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jectory falls below J=0 [t~ —0.6 (BeV/c)?], the fixed
pole should dominate the asymptotic behavior of the
difference of the differential cross section for protons
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independent of s, for electroproduction from the nucle-
ons, where F(¢) is proportional to the residue of the
fixed pole or the coefficient of the 67 in sense amplitudes.

and neutrons. Hence we expect
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Electromagnetic perturbations on 7NN and = NN* couplings are studied in the N-N* reciprocal boot-
strap model. In the present paper we confine ourselves to rather general features, making the linear-D
approximation for simplicity. There are several self-consistent coupling shifts, much as in the analogous
SU (3) reciprocal bootstrap. It is shown that, except for even-J exchanges in the ¢ channel, the “driving
terms’ are orthogonal to these self-consistent coupling shifts. Thus, as in the SU(3) case, no simple pre-

dictions can be made for coupling shifts in the linear-D approximation.

I. INTRODUCTION

YMMETRY-BREAKING perturbations on the
Chew-Low model have been much studied,*7 in

the hope that (i) a unique set of perturbations would
be approximately self-consistent; (ii) the set would be
“driven” by the electromagnetic, weak, or semistrong
interactions, thus allowing the prediction that observed
mass and coupling shifts should be in the same ratio
as the approximately self-consistent perturbations of
the model. A unique set of approximately self-consistent
perturbations, resembling the experimental results, was
indeed found for electromagnetic and strong mass
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splittings of the /=3 octet B and the J=4* decouplet
A,** and for the parity-violating part of weak decays
B — B+1I1.5 On the other hand, several different self-
consistent perturbations were discovered for the parity-
conserving part of the weak decays B— B+1II, so no
predictions could be made for this amplitude.5:” A
similar situation was found for strong perturbations on
the BBII and ABII couplings,®” except that in this
case it was possible to achieve predictions by noting that
the B and A mass shifts would preferentially “drive” a
particular set of the self-consistent coupling shifts.

We wish to report here on general features of an
analogous study of electromagnetic coupling shifts in
the SU(2) version of the Chew-Low model. The same
disease occurs as in SU(3) coupling shifts: There are
several different sets of self-consistent coupling shifts.
In addition, we find that the one-photon exchange con-
tribution to =V scattering, and contributions such as
vN and ywN intermediate states in the s and % channels,
only “drive” those sets of coupling shifts which are not
self-consistent. This supports the conclusion of the re-
lated SU(3) studies: The perturbed Chew-Low model
does not predict any simple pattern of parity-conserving
coupling shifts unless the mass shifts impose one.

In the present paper we derive the above-mentioned
results in the linear-D approximation, where the
mathematics is simple, and discuss how the results are
related to general properties of the crossing matrix. In
the following paper,® an attempt is made to obtain a
rough estimate of the coupling shifts in spite of these

8 N. S. Thornber, following paper, Phys. Rev. 172, 1395 (1968).
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difficulties, by detailed numerical evaluation of the
low-energy contributions. ‘

The perturbed Chew-Low bootstrap equations have
the general form

3R a=X us0Rs+0R.", (1.1)

where 6R, is a vector whose elements are the residue
shifts of all the s-channel states, Xas is the #-channel
to s-channel crossing matrix, and 8R,! is the ¢-channel
contribution. This form is derived in Sec. II.

The self-consistency condition for shifts 6R, is that
the eigenvalue of X equal 41. For the full crossing
matrix, about half of all the eigenvalues fulfill this condi-
tion. We are interested, however, only in that part of the
crossing matrix which connects the N and N* states.
In Sec. III we find that this “reduced” crossing matrix
has fewer +1 eigenvalues, but enough “remembrance”
of the full crossing matrix survives to yield three dif-
ferent self-consistent solutions.

Equation (1.1) can be rewritten in the form

(8ap— X ap)0Rs= (X ag—048)0Rs'+0R:!, (1.2)

where 8R refers to the 7NN and 7 VN* couplings and
OR’ to all other s-channel states. This is a set of in-
homogeneous equations with respect to 6R, whose
homogeneous part has nontrivial solutions (the eigen-
vectors associated with unit eigenvalues of the “reduced”
part of X which connects the R). The remaining ques-
tion is whether the right-hand side of Eq. (1.2) is
orthogonal to these eigenvectors, and the answer given
in Sec. IV is yes for all components of 6R’ and for con-
tributions to 8R! from JP=1—, 3-, -+ - exchanges (e.g.,
one-photon exchange). This result ensures that the solu-
tion of Eq. (1.2) is finite (unless we include even-J ex-
changes in the calculation), but it also means that in
more refined calculations, where one removes the
linear-D approximation used in deriving (1.1) and the
eigenvalues are no longer exactly +1, the odd-J. ex-
changes and s- and #-channel terms do not appreciably
“drive” the approximately self-consistent 6R.

We conclude in Sec. V with a brief discussion of the
results of the static model for coupling shifts.

