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Applicability of SCF Theory to Some Open-Shell States of CO, N,, and O,*
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By working with the real functions =, and =, instead of #+ and »~, we show how to express the SCF
Hamiltonians for the X states of the configurations (m,)3(m), (m4)3(7)3, and (17)3(2x) of diatomic mole-
cules in terms of the Coulomb and exchange operators only. With these results, we have used
conventional SCF programs to solve for the wavefunctions of many interesting states of N, Oy, and CO,
e.g., the B3Z,~ state of O;. For many states, the SCF results are in good agreement with experiment,.
However, SCI' theory runs into serious trouble if electron correlation is important in determining the

relative locations of excited states.

I. INTRODUCTION

The Hartree-Fock model provides a useful descrip-
tion of the electronic structure of atoms and mole-
cules. For closed-shell systems, the Hartree~-Fock (HF)
wavefunction is an antisymmetrized product of or-
thogonal spin orbitals which satisfy the pseudoeigen-
value equation

Fo;=eip;, (1)
where

N
F=h+ 3 (2J:—K.).

f=1

(2)

k is the nuclear field plus kinetic energy operator for
each electron, and J; and K; are the Coulomb and
exchange operators associated with the doubly occu-
pied orbital ¢;. For open-shell systems, the total
wavefunction is, in general, a sum of Slater deter-
minants. In these cases there are two complicating
features which do not occur in the closed shell equa-
tions, Egs. (1) and (2): (i) the off-diagonal Lagrange
multipliers e;; cannot, in general, be eliminated by an
appropriate unitary transformation and will therefore
appear in Eq. (1), and (ii) it is not always possible
to express the HF operator in terms of Coulomb and
exchange operators only. For some types of open-shell

configurations the first difficulty can be handled by
Roothaan’s coupling operators' but the recently pro-
posed Orthogonality Constrained Basis Set Expansion
(OCBSE) method is much more convenient and gen-
eral.? The second difficulty arises in systems with two
or more open shells in which, in addition to the usual
terms in the expression for the total energy, we have
a term representing the interaction between two open
shells. In the notation of Ref. 1, this is the term
I=2f" 3 Lo, 3
mm!
where m and m' refer to orbitals in the first and second
open shells, respectively, and f and f’ are the usual
fractional occupations of the open shells. For example,
in the B3Z,~ state of oxygen with the configuration
malmg®, I would be

I(32,7) =97 (mu*, mgt) —3K (mut, m57) — K (w T, w,")

— () m (2) | 7 (D7 (2)),  (4a)
where
(= (D), (2) | mt ()7, (2)) _
= [r (D) wt*(2) (1/re)mt ()7, (2)dr.  (4b)

Upon variation of the total energy, an integral such
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as (4b) leads to an operator which cannot be ex-
pressed as a sum of Coulomb and exchange operators.
All eight I states arising from the configurations
mir, and m,°r,} contain such integrals. The presence
of such terms in the HF Hamiltonian matrix is a
complicating factor in trying to set up a general
computer program to treat open-shell states.

In this paper we show that by working with the
real functions 7, and m, instead of »* and =—, we
can write the energy expressions for Z states of the
configurations (m,)3(m;), (mu)?(m)? and (17)3(2x) for
diatomic molecules in terms of Coulomb and exchange
integrals only. This means that the HF operator now
contains only the Coulomb and exchange operators
J; and K;. This is an immediately useful result for
it allows us to solve correctly for the SCF solutions
of the 12+, 32+ 1Z,~, and 32, states of Ny and O,
and the analogous states in CO. Many of these states
are of spectroscopic interest, e.g., the B 3Z,~ state of
O, and the & '=,+ of N,. These calculations can be
done using existing open-shell SCF programs. In the
next section we discuss the algebraic identities which
are used to express the interaction terms Inm in
terms of the J and K integrals. We also list the co-
efficients needed to set up the new HF matrices.

