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Constrained Detection for Spatial-Multiplexing
Multiple-Input–Multiple-Output Systems
Tao Cui, Student Member, IEEE, Chintha Tellambura, Senior Member, IEEE, and Yue Wu

Abstract—A family of detectors that exploit signal con-
straints is developed for maximum-likelihood detection for
multiple-input–multiple-output (MIMO) systems. Real con-
strained detectors and decision-feedback detectors are proposed
for real constellations by forcing the relaxed solution to be real.
A generalized minimum mean square error (GMMSE) and con-
strained least squares MIMO detectors are also developed for
unitary and nonunitary signal constellations. Using these con-
strained detectors, we propose a new ordering scheme to achieve a
tradeoff between interference suppression and noise enhancement.
Moreover, to mitigate the inherent error propagation, the decision-
feedback MIMO detectors are integrated with signal constraints.
The simulation results show that our combined detector achieves
a significant performance gain over vertical Bell Laboratories
layered space-time (V-BLAST) detection.

Index Terms—Decision-feedback detector (DFD), linear
detector, maximum likelihood, multiple-input–multiple-output
(MIMO).

I. INTRODUCTION

MULTIPLE-INPUT–MULTIPLE-OUTPUT (MIMO)
wireless communication systems with spatial multi-

plexing can potentially achieve remarkably high spectral
efficiencies in rich scattering multipath environments.
Consequently, efficient signal detection algorithms for spatial-
multiplexing MIMO systems have attracted much interest.
A prime example is the vertical Bell Laboratories layered
space-time (V-BLAST) detector [1].

Although the optimal maximum-likelihood detector (MLD)
achieves the minimum error probability for independent
identically distributed (i.i.d.) random symbols, which is a
requirement that holds in many cases, the complexity of the
MLD exponentially grows with the number of transmit anten-
nas and the number of bits that index each scalar constellation
point, making the MLD computationally prohibitive in most
cases. Therefore, various computationally efficient suboptimal
detection algorithms based on linear or feedback receiver struc-
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tures using the zero-forcing (ZF) or the minimum mean square
error (MMSE) criterion have been developed. For instance,
V-BLAST [1] involves symbol ordering and sequential detec-
tion. Prior to the detection of a symbol, interference from
previously detected symbols is subtracted (the canceling step),
and the received vector elements are linearly weighted to null
the interference from the yet undetected symbols (the nulling
step). The equivalence between V-BLAST and a generalized
decision-feedback equalizer has been demonstrated [2]. A
large number of extensions to the basic V-BLAST have been
investigated in the literature. However, these suboptimal
receivers perform much worse than the MLD. On the other
hand, the sphere decoder (SD) [3]–[5] offers the optimal
MLD performance at reduced complexity, particularly in the
high SNR region. Nevertheless, its worst-case complexity is
exponential in the number of transmit antennas, and its average
complexity is high in a low SNR or for large systems [6]. The
performance and complexity gaps between the MLD and the
existing suboptimal receivers have motivated the development
of alternative detectors.

The MIMO detection problem requires minimizing a qua-
dratic cost function over the discrete set of all possible trans-
mit vectors. In the relaxation approach, this discrete set is
embedded in a larger bounded multidimensional continuous
space, and the minimization is performed over this continuous
space subject to certain constraints. The resulting minimum
solution is mapped back into the original discrete space. Several
such constrained detectors have been developed [7]–[11]. For
example, a generalized MMSE (GMMSE) detector for code-
division multiple-access (CDMA) systems has been proposed
[7], where the constrained optimization problem resulting from
the relaxation of the binary phase-shift keying (BPSK) vectors
inside the unit hypersphere is solved via the convex duality
theorem and the gradient descent. In [8], a tighter relax-
ation is used in orthogonal frequency division multiplexing
(OFDM)/spatial division multiple-access (SDMA) systems em-
ploying unitary constellations by restricting the binary vec-
tors in the hypersphere, resulting in the constrained least
squares (CLS) detector. In [9], semidefinite relaxation (SDR)
has been developed for BPSK-CDMA systems. The SDR has
been also extended to general M phase-shift keying (M -PSK)
and quadrature amplitude modulation (QAM) constellations in
[10], [12], and [13].

In this paper, constrained linear detectors and decision-
feedback detectors (DFDs) are developed for spatial-
multiplexing MIMO systems. Real constrained detectors
and DFDs are proposed for real constellations by suppressing
the imaginary interference component. We also generalize
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the CLS detector of [8] by dividing the signal vector to
several subgroups and applying the unitary constraints to these
subgroups. Similarly, the GMMSE detector [7] is extended
to nonunitary constellations. A new ordering scheme is also
proposed by using the constrained detectors, which maximizes
the signal-to-interference-plus-noise ratio (SINR) at each step.
Reference [14] shows that the first detected symbol limits
the overall performance of V-BLAST. We, thus, combine the
constrained detector and the decision feedback to improve the
quality of the first few detected symbols. An earlier version of
our work appears in [15].

This paper is organized as follows. Section II describes the
spatial-multiplexing MIMO system model. Real constrained
detectors, modulus constrained subgroup detectors, and co-
ordinate ascent improvement are developed in Section III.
Constrained decision-feedback receivers are developed in
Section IV. Simulation results are given in Section V, and this
paper concludes in Section VI.
1) Notation: Bold symbols denote matrices or vectors. (·)T ,

(·)H , and (·)∗ denote the transpose, the conjugate transpose,
and the conjugate, respectively. (·)† denotes the pseudoinverse.
Re{x} and Im{x} denote the real and imaginary parts of x,
respectively. ‖(·)‖2 is the squared norm of (·). The sets of
real numbers and complex numbers are R and C, respectively,
and the set of all complex K × 1 vectors is denoted by C

K .
A circularly complex Gaussian variable with mean µ and
variance σ2 is denoted by z ∼ CN (µ, σ2). The N × N identity
matrix and the diagonal matrix formed by vector a are In and
diag(a), respectively.

