurs realistically; for tubular reactors it amounts to
recognizing that diffusive effects are always present and that long tubular reactors are
not stirred tanks in which we can ignore diffusion. Again, for algebraic simplicity and for
ease of presentation, we consider the specific nonlinearities of equations (3.7)-(3.8).
Thus we study

(4.1) u0_.= Yu -o)v + e61 sin ooot + ehu sin aot- 2u
3+Ol

Ot

0/9 02/.)
(4.2) tou + "yt + e2 sin wot + e,v sin w0t- 2uzv + D2 2.Ot Ox

For catalytic wires D1 0, while for reactors both diffusion coefficients are nonzero.
First, we note that the solutions of 3 are also solutions of (4.1]-(4.2). We shall

now show that if these solutions are subjected to spatially dependent perturbations, the
effect of the diffusive terms in (4.1)-(4.2) is to modulate these solutions in the form of
slowly progressing waves. More precisely we shall show that the system (4.1)-(4.2)
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(4.3)

(4.4)

where

possesses solutions of the form R(,+cr)P(t*), where P(t*) represents oscillations
(flickering) on a fast time scale t*, and R(,f-cr) represents a slowly modulating
amplitude on slow space and slow time r scales. In the absence of diffusion this
reduces to the solutions R (r)P(t*) found in 3.

Our analysis follows that of Cohen, Hoppensteadt and Miura [6] who studied
slowly modulated oscillations as bifurcations in nonlinear diffusion processes repre-
sented by autonomous reaction-diffusion equations. Certain suitable modifications
must be made to account for the nonautonomous nature of the present problem and the
different scalings which are required; but the procedure is then the same. Thus we
invoke the scaling (3.13), and we let

1/ , 2/3

1/3 t* 2/3v(x, t) v(, t* 7.) s v0(, ,7.) + s vt(, ,7") + sv2(, t*, 7") +’’’,

(4.6)

(4.7)

where

2/3)1/3 2/3t, t* (09 + ce t.(4.5) = e x, 7"= e

Upon carrying out the perturbation analysis just as in 3, we obtain

Uo(sC, t*, 7") R(s, 7") cos (t* + b(, 7")),

Vo(sC, t*, 7") R ((, 7") sin (t* + b (, r)),

(4.8)

(4.9)

with

(4.10) D }(D1 +D2), fl 1/24 + 82, 0 b arctan (82/81).

The equations (4.8)-(4.9) are clearly the generalizations to partial differential
equations of the evolution equations (3.29)-(3.30) of 3. Many types of solutions of
systems like (4.8)-(4.9) exist; see [6], [7]. Here, in order to account for thermal flicker
waves, we shall look for traveling wave solutions. Thus we let 7 c_ c7. and look for
solutions of the form

(4.11) R(, 7")= R(-cT")=-R(rt),

(4.12) 0(, 7")= O(,f-cr)=- O(rt).

Then (4.8)-(4.9) become

(4.13) D[R"-R(O’)2]+cR’+crR-R3-fl sin 0=0,

(4.14) D[RO"+2R’O’]+cR’-oR- cos 0 =0.

Just as in 3, we focus attention on the special case c 0 corresponding to exact
resonance between the natural frequency o) and the forcing frequency wo. Qualitatively
similar solutions can be obtained for the case a 0, but the analysis is much more
complex. With c 0 we write (4.14) in the form

(4.15) (R2e,O,), e" cn cos 0,
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Thus,

(4.16) R(l)O’(rl)=Ke- +-e R()

With the requirement that R(r/) be bounded for all r/ (-c, o), the exponential
growth for 0’(r/) as r/- or- implied by (4.16) destroys consistency at higher orders
in the perturbation procedure [6]. To overcome this, we take K 0 and cos 0(r/) 0, so
that 0’(r/)=0. Note that cos 0(r/)=0 expresses the same requirement on 0 as was
needed in 3 with a 0 (i.e., equations (3.32)-(3.33)). Thus we have 0(r/) =/9, where
0 7r/2 or 0 3zr/2.

When 0(r/)= 0 =constant, (4.13) becomes

(4.17) DR"+cR +crR-R3- sin if=0.

We show now that this equation possesses a stable periodic solution which has the form
of a limit cycle in the R-R’ plane. We note first that (4.17) has the critical points
R---R1, R2, R3 defined in 3, with R1 associated with 0 3rr/2 and R2, R3 with
0 n-/2. Setting

(4.18) R(rl) R + r(l),

in (4.17), we obtain the equation

(4.19) Dr" + cr’ + fr (3/r2 + r3) 0,

where 2 f(R) is defined by equation (3.38). Now, as shown in 3, I < 0 when R R
and when R R3. Hence the critical points R and R3 are saddle points. On the other
hand II > 0 when/ R2, and this corresponds to a spiral point when c 2 < 4. In this
case there is a possibility of a limit cycle around this critical point. In fact we can be sure
that there is a stable limit cycle for a range of wave speeds c; for when [c[ is small enough
it can be used as a small parameter to develop a limit cycle solution by standard
multi-scale or Poincar6-Lindstedt type perturbation procedures.

Therefore, the system (4.13)-(4.14) possesses the stable limit cycle 0(r/)= zr/2,
R(rt) R2 + r(r/), and thus we have established the existence of thermal flicker waves

(4.20) u"R(el/3x +ce2/3t) cos tot+--arctan
(4.21) v---R(el/3x-ce2/3t) sin wt +-- arctan

where the modulating envelope represents a periodic traveling wave.
In conclusion, we recall the remark above that the solutions of 3, which have no

spatial structure, are also solutions of the diffusive system (4.1)-(4.2). This means that
the latter system has three stable solutionsthe space-independent ones represented
by R1 and R3, and the traveling wave solution (4.20)-(4.21)all of which are
modulations about the unstable mean R2. Initial conditions will presumably determine
onto which of these a disturbance evolves.
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