In Secs. IIT and IV we give the SCF results for
most of the low-lying excited states of Ny, Os, and CO.
For N; and CO, these calculations are all done at
the ground state geometry, but for O, we give results
at a few internuclear distances for the B?®Z,~ and
A3z, + states. The SCF results for the !Z,* states
of N; and 32, states of O, answer some important
questions concerning the relative locations of valence
and Rydberg states of the same symmetry in the
HF approximation compared to the positions of the
corresponding states in the observed spectrum. For
example, we show that in a basis with only valence
atomic orbitals there is no bound !Z,* state arising
from a m,—m, transition in N, in the HF approxima-
tion. Expansion of the basis to include Rydberg orbital
character gives well defined Rydberg states but still
no bound valence states. This is contrary to experi-
ment where the =, orbital of the & 1Z,* state is known
to be strongly antibonding. We show that there is a
simple explanation for this behavior, namely, that
changes in correlation energy are important in estab-
lishing the ordering of these excited states. A very
similar case arises in comparing the valence B3Z,~
state of O, with configuration (w,)%(n,)? and a Ryd-
berg state of the same symmetry with the configura-
tion (m,)3(1my)%(2w,).

II. THE SCF HAMILTONIANS

For open-shell systems the SCF wavefunction is,

in general, a sum of Slater determinants. For many

open-shell states it is possible to write the expression
for the total energy in terms of the familiar one-

B. ROSE AND V.
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electron, Coulomb, and exchange integrals of closed
shell SCF theory. In such cases, if one partitions the
occupied spatial orbitals into Q shells each containing
the set of orbitals {¢,}, the energy is given by

Q Q Q
E=2%f, > kit XX fufe X X

=1 ¢$ieldg] g=1 p=1 ¢ieldg} $ieldp)

X (28057 i~ bgpK i5) . (5)

Here f, is the fractional occupation of shell g, agp
and by, are elements of a symmetric matrix specifying
the interactions between shells ¢ and p, and %;, Jy,
and K;; are defined as follows:

hi={bi | k| $i), (6a)
Jii={(p:(1)$;(2) | 1/r2 | $:(1)9;(2)),  (6b)
Kij={(6:(1)$;(2) | 1/r2 | $;(1)9:(2)).  (6c)

The numbers a@,, and 8,, must be determined for
each specific state. Requiring that the energy be sta-
tionary with respect to variations of the orbitals, we
obtain the HF equation for each shell,

F4¢’i=ei¢i; (73’)
Q
Fo=h+ pr > (2a4p) i—bgpK ;) . (7b)
p=1  o¢je{dp}

The off-diagonal Lagrange multipliers, €;, needed to
preserve orthogonality between orbitals ¢; and ¢; are
not explicitly shown in Eq. (7a) since we assume
that these equations are to be solved by the OCBSE
method.? In this method the orthogonality of a given
orbital to all others is achieved by requiring the
variations to be orthogonal to the other orbitals.

Clearly, if the energy, Eq. (5), cannot be written
only in terms of the integrals #;, J:, and K;; then
the resulting SCF equations, Egs. (7), will contain
operators which cannot be expressed in terms of the
Coulomb and exchange operators. The resulting equa-
tions would be more complicated to solve numeri-
cally, requiring an SCF program which would have
to manipulate the additional integrals necessary for
the calculation. Huzinaga has stated that the energy
expressions for some important excited Z states of
diatomic molecules cannot be written in terms of J
and K integrals alone.! These would include the
b’ 1=, state of N, and the B3*Z,~ of O,. However,
if the wavefunctions of the configuration (1w)*(2m)™
are expressed in terms of the real functions =, and m,
instead of the complex functions =+ and =, the terms
in the energy expression which are not obviously J
and K integrals are of only three types:

L= {1m:(1) 2m.(2) | 1/r | 1, (1) 2m,(2) ),  (8a)
I= (D) 1m,(2) | 1/r1z | 2m2(1) 2, (2) ), (8b)
Ir= {1 (1) 17, (2) | 1/rs2 | 2m,(1)2m(2) ). (8¢)
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TasLE I. Coefficients for the configuration m,3mg.®

State g= a Tz Tuy e Tow

J fa 1 3/4 3/4 1/4 1/4

All states (8ugy buo) (1,1 (1,1 (1,1 1,1 a, 1
[ (@ryets Brosd) (1, 1) (8/9, 8/9) (8/9, 8/9) b b

Bz, (Grysas bryaa) (1,1) (1/3, 4/3) (5/3, 4/3)

1zt (Orgear broea) (1,1 (1/3, —4) (5/3,20/3)

Ty, 12 (Grye05 bryed) 1Ly (5/3, 4/3) (1/3, 4/3)

N, (Gryar by o) a,1) a1, 4/3) (1, 4/3)

1A, (@ryp0) Brzna) (1,1 (1, 4/3) (1, -4

8 The coefficients not explicitly listed can be found by a transformation b These coefficients vary from state to state and can be found lower in

x -y in the row and column labels. A blank space indicates no interaction. the table by utilizing the symmetry of ap, and byq.