II. SYSTEM MODEL

We consider a standard MIMO system with n transmit an-
tennas and m receive antennas and with spatial multiplexing,
where the individual antennas transmit independent signals
rather than jointly encoded ones. That is, the input data stream
is demultiplexed into n equal-rate substreams, and each is
simultaneously sent through one of the n antennas over a rich
scattering channel. A finite modulation constellation Q is used.
We consider a flat fading MIMO channel, where each receive
antenna collects signals from all the n transmit antennas. The
discrete-time equivalent baseband received signals can, thus, be
written as

r = Hx + n (1)

where x = [x1, . . . , xn]T , xi ∈ Q, is the transmitted sig-
nal vector, r = [r1, . . . , rm]T , ri ∈ C, is the received signal
vector, H = [hi,j ] ∈ C

m×n is the channel matrix, and n =
[n1, . . . , nm]T , ni ∈ C, is an additive white Gaussian noise
vector. The elements of H are i.i.d. complex Gaussian, hi,j ∼
CN (0, 1). The components of n are i.i.d. with ni ∼ CN (0, σ2

n).
We assume that the channel is perfectly known to the receiver,
and that n ≤ m. If n > m, we can readily transform the rank
deficient problem into a full rank problem, as shown in [16].
Note that (1) models any linear, synchronous, and flat fading
channels. Therefore, all our detectors can be readily applied to
CDMA systems.

Given the standard model (1), the MLD that minimizes the
average error probability is given by

x̂ = arg min
x∈Qn

‖r − Hx‖2. (2)

Due to the discrete nature of Q, (2) is a nondeterministic-
polynomial-time-hard problem, and an exhaustive search for x̂
has a complexity exponential in n.

III. CONSTRAINED DETECTORS

A. Classic Receivers

We briefly review several classic receivers. Since Q ⊆ C,
a simple relaxation is to allow each xi ∈ C. This relaxation
results in the well-known ZF (decorrelating) detector, and (2)
becomes

x̂ZF = D

[
arg min

x∈Cn

‖r − Hx‖2

]
(3)

where D[x] denotes the threshold detection rule that yields the
constellation symbol that is closest to x. For a vector x, D[x]
individually operates on each element. The minimization part
in (3) has the least squares solution, and the ZF detector can,
thus, be written as

x̂ZF = D
[
(HHH)−1HHr

]
. (4)

If the same relaxation is combined with the minimization of
the MSE between the transmitted signals and the detected sig-
nals E{‖x − x̂‖2}, then the MMSE prefilter output is x̂ = Gr
(G is a prefilter matrix). Using the orthogonality principle [17],
one can determine the prefilter matrix, and the MMSE linear
receiver is then given by

x̂MMSE = D
[(

HHH + σ2
nIn

)−1
HHr

]
. (5)

However, the ZF and MMSE linear receivers do not guarantee
the optimal solution (2) due to the looseness of the relaxation.

For additional details, see [7] and [18].

B. Real Constrained Detectors

A real constellation Q has all real elements, e.g., BPSK and
pulse amplitude modulation. If the real signals are transmitted
through a complex channel like (1), the received signals are
complex, and the ZF and MMSE solutions from (4) and (5)
are usually complex vectors. However, the receiver has a priori
knowledge that the transmitted signals are real. Moreover, the
imaginary part may cause additional interference. To impose a
real constraint on (4) and (5), we relax Q to R. Note that the
complex system (1) can be transformed into a real system as
follows:

r̃ =
[

Re{r}
Im{r}

]
=

[
Re{H}
Im{H}

]
x +

[
Re{n}
Im{n}

]
= H̃x + ñ. (6)

Note that the entries of ñ have zero means and variance σ2
n/2.

The ZF and MMSE linear detectors for the equivalent real
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system (6) can be obtained as

x̂R-ZF = D
[
(H̃HH̃)−1H̃H r̃

]
(7)

and

x̂R-MMSE = D

[(
H̃HH̃ + σ2

n/2In

)−1

H̃H r̃
]

(8)

where R-ZF and R-MMSE denote the real constrained ZF and
MMSE detectors, respectively. Since H̃ and r̃ are real, x̂R-ZF

and x̂R-MMSE are also real. Therefore, the real constraint is
implicitly imposed.

Note that as the solution obtained by either (5) or (8) has
a bias toward zero, the prefilter output x̂ should be scaled to
maintain the average constellation power before applying the
threshold decision. By exploiting the power constraint or the
modulus constraint of each constellation, the performance of
the MMSE receivers can be improved, and x̂ needs not to be
scaled [17].

C. Modulus Constrained Subgroup Detectors

When Q is complex, we can exploit the modulus constraints
of Q. We first consider a unitary constellation with unity
modulus |xi|2 = 1, i.e., M -PSK. This pointwise constraint
directly leads to the candidate vectors being in the hypersphere
xHx = n, e.g., the CLS [8]. However, to achieve better perfor-
mance, tighter constraints are required. We, thus, partition the
vector x into g > 1 groups, and each group forms a subvector
xi with size si, i = 1, . . . , g, where

∑g
i=1 si = n. We relax

each xi on an si-dimensional hypersphere xH
i xi = si. The

constrained MLD is, thus, given by

x̂CML = D

[
arg min

xH
1 x1=s1,...,xH

g xg=sg

‖r − Hx‖2

]
(9)

where CML denotes the constrained MLD.1 The minimization
problem in (9) can be written as

min
x

‖r − Hx‖2

s.t. xH
1 x1 = s1, . . . ,xH

g xg = sg. (10)

The Lagrangian L(x, λ1, . . . , λg) for this minimization prob-
lem is

L(x, λ1, . . . , λg) = ‖r − Hx‖2 +
g∑

i=1

λi

(
xH

i xi − si

)
. (11)

1Note that the CML is not the true maximum likelihood even if (9) is exactly
solved.