TasLE II. Coefficients for the configuration =, *r 2.2

State q= 0‘ Muz Tuy Toz Toy
f 1 3/4 3/4 3/4 3/4

All states (@sqy Bag) 1,1 (1, 1) (1, 1) (1, 1) (1,1)

{(Grustr Bruea) an (8/9, 8/9) (8/9, 8/9) b b
iz, (@rgoas bryad) (1,1 (11/9, 4/3) (7/9, 4/3) (8/9, 8/9) (8/9, 8/9
D (Grgear bryoa) 1,1 (11/9, 4/9) (779, 4/9) (879, 8/9) (879, 8/9)
2y (@rgeas Ory o0 (1,1) (7/9,4/9) (11/9, 20/9) (8/9, 8/9) (8/9, 8/9)
120" (0rgs0s Dryea) 1,1 (7/9,4/3) (11/9, —4/9) (8/9, 8/9) (8/9, 8/9)
Ay (@rgeas bryed) (1,1 (1, 4/3) 1, 4/9) (8/9, 8/9) (8/9, 8/9)
1Ay (@rpear brgya) 1,1 (1,4/9) (1, 4/3) (8/9, 8/9) (8/9,8/9)

& The coefficients not explicitly listed can be found by the transformation b These coefficients vary from state to state and can be found lower in
x-—+y in the row and column labels. the table by utilizing the symmetry of ap, and byq.

TasLE ITI. SCF results for the excited states of N.2

Escr AFey © AEgey AE;,
State Description® (a.u.) (eV) (eV) (eV)
X 1z,* —108.8877 0.0 0.0 0.0
B I, T Ty ~108.6064 8.1 7.66 7.78
a Y, 0Ty —108. 5408 9.3 9.4 9.72
A3z, Ty—>1rg —108.6613 7.8 6.16 6.22
13,4 Rydberg¢ —108.3633 14.274 e
a’ 1=~ Ty . ~108.5813¢ 9.9 8.34 8.38
Ay Ty -—108.6211 8.5 7.26 7.3
Ay =Ty —108.5565 10.3 9.01 9.05
Xz, N.* —108.3059 15.6 15.83 17.05
A A1, Not —108. 3063 17.1 15.82 16.97
8 At an internuclear distance of 1.094 A. 4 This is not the & 1Z,* state which is known to have a strongly
b This describes the excitation relative to the ground state configuration antibonding 7, orbital but is a Rydberg state with the configuration
(109)2(104)2 (204)% (204 )2 (174, )4 (30742 (core) ()% (04)?ndm,. No bound state of this symmetry is obtained with a
°® These values taken from R. S. Mulliken, in Threshold of Space, edited purely valence basis. See text for discussion.
by B. Armstrong and A. Dalgarno (Pergamon, New York, 1957) and ¢ In the HF approximation the B’ 32, and ¢’ 1%,~ states have the
F. R. Gilmore, J. Quant. Spectry. Radiation Transfer 5, 369 (1965). same energy. Experimentally, the B’ 32~ state lies at about 9.0 eV,

Downloaded 14 Feb 2006 to 131.215.225.176. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



5438 T.

B. ROSE AND V. McKOY

TaBLE IV. SCF results for the excited states of CO.®

Egcr AEoxp © AEgscr AE;,

State  Description® (a.u.) (eV) (eV) (eV) Doxp @ Dgorp 4
X1zt —112.6969 0.0 0.0 0.0 —0.1144+0.005 0.528
el a—* —112.4977 6.3 5.42 5.80 +-1.38 2.33
Ale ¥ —112.3837 8.35 8.52 9.10 +0.0340.08 1.29
a3zt T —112.4492 8.2 6.74 7.65 —1.45
Iz r—r* —112.3981f 9.1 8.13 9.44 —1.11
d3A o —112.4225 9.1 7.46 8.55 —1.28
DA o —112.3890 10.4 8.38 9.95 —0.95
Xzt cot -112.1990 14.1 13.55 15.18

2 At an internuclear distance of 1.128 A.

b This describes the excitation relative to the ground state configuration
(10)2(20)2 (30)2 (40)2 (1)4 (50 )2

¢See P. H. Krupenie, ‘'The Band Spectrum of CO,"” Natl. Std. Ref.
Data Ser., Natl. Bur. Std. (U.S.) 5, (1966).

d In debyes. The dipole moment is positive if charge is transferred from
carbon to oxygen, i.e., carbon is positive. The experimental values for the

Through various algebraic identities, Iy, I, and I
can all be expressed in terms of Coulomb and ex-
change integrals. The expression for I can be obtained
from the relationship

A= (1) 27 (2)| 1/r2 | 1w+ (1) 20 (2) Y=0=2J (173, 2m,)
—2J (17, 2m,) —41,. (9)

L=7(m, 2a.) —T (1ms, 2m,) ]. (10)

Here #+ and 7 are (w.+im,)/V2 and (w,—im,)/V2,
respectively. Similarly 7, can be found from

Ao (D17~ (2)| 1/r2)| 22+ (1) 22+ (2) )=0=2K (17, 2.)

Hence,

—4K (1, 2m) —2L,. (11)
Hence,
L=K(1x;, 2r;) — 2K (17, 2x,). (12)
Finally, I; is just an exchange integral
=K (1r,, 2m,). (13)

These results for I;, I, and I3 can now be used to
write the energy expressions for the open-shell Z states
of the configuration (17)*(2r)™ in terms of J and K
integrals only. With the resulting coefficients a,, and
bep, calculations can be done for these states using
existing open-shell SCF programs. Tables I and I1I
give these coefficients for the various states of the
configuration wr, and mjm,® respectively. These
states include many of the valence excited states of
N; and O,. All the results for the m,*r, configuration
are applicable to CO also, although the 7 orbitals no
longer have g or # symmetry. The results for the A
states are not new but are included for completeness.

IIT. EXCITED STATES OF N: AND CO

Tables III and 1V give the results of SCF calcula-
tions on many of the interesting excited states of Nj
and CO. In addition to the states arising from the

eI and 411 states are for the equilibrium distances on these states,
i.e., 1.21 and 1.235 A, respectively.

¢ The total HF oscillator strength for this transition is 0.185 which is
very close to experiment. See Ref, 11.

fIn the HF approximation the ¢ 32~ and I !Z~ states have the same
energy. Experimentally the ¢ 3Z- state lies at about 8.9 eV.

r—* excitation, we also give results for the o—r*
valence states and some ions. SCF results have already
been reported for the a M state of CO® and the
X2zt and 4 L¢ ions of N, but the results for the
other excited states are presented for the first time
mainly due to the historical difficulties of expressing
the open-shell SCF Hamiltonians of the !'#Z+ and
1.33— states in terms of Coulomb and exchange oper-
ators only.! The results of the previous section now
allow us to carry out SCF calculations on these states
in a simple and direct way. All the calculations except
those for the 'Z,* state of N: were done in a valence
[453p] contracted Gaussian basis derived from a (955p)
primitive basis on each atom. This basis gives an
SCF energy close to the HF limit for the ground
states, i.e.,, —108.9928 a.u. for Ns* and —112.7860 a.u.
for CO® The effect of adding Rydberg-like pr orbitals
to the basis is estimated to be less than 0.001 a.u.
on the total energy of the valence states listed. Al-
though addition of a single dx function to the basis
in N, lowers the ground state energy by 0.071 a.u,,
the changes in excitation energies are much smaller,
e. g., an increase of 0.27 eV for the X 1Z;+—4 32t
transition.

The results are in good agreement with experiment
except for the & 1Z,* state of N, and the =+ (1r—2r)
of CO where there are some serious problems in at-
tempting SCF calculations. We discuss these below.
In most cases the SCF scheme underestimates the
excitation energies since the excited states would
usually have less correlation energy than the ground
state. This is not so for some cases, for example, the
b 1=+ state of Ny and the B3Z,~ of O.. The results
in Column six of Tables III and 1V are those in which
only the excited orbital, e.g., m,, is variationally de-
termined and the core orbitals are taken from the
ground state calculation. This approximation is quite
good for N, but insufficient for CO, e.g., in the A
state of CO core contraction lowers the energy by
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1.6 eV. Nesbet” has computed the energy levels of all
these states in the simple virtual orbital approxima-
tion. They are, in general, about 1 eV higher than
our frozen-core results for N, but the discrepancy is
less for CO.