By taking partial derivatives with respect to x, the solution for
x can be derived as

x̂(λ1, . . . , λg) = (HHH + Λ)−1HHr (12)

where Λ is a diagonal matrix and is given by

Λ = diag{λ1, . . . , λ1︸ ︷︷ ︸
s1

, . . . , λg, . . . , λg︸ ︷︷ ︸
sg

}. (13)

Note that (12) is a minimizer of (11) only when HHH + Λ
is semidefinite. When g = 1, there is only one λ1, and (13)
reduces to the CLS solution in [8]. When λ1 = · · · = λg = σ2

n,
the CML detector reduces to the MMSE detector (5). Compared
with the CLS detector [8], our new relaxation is tighter, and the
continuous space is smaller. Note that (12) reduces to the ZF
linear detector if Λ = 0.

To obtain the CML solution in (12), the optimal values for
λ1, . . . , λg have to be computed so that the unitary constraints
are fulfilled. Substituting x̂(λ1, . . . , λg) into (10), we need the
zeros of the set of equations, i.e.,

F1(λ1, . . . , λg) = ‖x̂1(λ1, . . . , λg)‖2 − s1 = 0

...

Fg(λ1, . . . , λg) = ‖x̂g(λ1, . . . , λg)‖2 − sg = 0. (14)

However, the solution of (14) does not necessarily make
HHH + Λ semidefinite. Therefore, solving (14) does not guar-
antee the optimal solution of (10).

The multidimensional Newton–Raphson root finding method
[19] can be used to solve (14). This method needs the par-
tial derivative of Fi with respect to λj , ∂Fi/∂λj , 1 ≤ i,
j ≤ g. For simplicity, we show only the differentiation of
F1 with respect to λ1 and Fg with respect to λ1. ∂Fi/∂λi

can be obtained by permuting the columns of H such that
xi corresponds to the first si entries of x. ∂Fi/∂λj , j �= i,
can be obtained by permuting the columns of H such that
xi corresponds to the last si entries of x, and xj corre-
sponds to the first sj entries of x. We can obtain ∂F1/∂λ1

as given in (15), shown at the bottom of the page, where
A = HH

1 H1 + λ1I, B = HH
1 H2, C = HH

2 H2 + Λ2, Λ2 =
diag(λ2, . . . , λ2, . . . , λg, . . . , λg), Q = A − BC−1BH , H1

corresponds to the first s1 columns of H, and H2 corresponds
to the last n − s1 columns of H. We also have

∂Fg(λ1, · · · , λg)
∂λ1

= rHH
(

Φ Ψ
Ω Ξ

)
HHr (16)

∂F1(λ1, . . . , λg)
∂λ1

= rHH
(

−2Q−3 Q−2BC−1Q−1 + Q−1BC−1Q−2

Q−2C−1BHQ−1 + Q−1C−1BHQ−2 −Q−2BC−2BHQ−1 − Q−1BC−2BHQ−2

)
HHr (15)
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where

Φ= − EHD − DHE (17a)

Ψ= − EHC−1 − EHC−1BHDH − DHC−1BHEH (17b)

Ω= − C−1EH − DBC−1E − EBC−1D (17c)

Ξ= − C−2BHEH − EBC−2 − EBC−2BHDH (17d)

− DBC−2BHEH (17e)

A = HH
1 H1 + Λ1I, B = HH

1 H2, C = HH
2 H2 + λgI, Λ1 =

diag(λ1, . . . , λ1, . . . , λg−1, . . . , λg−1), and Q=A−BC−1BH .
H1 corresponds to the first n − sg columns of H, and
H2 corresponds to the last sg columns of H. ∆ =
diag(1, . . . , 1︸ ︷︷ ︸

s1

, . . . , 0, . . . , 0), E = C−1BHQ−1∆Q−1, and

D = C−1BHQ−1.
Since system (14) has multiple roots, an initial estimate is

needed to guarantee the convergence to the desired root. In
the CLS case (a 1-D case where only λ1 exists), from [20], it
can be shown that the global minimum is achieved by using
the maximal real root λ∗

1, which can be found by using the
1-D Newton method. However, in the multidimensional case,
no such theorem exists that specifies the root that minimizes
(10). There are two possible initial estimates for λi’s. First,
the initial values may be chosen as λ1 = · · · = λg = σ2

n [this
choice is inspired by the fact that the performance of the
MMSE detector (5) in the low SNR is dominated by the noise
variance]. Second, we solve the CLS first and use the solution
λ∗

1 for g = 1 as the initial estimate. If the Newton method
does not converge after a specified number of iterations, we
simply set λ1 = · · · = λg = σ2

n or λ1 = · · · = λg = λ∗
1. Our

simulation results show that the probability that the Newton
method for (14) does not converge increases with the increase in
the number of groups g. Since the Newton method returns the
root close to the initial estimate, the global minimum of (10)
may not be achieved. Therefore, our approach is suboptimal
for solving (10). However, based on our simulation results, we
find that if the CLS solution is used as the initial estimate, our
detector always performs better than the original CLS detector.

For a nonunitary constellation such as QAM, we assume
ρmax and ρmin as the largest and smallest moduli of the con-
stellation, respectively. As before, we partition the vector x into
g groups and use the constraint ρmax. We, thus, relax each xi

in an si-dimensional hypersphere xH
i xi ≤ ρ2

maxsi. The CML
detector is modified as

x̂CML = D

[
arg min

xH
1 x1≤ρ2

maxs1,...,xH
g xg≤ρ2

maxsg

‖r − Hx‖2

]
. (18)

The Lagrangian function for the minimization problem in (18)
can be expressed as

L(x, λ1, . . . , λg)=‖r−Hx‖2+
g∑

i=1

λi

(
xH

i xi−ρ2
maxsi

)
(19)

where λi is the Lagrangian multiplier associated with the ith
inequality constraint, and λi ≥ 0. The Lagrange dual function

is the minimum value of the Lagrangian (19) over x, and

g(λ1, . . . , λg) = inf
x∈Cn

L(x, λ1, . . . , λg). (20)

The minimization of (19) for x has the same solution as (13).
Substituting it back to (19), we obtain

g(λ1, . . . , λg) = −rHH(HHH + Λ)−1HHr

−ρ2
max

g∑
i=1

λisi, λi ≥ 0. (21)

It can be readily verified that the objective function and
the constraints are convex. There exists a strictly feasible
point. Therefore, the constraints meet Slater’s condition, and
strong duality holds for (18) [21]. The maximum value of
g(λ1, . . . , λg) is equal to the minimum of (18). We solve
λ1, . . . , λg by maximizing (21) first and substituting them
back into (12) to obtain the solution to (18). In (21),
the set S = {[λ1, . . . , λi]|λi ≥ 0, i = 1, . . . , g} is convex.
A g-dimensional subgradient algorithm [22] can, thus, be used
to solve (21). For simplicity, we show only the differentiation
of g(λ1, . . . , λg) with respect to λ1. ∂g/∂λi, i > 1 can be ob-
tained by permuting the columns of H such that xi corresponds
to the first si entries of x. We can obtain

g(∂λ1, . . . , λg)
∂λ1

= rHH
(

Q−2 −Q−2BC−1

−C−1BHQ−2 C−1BHQ−2BC−1

)
× HHr − ρ2

maxs1 (22)

where B, C, and Q are defined in (15). The gradient descent
algorithm starts at λ1 = λ2 = · · · = λg = σ2

n. With a dimin-
ishing stepsize, the gradient descent algorithm converges to the
optimal solution [22]. If g = 1, the CML detector (18) reduces
to the GMMSE in [7]. Therefore, the CML detector generalizes
the GMMSE.

For tighter constraints and better performance, ρmin can also
be considered by posing another g constraints ρ2

minsi ≤ xH
i xi,

for i = 1, . . . , g, on (18). However, the resulting nonconvex
optimization problem, in general, is hard to solve.
Remarks:

1) The constrained detectors that use constellation modulus
information can be combined with the real constraint in
Section III-B. For real constellations, the CML detec-
tors (9) and (18) can be directly applied to the equiv-
alent system (6) by taking into account the real and
modulus constraints. We denote the combined receiver
as R-CML.

2) The proposed approach can also be extended to the
MMSE linear detectors. Let the prefilter matrix in the
MMSE be G and the prefilter output be x̂ = Gr. Denote
P as the average constellation power. The constrained
MMSE can be obtained by solving

min
G

E
{
‖x − x̂‖2

}
s.t. E

{
x̂H

1 x̂1

}
= s1P, . . .

E
{
x̂H

g x̂g

}
= sgP. (23)

We omit the details of solving (23) here.
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D. Coordinate Ascent Improvement

Although the proposed detectors perform worse than the
MLD (see the simulation results in Section V), the number
of symbol errors in them in a high SNR is rather small (i.e.,
x̃k = xk for most k, and for erroneous decisions, x̃k �= xk).
This fact suggests that an iterative approach may improve the
performance of our constrained detectors. This detector is a
block version of a coordinate ascent algorithm [19]. As we did
before with the CML detectors, we partition x into g groups,
each with si symbols. In each iteration, for i = 1, . . . , g, we
minimize one group by fixing the other g − 1 groups. The
algorithm can be summarized in the following two steps.

• Initialization: Set iteration number k = 0, and obtain the
initial data detection by using a suboptimal detector. This
initial solution is denoted as x̂(0).

• Iteration: k = k + 1, and set iteration number i = 1. For
i = 1, . . . , g, compute

r(i) = r − Hīx̂
(k−1) (24)

where Hī is formed by zeroing the columns from fi =∑i−1
j=1 sj + 1 to ei =

∑i
j=1 sj . The data vector xi =

[xfi
, . . . , xei

]T is detected by using

x̂i = arg min
xi∈Qsi

∥∥∥r(i) − Hixi

∥∥∥2

(25)

where Hi is formed by the columns from fi to ei. x̂(k) =
[x̂1, . . . , x̂g]T , and the iteration continues until x̂(k) =
x̂(k−1).

Remarks:

1) The variation of the number of groups g from 1 to n
results in different performance levels. In particular, if
the number of groups is one (g = 1), (25) reduces to the
MLD problem (2). When g = n, the iterative improve-
ment algorithm is similar to the parallel interference can-
cellation (PIC) that is used in CDMA systems. However,
the iterative algorithm for MIMO with g = n performs
worse than the PIC does in CDMA for the following
reason. In the CDMA case, the nondiagonal terms in H
due to the nonorthogonality of the spreading codes are
typically small; however, this condition does not hold for
the MIMO channel H. Our new iterative improvement,
however, generalizes the PIC detector.