The 1Z+ states of N and CO are of special interest
since they illustrate a serious problem with the SCF
approach to some excited states. In N, the 3 12+
state is primarily a m,—w, transition with a vertical
excitation energy of about 14.4 eV. Experimentally
there is a strong perturbation of the ¥ 1Z,* state by
the ¢/ 12+ state, but this estimate of 14.4 €V for ex-
citation to the ¥’ 1Z,* is the deperturbed value of Gei-
ger and Schroeder? A vibrational analysis shows the
b 1=,* state to have a strongly antibonding m, orbital
and an equilibrium internuclear distance of 1.44 &,
In the SCF scheme no bound valence state exists
which has such characteristics. In a [4s3p] Gaussian
basis with only valence atomic orbitals’ only =,
orbitals with positive eigenvalues result from the SCF
iterative scheme. When very diffuse Rydberg-like
atomic orbitals are added to the basis, i.e., p. and p,
orbitals with exponents of 0.05, 0.015, 0.004, and
0.001, rapid convergence to a 'Z,* with a Rydberg-
like 7, orbital results. This is a Rydberg state with
an oscillator strength® of 0.033 and a mean-squared
displacement for the =, orbital of {m,|s?|r,)=>50.2
a.u? (this is a ndr orbital lying in the x—= plane
where 2z is the molecular axis). The state is well de-
scribed in the frozen core approximation using an
ionic A4 %I, core, e.g., the energy lowering due to self-
consistency is less than 0.01 eV. This state is then
the first in a '2,* Rydberg series with the configura-
tion (10,)2(10.)2%(20,)2(20,)%(m)?(30,) 2dr, and a HF
excitation energy of 14.27 eV or 1.55 eV below the
AL, ion in the HF scheme. With this term value
this state should be experimentally at about 15.6 €V,
i.e., 1.55 eV below the true ionization potential. There

o, 04Hu 16.7 -
3q- 15.2 S~
Rydberg "%, . e 14.48 0
T~ 1297 -
12.64 _ Rydberg °Z,
- B2,
///
B8 32u- 8.2 -
X35, — — X%
Experiment Hartree-Fock Theory

Fie. 1. Correlation between Hartree-Fock theory and
cxperiment for the valence B 32, [ (7.)3(x,)%] and the Rydberg
32, [{mu)3(m,) 227, ] states. See text for discussion.

AND O, 5439
are many Rydberg transitions appearing in this region
in the energy-loss spectrum of Geiger and Stickel.®

The question now arises as to where the valencelike b’
13,.F state of N, is. The explanation is that in HF theory
this valence state is calculated to be above the HF
ionization potential and therefore in the continuum
of the A4 I, ion. Because of orthogonality require-
ments the state is also contaminated with lower-
energy Rydberg components. This argument suggests
a HF excitation energy of at least 15.8 eV and implies
that the valence excited ' 1Z,* state has about 1.5 eV
more correlation energy than the ground state. This
is not unique as we will show that the B2Z,~ state
of O, has 2.5-3 eV more correlation energy than the
ground X 3%, state.

We also find no bound valencelike m—r* state of
IZ+ symmetry for CO in the HF approximation and
in fact such a state has not been observed. Lefebvre-
Brion et al.! have shown that the B!'Z+ and C!Z+
states (at 10.78 €V and 11.40 eV experimentally)®
must be ¢—wo* excitation in which the ¢* orbital
contains primarily M shell atomic functions. Calcula-
tions using the X 22+ ion core of CO and including
Rydberg basis functions give Z* states at 3.3 eV and
2,5 eV below the X 2Z* jon. Using an ionization
potential of 14.1 €V for this ion these states come
out at 10.8 and 11.6 eV, respectively, in good agree-
ment with experiment.? The calculated oscillator
strengths of 0.031 and 0,082 for the transitions to
the B and C states are in good qualitative agreement
with the experimental values of 0.017 and 0.170.2

Dipole moments are also shown for CO in Table 1V,
The ground state dipole moment is opposite to the
observed value and quite far from the HF limit of
about 0.274 D.5 Hence, the calculated values should
probably be viewed as representing only differences in
dipole moments reliably. The = and A states are
predicted to have large dipole moments in the same
direction as the ground state (C-O%), which may be
verified experimentally, while the IT states have large
positive moments (C+O~). The dipole moment of the
a Il state (essentially the same value, 2.46 D, was
obtained by Huo®) is very large and in qualitative
agreement with experiment (1.38 D).

I1v. EXCITED STATES OF O,

Two important excited states of O, are the 4 3Z,*
and B3Z,~ states which are the upper states in the
Herzberg bands (A=X) and Schumann-Runge bands
(B=2X), respectively. The transition X—B is dipole
allowed with an oscillator strength of 0.193. These
states arise from a m,—m, transition which leads to
the relatively large increase of about 0.3 to 0.4 A in
equilibrium internuclear separation relative to the
ground state. Robin and Kuebler’® have shown that
the Schumann-Runge bands are unaffected by high
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TasLE V. Some valence states of O,.»

Vertical
excitation
Egcr(R) energy R,
Descrip-

State tion 1.0 1.207 1.42 1.60 1.80 Exp SCF Exp SCF
X3z, ground —149.4670 —149.5758 -—149.5211 —149.4411 1.21 1.21F0.02
AT Ty —149.4276 —149.5057 —149.5027 —149.4745 6.2 4.03 1.52 1.49%0.04
B3Z,~b  my—om, —149.1110 —149.1558 —149.1254 —149.0701 8.3 12.64 1.60 1.4-1.5¢
e, O;t —148.8244 —149.0437 —149.0617 —149.0246 16.7 14.48 1.38 1.34F0.02

8 In a [453p] Gaussian basis. See Ref. 5.
b The SCF value of the oscillator strength for the X —B transition is 0.87.

pressures of inert perturbing gases indicating that the
B state is a valence state. However, Taketa et al.
have carried out w-electron calculations which show
that the A state is adequately described in a mini-
mum basis of valence atomic orbitals but that the
B state comes out too high in energy. By allowing
the orbital exponent of one , molecular orbital (MO)
to take a different value from the other =, MO’s,
variational calculations showed that the resulting
outermost w, orbital is much more diffuse than the
other. We will show below that these calculations did
not converge to the spectroscopic B *Z,~ state but to
a Rydberg *Z, state with an electron configuration
(10,)2(10)%(20,)2(204)2(30,) 2 (1) ¥ (7,) *udm,. In the
w-electron approximation without exchange with the
core, this Rydberg 3Z,~ state has a lower energy than
the valence state [ (core) (m,)3(w,;)?] in the SCF ap-
proximation. In fact, Fig. 1 shows that with reason-
ably accurate SCF results the (m,)*(wm,)? state is only
0.33 eV below the (m,)%(w,)%dm, state. It is the in-
clusion of electron correlation which puts the valence
state 6-7 eV below the Rydberg state. Recent ex-
tensive configuration interaction calculations® con-
firm these conclusions.

Table V shows the results of SCF calculations on
the X 32, A %2,*, and B?*Z,~ states of O, and the
a ‘I, state of Q. at several internuclear distances.

€ Due to incorrect dissociation the potential energy curve begins rising
steeply near equilibrium causing R, to be underestimated.

These are done using the coefficients of Table II.
The vertical excitation energy for the A state is
reasonable but the 32,33, separation is far too
large, namely 8 eV instead of the observed 2 eV.
Inclusion of a single d function on each atom only
lowers the excitation energy of the B state by 0.2 V.
This separation of 8 eV would be reduced considerably
by including electron correlation. Comparison of mini-
mum basis set SCF calculations with the complete
minimal basis configuration interaction results of
Schaefer and Harris”? shows that the B %2, state has
about 3 eV more correlation energy than the X *Z,~
state. From Table V we see that on the other hand
the 4 32, state has 2 €V less correlation energy than
the ground state. These two effects then reduce the
SCF 32,72, separation of 8 eV to about 3 eV.
To clarify the question of the relative location of
the valence 3Z,~ state and a Rydberg state of the
same symmetry in the SCF approximation as com-
pared to experiment, we have solved directly for the
83, state with the configuration (core) {mw.)3(m,)22m,.
This state then has a singly occupied diffuse 2w,
orhital and a doubly occupied valence m, orbital.
There are four possible spin couplings for such a statel4
but since only Rydberg states are of interest we can
choose a state such that the core corresponds to the
lowest state of O.™ with the configuration (core)-