2) When the number of symbols in the tth group (si) is
small, an exhaustive search or the SD can solve (25).
In any case, the worst-case complexity of our new it-
erative algorithm is O(K

∑g
i=1 |Q|si), where K is the

total number of iterations. The complexity is between
those of the SD and the PIC. The choice of g and si

depends on many factors, such as the type of the subop-
timal detector, the desired bit error rate (BER), and the
complexity. For a practical system design, the number
of groups and their sizes should be empirically chosen
to achieve a good performance-complexity tradeoff at a
given SNR.

3) For soft decoding of linear block codes, Chase [23] has
proposed a class of suboptimal decoders. These have been
adapted for MIMO detection [24], [25].

4) In general, the reliability of the first few detected symbols
is less than that of the later detected symbols [14], [26],
and the overall error rate is highly affected by the reliabil-
ity of the first stage. Therefore, it makes sense to choose
s1 ≤ s2 ≤ · · · ≤ sg.

IV. CONSTRAINED DFDS

A. V-BLAST Detection

The V-BLAST detection algorithm [1] relies on nulling
and interference cancellation. The nulling step uses the ZF or
the MMSE criterion. The interference of previously detected
symbols is subtracted. Nulling and interference cancellation
improve the overall performance when the order of detection is
carefully chosen. For instance, in the kth iteration, the symbol
with the maximum postdetection SNR among the remaining
n − k + 1 symbols is detected. This ordering scheme is known
to be the optimal detection order. The whole algorithm is
described as follows.

• Initialization:

r1 = r (26a)

G1 =H† (26b)

k1 = arg min
j

‖(G1)j‖2 (26c)

• Recursion: for i = 1 to n

wki
= (Gi)ki

(26d)

x̂ki
= arg min

x∈Q

∣∣x − wH
ki

ri

∣∣2 (26e)

ri+1 = ri − x̂ki
(H)ki

(26f)

Gi+1 =H†
k̄i

(26g)

ki+1 = arg min
j/∈{k1,...,ki}

‖(Gi+1)j‖2 (26h)

where (A)i is the ith column of matrix A, and Hk̄i
is obtained

by zeroing the k1, . . . , kith columns of H.
As suggested in [2], given an optimum order k1, . . . , kn,

V-BLAST detection is equivalent to the zero-forcing decision-
feedback detection (ZF-DFD). Assuming Π is the column per-
mutation matrix obtained from the optimum order, we apply Π
to H.2 Let the QR factorization of H̃ = HΠ be QR, where Q
is a unitary matrix, and R is an upper triangular one. Equation
(1) is equivalent to

y = Rx + v (27)

where y = QHr, and v = QHn is a noise vector whose entries
are i.i.d. complex Gaussian with mean zero and variance σ2

n.

2As in [2], the filtering matrices in constrained detectors and the correspond-
ing constrained ordering can be similarly applied.
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The second description of the V-BLAST algorithm is given as
follows:

• for i = n to 1

x̂i = arg min
x∈Q

|yi − Ri,ix|2 (28a)

y =y − (R)ix̂i (28b)

• end where Ri,i is the (i, i)th entry of R, and (R)i is the
ith column of R.

B. Real DFDs

For real-valued constellations, we perform the V-BLAST
algorithm (26a)–(26c) and (26d)–(26h) on the real system (6),
which automatically takes the real constraint into account. We
denote the V-BLAST for (6) as R-V-BLAST. By using the same
methods as those used in Section III-B, R-V-BLAST was found
to perform better than the original V-BLAST by suppressing
the imaginary interference. More precisely, if n = m, and no
permutations are used, the squared norm of the entries of R is
known to be χ2 distributed [27], specifically, |Ri,i|2 ∼ χ2(2i),
for i = 1, . . . , n, and |Ri,j |2 ∼ χ2(2), for j > i, where χ2(k)
denotes the χ2 distribution with k degrees of freedom. Since
the performance of V-BLAST is limited by the first detected
symbol [14], the diversity order of V-BLAST detection is only
one [28], [29]. However, if QR decomposition is performed on
the 2n × n real matrix H̃ in (6), we first construct a 2n × 2n
real matrix H1 with each entry zero mean and variance 1, and
the first n columns are equal to H̃. Let the QR decomposition
of H̃ and H1 be H̃ = Q̃R̃ and H1 = Q1R1, respectively,
and |Ri,i|2 ∼ χ2(i), for i = 1, . . . , 2n, and |Ri,j |2 ∼ χ2(1),
for j > i. We have R2 = H̃QH

1 , which consists of the first n
columns of R1. Therefore, the squared norms of the entries
of R̃ are also χ2 distributed; however, |R̃i,i|2 ∼ χ2(i + n),
for i = 1, . . . , n, and |R̃i,j |2 ∼ χ2(1), for j > i. Therefore, by
using the analysis approach in [14] and [26], it can be readily
verified that the diversity order of R-V-BLAST increases to
(n + 1)/2. For real constellations, if the decoupled system is
used with a real constraint (6), the diversity order increases
from 1 to (n + 1)/2. The result is a significant performance
gain over the original V-BLAST. This also shows a diversity
rate tradeoff.

For decoupleable complex constellations such as QAM, (1)
can be rewritten as[

Re{r}
Im{r}

]
=

[
Re{H} −Im{H}
Im{H} Re{H}

] [
Re{x}
Im{x}

]
+

[
Re{n}
Im{n}

]
(29)

or

r̃ = H̃x̃ + ñ. (30)

In [30], it has been shown that applying V-BLAST to the
equivalent real system (29) yields an additional performance
gain. However, the diversity order is not increased. These
findings suggest that performing the V-BLAST algorithm on the
equivalent real system is always beneficial if the constellation
is decoupleable or real.