Tasre VI. Coefficients for the [ (w,)%(m,) %27, 32, Rydberg state.®

qg= I3 Tz Tuy Moz Tgy 27"02 27"01/
14 1 3/4 3/4 1/2 1/2 1/4 1/4
(@ryeas bryze) 1,1 (8/9,8/9) (8/9, 8/9) (1, 4/3) (1, 4/3) (1/3, —20/9)  (5/3, 44/9)
(@rguas brgad) 1,1y (1,4/3) (1, 4/3) (1,2 (1,2) (1, —2/3) (1, =2/3)
(G2ngear Domyaa) 1,1y (1/3,—20/9)  (5/3,44/9) (1, -2/3) (1, -2/3) (1, —2/3)

8 The other coefficients for the muy, mgy, and 27y orbitals can be obtained
from the transformation x~y in the row and column labels. o refers to the
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(m)3(m,)2 This is the a ‘I, state. The wavefunction
for this Rydberg 32, state is then

v(32,)
=@ § 3 (TuoTuaTuy 2T gy Ty o Tz 2 g ) ABABT g0 gyt
- (WuxTuxTuyz"rgi/+ WunuyTu:cz"rgx) aBfam g oo

- (7rum7r'ux7r1l,112‘lrgy+7ru:l/7ru1l7rmr27r!)3‘) aﬁaa"rnr"rm/ (aﬁ +.8a) } .

(14)

In Eq. (14) @ is the antisymmetrizer and we do not
show the sigma orbitals for convenience. The function,
Eq. (14), reduces to that for the (m,)3(m,)® con-
figuration if the Rydberg orbital 27, is set equal
to m, Table VI shows the a,, and b,, coefficients
needed in the SCF calculations. The valence electron
interactions are identical to those of the ¢ ‘I, ion.
The SCF energy for this Rydberg state is —149.0990
au. Its Rydberg character is reflected by its low
oscillator strength of 0.001 and a very diffuse 2w,
orbital, e.g., with a matrix element (2m,|?|2x,)=
60.1 a.u.? compared to {lm, | %% | 17,)=1.11 au.? The
Rydberg 32, state is only 0.33 €V above the valence
B3Z,~ state in the SCF approximation, whereas ex-
perimentally this 32, state is about 7 eV above the
B3Z,~. Electron correlation is responsible for a large
part of this difference. Figure 1 illustrates these dif-
ferences clearly.®® It is clear that in the m-electron
approximation, without exchange, the Rydberg 32,
state lies below the B 32, state, explaining why the
calculation of Taketa ef al.¥ converged to the Rydberg
state. The valence (m,)3(m,)?® state, which is con-
strained to have equivalent 7, orbitals certainly rep-
resents the major configuration of the Schumann-
Runge state. For example, it indicates an equilibrium
internuclear separation of about 1.4-1.5 A compared
to the experimental value of 1.6 A. On the other hand
the Rydberg 3Z,~ state® has an SCF equilibrium
separation of 1.34 &, in good agreement with the ex-
perimental value which should be close to 1.38 A
of the g ‘I, state of 0.t Other molecular properties
which are sensitive to correlation, e.g., the oscillator
strength can be expected to be in error since the
m—m, transition represents only about 80% of the
Schumann-Runge band,’® most of the remainder
being a 30,30, contribution.?

AND O, 5441

V. CONCLUSIONS

We have shown how to express the SCF Hamiltonians
for many Z states of diatomic molecules only in terms
of the Coulomb and exchange operators of closed shell
SCF theory. With these results we have been using
conventional SCF programs to solve for the SCF
wavefunctions for many interesting states of Ns, O,
and CO, e.g., the 3Z,* states of N, and CO and the
A 32 and B3Z,~ state of 0. On the whole the SCF
results are in good agreement with experiment. How-
ever, we have shown that SCF theory runs into serious
trouble if electron correlation is important in deter-
mining the relative locations of two excited states.
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