C. CODFDs

The ZF nulling vector wki
[see (26d)] in V-BLAST com-

pletely removes the interference from the other antennas and
also amplifies the additive noise. Instead of using wi in (26d)
to completely remove the interference, we use an incomplete
nulling vector for a better tradeoff between noise enhancement
and interference suppression. We propose using the filtering
matrix in our proposed constrained detectors in Section III as
the nulling vector instead of the ZF nulling vector in V-BLAST.
We replace (26b) and (26g) with

G1 = (HHH + Λ)−1HH (31)

and

Gi+1 =
(
HH

k̄i
Hk̄i

+ Λi

)−1

HH
k̄i

(32)

where Λ and Λi can be calculated by using (14) and (21) for
constant unitary and nonunitary constellations, respectively.

Since interference cannot be completely removed when
nulling is performed by using the CML, we propose to deter-
mine the detection order at each iteration by maximizing the
SINR, which is defined as

SINRj

=

∣∣(Gi+1Hk̄i
)j,j

∣∣2 E
{
|xj |2

}
∑n

k=1,k �=j

∣∣(Gi+1Hk̄i
)j,k

∣∣2 E {|xk|2} + σ2
n ‖(Gi+1)j‖2

(33)

where (A)i,j is the (i, j)th entry of matrix A, and (Gi+1)j

denotes the jth row of matrix Gi+1. In the V-BLAST detection
algorithm, (26h) is replaced by

ki+1 = arg max
j/∈{k1,...,ki}

SINRj . (34)

This modified V-BLAST detection is denoted as the constrained
ordering DFD (CODFD).

Note that if Λ = σ2
nIn, the CODFD reduces to the MMSE

decision-feedback detector (MMSE-DFD) in [31]. If Λ = 0,
our CODFD becomes the original V-BLAST. Different order-
ing schemes with CML detectors and MMSE detectors can be
combined to form hybrid ordering schemes. From [14] and
[26], the diversity order of the first few detected symbols is
less than that of the later detected symbols. Since the CML
detector with g = n performs better than the other CML detec-
tors and MMSE detectors, but with higher complexity, we can
perform ordering with this detector in the first k symbols for
a better tradeoff between noise enhancement and interference
suppression. In the last n − k stages, the original V-BLAST or
the MMSE-DFD ordering with low complexity can be applied
since the diversity order in these stages is high. This hybrid
ordering scheme gives a tradeoff between complexity and
performance.



CUI et al.: CONSTRAINED DETECTION FOR SPATIAL-MULTIPLEXING MIMO SYSTEMS 1543

D. Combined Constrained Detectors and DFDs

The performance of the ZF-DFDs, or the equivalent
V-BLAST, is limited by the error propagation of decision
feedback. Even with the V-BLAST optimal ordering, the diver-
sity order of V-BLAST detection is just one [28], [29] because
V-BLAST is a greedy algorithm. That is, a hard decision is
based only on the “local” metric (28a) without taking the
subsequent symbol decisions into account. We, thus, combine
the constrained detectors in Section III and the ZF-DFDs to
make hard decisions less greedily. At each iteration, a “global”
metric, which is obtained by using the constrained detectors, is
used to make a decision on each symbol.

In the ith iteration, we define Ri = R(1 : i − 1, 1 : i − 1),
ri = R(1 : i − 1, i), and yi = y(1 : i − 1). For each x ∈ Q,
after canceling x from y, the soft decisions for the remain-
ing n − i symbols can be obtained by using the constrained
detectors as

x̂i =
(
RH

i Ri + Λi

)−1
RH

i (yi − rix) (35)

where xi = [x1, . . . , xi−1]T , and Λi is defined in (12). Since
the solution to (10) or (18) gives a low bound on ‖r − Hx‖2,
the effect of x on the decision metric for the remaining n − i
symbols can be measured by using ‖yi − rix − Rix̂i‖2. The
global metric for x is defined as

Mi(x) = ‖yi − rix − Rix̂i‖2 + |yi − Ri,ix|2

=
∥∥∥(

In−i − Ri

(
RH

i Ri + Λi

)−1
RH

i

)
(yi − rix)

∥∥∥2

+ |yi − Ri,ix|2
= |ai − bix|2 (36)

where

ai =

√∥∥∥(
In−i − Ri

(
RH

i Ri+Λi

)−1 RH
i

)
ri

∥∥∥2

+|Ri,i|2

bi =
(
yH

i

(
In−i − Ri

(
RH

i Ri+Λi

)−1
RH

i

)2

ri+y∗
i Ri,i

)/
ai.

(37)

In the ZF-DFDs, (28a) is simply replaced by

x̂i = D

[
arg min

x∈Q
Mi(x)

]
. (38)

The resulting detector is denoted by CML-DFD. With a pre-
computed ai and bi, the total complexity of the CML-DFD is
still O(n3).
Remarks:
1) If the CML detector is used, from the duality theory [21],

‖yi − rix − Rix̂i‖2 gives a lower bound and measures
the effect of x on the remaining symbols.

2) If Λi = σ2
nIn−i, (35) reduces to the MMSE. Although

it does not give a lower bound on ‖yi − rix − Rix̂i‖2,
the metric (36) also measures the effect of x on the
overall metric. Therefore, the combined MMSE and DFD
(CMMSE-DFD) enhances the performance.

3) The terms ‖yi − rix − Rix̂i‖2 and |yi − Ri,ix|2 are
equally weighted in (36). However, we may differently

Fig. 1. Performance comparison of constrained detectors in an 8 × 8 MIMO
system with BPSK.

weigh the two terms, and (36) can then be written as

Mi(x) = wi‖yi − rix−Rix̂i‖2 + (1−wi)|yi − Ri,ix|2
(39)

where 0 ≤ wi ≤ 1 is the weight coefficient. If wi = 0.5,
(39) is equivalent to (36). If wi = 0, (39) reduces to (28b),
and the CML-DFD becomes the ZF-DFD. The coefficient
wi can be optimized by minimizing the MSE for xi. In
practice, wi may be found by simulation.

4) When the channel rapidly varies, the coefficients ai and
bi must be frequently updated, thereby increasing the
average complexity of the detector. To alleviate this com-
putation burden, we propose to use the global metric (36)
to detect the first k symbols and the original V-BLAST
local metric (28b) for the remaining n − k symbols. The
parameter k offers a complexity-performance tradeoff.

V. SIMULATION RESULTS

We test our proposed constrained detectors for a MIMO
system with eight transmit and eight receive antennas over a
flat Rayleigh fading channel. The receiver knows the channel
state information and the noise variance. The notation CAI-X
denotes the combination of the detector X and the coordinate
ascent iterative correction described in Section III-D. The sys-
tem is simulated by using MATLAB V7.0.4 on a workstation
with an Intel Xeon processor at 3.2 GHz. The average CPU
computation time is used as the measure of complexity. The
SNR per bit is defined as

Eb

N0
=

E
{
‖Hx‖2

}
m log2 |Q|N0

(40)

where N0 is the spectral noise density. The SD is implemented
by using the algorithm in [4].

Fig. 1 shows the BER performance of different constrained
detectors in a BPSK modulated system. We compare our de-
tectors with the MLD and the CLS detector [8]. When all the
detectors are applied to the complex system (1), the CLS and
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Fig. 2. Performance comparison of constrained detectors in an 8 × 8 MIMO
system with 16QAM.

the CML perform close to the MMSE. In a high SNR, the CML
with eight groups (g = 8) performs better than the MMSE;
however, all these detectors perform worse than the SD (the
optimal detector). When they are applied to the real system
(6), all the detectors perform better. At a BER of 10−3, the
R-MMSE has a 0.5-dB gain over the R-CLS. Both the R-CML
with g = 4 and g = 8 perform better than the R-MMSE. They
have 0.3- and 2-dB gain over the R-MMSE, respectively. After
the iterative improvement is applied to all the detectors, the
R-MMSE, the R-CLS, and the R-CML with four groups
(g = 4) have 2-, 1.8-, and 1.5-dB gains at a BER of 10−3.
The detector R-CML with g = 8 improves by 1 dB at a BER
of 10−4.

The BER of the GMMSE [7] and the different constrained
detectors for 16QAM is shown in Fig. 2. The GMMSE per-
forms worst among all the detectors. The CML with g = 4 has
a 0.8-dB loss over the MMSE at a BER of 10−3. In a low
SNR, the CML with g = 8 performs better than the MMSE;
however, they identically perform in a high SNR. With the
coordinate ascent improvement, the R-MMSE, the R-CLS, the
R-CML with g = 4, and the R-CML with g = 8 have 2-, 1.8-,
1-, and 1.2-dB gains at a BER of 10−2, respectively. Since the
groupwise hypersphere constraint (18) is loose, the resulting
performance improvement is marginal. Tighter constraints are
needed for high-order QAM constellations.

Fig. 3 compares the BER of a DFD and a real DFD with
different constrained ordering schemes. BPSK modulation is
used. The performance of V-BLAST and the SD is also shown
in Fig. 3. We observe a dramatic performance improvement
even for the constrained DFDs on the complex model. At a
BER of 10−2, the CODFD and the MMSE-DFD have more
than 3-dB gain over V-BLAST. Therefore, the CODFD and the
MMSE-DFD have smaller noise enhancement compared to the
ZF-DFD. When the real constraint is imposed, R-V-BLAST
and the R-MMSE-DFD perform close to the SD at a high
SNR. They both perform only about 0.2-dB worse than the
SD at a BER of 10−4. The gap between the R-CODFD with
g = 8 and R-V-BLAST is 0.7 dB at a BER of 10−4. Since the

Fig. 3. Performance comparison of constrained ordering DFDs in an
8 × 8 MIMO system with BPSK.

Fig. 4. Performance comparison of constrained ordering DFDs in an
8 × 8 MIMO system with 16QAM.

diversity order of R-V-BLAST is (n + 1)/2, it performs well,
and the performance improvement that is gained by using the
R-MMSE-DFD is small.

Fig. 4 shows the BER of a DFD with different constrained
ordering schemes for 16QAM. V-BLAST and the SD are
used as benchmarks. The performance of R-V-BLAST that is
achieved by using (30) is also presented. The CODFD with
g = 1 has only a 0.7-dB gain over V-BLAST at a BER of
10−3; however, it has a 0.8-dB loss over R-V-BLAST, perhaps
due to the loose hypercube relaxation (18). When g = 8, the
CODFD has a 2.7-dB loss over the SD at a BER of 10−3. The
MMSE-DFD performs better than the CODFD. At a BER of
10−3, the MMSE-DFD has only a 1.5-dB loss over the SD. The
gap reduces to 0.5 dB when the R-MMSE-DFD is used.
Therefore, the R-MMSE-DFD is a preferable ordering scheme.
However, all the order schemes achieve a diversity order of only
one, which may be caused by the greedy nature of the DFD.
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Fig. 5. Performance comparison of combined detectors and DFDs in an
8 × 8 BPSK MIMO system.

We present the results for the combined constrained detectors
and DFDs for a BPSK system for a different k in Fig. 5, where
k is the number of symbols that are detected by using the
global metric (36), and the remaining symbols are detected by
using the original V-BLAST local metric (28b). Our proposed
CML-DFDs significantly improve the performance, indicating
their ability to mitigate error propagation. The performance
of all the combined detectors improves with k. At a BER
of 10−2, the CML-DFD with g = 1 and k = 8 has a 4-dB
gain over V-BLAST. The CML-DFD performs better than
the CMMSE-DFD with the same k. At a BER of 10−4,
the CML-DFD with g = 8 performs 0.5-dB better than the
CMMSE-DFD when k = 8. The performance gain achieved
by increasing k diminishes with the increase in k. For the
CMMSE-DFD, a 1.2-dB gain is achieved by increasing k
from 2 to 4 at a BER of 10−3. However, the performance
gain reduces to 0.2 dB when k increases from 4 to 8. The
CML-DFD with g = 8 and k = 8 has the best performance
among all the combined detectors, and it performs only 2.2-dB
worse than the SD at a BER of 10−3. Fig. 6 shows the average
computational time of the SD and the CMMSE-DFD for a
different k. The computational time of the SD does not include
the preprocessing. For the CMMSE-DFD, we compute the
coefficients ai and bi in each block, and this computation is
included in the computational time. The CMMSE-DFD has
constant complexity with the same k over all the SNRs, and
its complexity increases with k. The CMMSE-DFD is faster
than the SD in the observed SNR region. At SNR = 0 dB,
the CMMSE-DFD with k = 2 is 13 times faster than the SD.
In practice, the choice k = n/2 achieves a good performance-
complexity tradeoff.

Fig. 7 shows the performance of the combined detectors for
a BPSK system when the real constraint is applied. All the
detectors perform close to the SD. The R-CMMSE-DFD with
k = 1 has only a 0.6-dB loss over the SD at a BER of 10−4.
The R-CML-DFD with g = 8 and k = 8 almost achieves the
maximum-likelihood performance. However, the performance
gain that is achieved by increasing k decreases compared to

Fig. 6. Average computational time of combined constrained detectors and
DFDs in an 8 × 8 BPSK MIMO system.

Fig. 7. Performance comparison of combined constrained detectors and DFDs
in an 8 × 8 BPSK MIMO system using real constraints.

the gain in the complex case in Fig. 7. Our combined detectors
perform better than the V-BLAST detector. Fig. 8 shows the av-
erage computational time of the SD and the R-CMMSE-DFD.
The R-CMMSE-DFD is less complex than the SD for a dif-
ferent SNR. Since only real operations are performed when
solving the real system (29), the R-CMMSE-DFD is less
complex than the corresponding CMMSE-DFD, whereas the
former performs better for the same k. The R-CMMSE-DFD
with k = 1 saves 16 times more complexity than the SD at
SNR = 0 dB. When real constellations are used in practice, the
R-CMMSE-DFD with k = 1 is enough to achieve good perfor-
mance with low complexity.

Fig. 9 compares the combined constrained detectors and
DFDs for a 16QAM system for different values of k. Although
the performance of all the combined detectors improves by
increasing k, the performance improvement is not as signif-
icant as that for a BPSK system. At a BER of 3 × 10−3,
the CMMSE-DFD with k = 8 has an about 4-dB gain over
V-BLAST. The CML-DFD with g = 1 performs worse than the
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Fig. 8. Average computational time of combined constrained detectors and
DFDs in an 8 × 8 BPSK MIMO system using real constraints.

CMMSE-DFD, and it has a 1-dB loss over the CMMSE-DFD at
a BER of 10−3. The CML-DFD with g = 8 and k = 8 achieves
the best performance, and it almost reaches the benchmark set
by the SD. Therefore, the global metric given by the CML-
DFD with g = 1 is loose compared to the metrics of the
other two detectors. Fig. 10 shows the average computational
time of the SD and the CMMSE-DFD for a different k for a
16QAM system. The computational time of the SD does not
include the preprocessing. For the CMMSE-DFD, we compute
the coefficients ai and bi in each block, and this computation
is included in the computational time. Similarly, the CMMSE-
DFD has constant complexity for the same k over all the
SNRs, and its complexity increases with k. In a low SNR, the
CMMSE-DFD is less complex than the SD for all values of k.
The SD has less complexity than the CMMSE-DFD with k = 8
in a high SNR (SNR > 23 dB). In a low SNR (SNR < 15 dB),
which is usually the case in practice, our CMMSE-DFD has
two to three orders of magnitude of complexity reduction over
the SD. For example, at SNR = 5 dB, our CMMSE-DFD is
538 times faster than the SD. When the channel is static over
several blocks, and ai and bi can be precomputed, the resulting
computational saving is even more significant.

VI. CONCLUSION

In this paper, we have proposed several constrained detectors
and constrained DFDs. Real constrained detectors are proposed
to exploit the real-valued property of the real constellations
such as BPSK. This proposal is found to increase the di-
versity order to (n + 1)/2. The previous CLS detector for
OFDM/SDMA and the GMMSE detector for CDMA were
generalized as MIMO detectors for unitary and nonunitary
constellations. A coordinate ascent iterative technique has also
been proposed to improve the performance of the proposed
detectors. A constrained ordering scheme for DFDs has been
derived to alleviate noise enhancement and to improve inter-
ference suppression. We also proposed combined constrained
detectors and DFDs, defining a global metric to mitigate the

Fig. 9. Performance comparison of combined constrained detectors and DFDs
in an 8 × 8 16QAM MIMO system.

Fig. 10. Average computational time of combined constrained detectors and
DFDs in an 8 × 8 16QAM MIMO system.

error propagation. The complexity of these combined detectors
is reasonably low. For future work, the diversity-multiplexing
tradeoff of the proposed detectors in MIMO systems could be
analyzed.
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