II. DERIVATION OF THE BASIC FORMULA

It is well known® that the Chew-Low model with
linear D function leads to linear relations of the form

Rot=R.*+ Ry (2.1)

among the residue functions. Relating R* to R¢ by the
crossing matrix, one obtains

Ro*=XopRg*+Rot. (2.2)
Perturbation of (2.2) gives Eq. (1.1'):
SR o= X os0R5*+6R,". (1.1

? See, for example, J. R. Fulco and D. Y. Wong, Phys. Rev.
Letters 15, 274 (1965).
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The above argument makes Eq. (1.1) plausible but
leaves the status of terms such as one-photon exchange
somewhat unclear. In order to specify the content of
the equation more precisely, we now rederive it in the
S-matrix perturbation formalism of Dashen and
Frautschi.’® We denote the Jth partial-wave amplitude
for 7N — 7N, with initial and final isospin states |/;l.)
and |I,1,), by T(I:I,— I,I.;J). We further denote the
unperturbed amplitude by 7'y and the perturbation by
07 =T—T,. The first-order shift 6R in the residue of an
s-channel pole with mass M, isospin 7;, and spin J is then
given by10
SR(I I, — I.1.;J)

1 Dy, .2(W")

ZE; c WEI“DI” (M)(I/V_M)]

XOT(Id,— Iy J)AW’, I=I, (2.3)
SR I, —1:1.:;J)
1 ¢ Dryy(W)Dr,g(W")
“wile =
XOT(Iidy— Iy J)AW’, I, (2.4)

where W is the center-of-mass energy, all D’(M) have
been normalized to 1, and the contour C runs clockwise
around all singularities except the pole at M. In the
Chew-Low model with linear D function we specialize
to P waves, and take

Dy= (IV"]I/[) ’

D13= 1 y

D31= 1 )

Dys=(W—M%),
where now M* refers to the 3-3 resonance mass and M

is reserved for the nucleon mass. With these specializa-
tions, Egs. (2.3) and (2.4) reduce to

(2.5)

1
bRy=— f ST (W)W, (2.6)
2t J ¢

where « stands for (7 .7,— I,1,; J). We see that mass-
shift terms such as [R/(I7"—M'—8M)—R/(W'—M")]
in 6T do not contribute to (2.6), but hadron-coupling:
shift terms such as dR’/(W'—M’) do contribute, as
well as the new cuts associated with one-photon
exchange, yr exchange, and so forth. Since the in-
tegral is taken clockwise, contributions from terms
0Ta~8R,'/(W,/—M’') on the right cut pick up a
minus sign (—0R,’). Left-cut terms can be rewritten

0T (W) =X ogdTp(W.,), (2.7)
where Xqp is the static crossing matrix. With static

10 R. Dashen and S. Frautschi, Phys. Rev. 137, B1318 (1965).
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kinematics, contributions from left-cut terms

3Ry’ Ry

6T3(Wu)"-’Xay = Xau
Wa—M’ —Wet2M—-M'

retain the plus sign (Xas0Rs") when the clockwise
integral is performed. Thus we may write (2.6) in the
form

)

SR.— — / SR (W)W
M 0

+ / X os8Rs(W)dW R, (2.8)
M

where the first (primed) integral includes all s-channel
terms except the V or N* coupling, the second integral
includes all #-channel terms including the vV inter-
mediate state, and the {-channel contributions including
one-photon exchange are lumped into 6R.!. This is the
exact specification of our basic equation (1.1).

Before proceeding further, we would like to make two
comments about Eq. (2.8):

(i) The equation, and therefore all the discussion in
this paper, is valid only in the static model. Specifically,
its derivation depended on the use of linear D functions
and static crossing relations in which the full infinite-
dimensional crossing matrix is replaced by the finite,
energy-independent P-wave crossing matrix X ug.

(ii) Carrying the separation of N and N* coupling
shifts from the other contributions a step further, we
can write

BR,, = XaﬂaRa

— / " R — X apbRe (W) JAW+6Rot, (2.9)

where 8R, refers to N and N* couplings and the primed
integral to all other s- and #-channel terms. The re-
mainder of this paper will deal with the equation in this
form; the first term on the right being discussed in
Sec. III, the integral and &R, in Sec. IV. Note that
Eq. (2.9) is a special case of the Dashen-Frautschi
relation'?

0R.=A4s0Rs+ D,

with the “4 matrix” becoming simply the crossing
matrix in our model, and the “driving term” supplied
by the remaining s-, #-, and {-channel contributions in
(2.9). Thus the search for unit eigenvalues of 4 be-
comes a search for unit eigenvalues of the crossing
matrix, and the explicit formulation of (2.9) makes
some study of the driving terms possible.

(2.10)

III. EIGENVALUES OF THE TRUNCATED
CROSSING MATRIX

The full crossing matrix, connecting the complete
set of all 7V P-waves in the Chew-Low model, sat-
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isfies

X?=1, (3.1)

and therefore all its eigenvalues are £1.1!

In the study of perturbations on the Chew-Low
model, however, only part of the complete set of all 7V
P waves is used, because we begin with particles in the
1-1 and 3-3 states, but not the 1-3 and 3-1 states. As a
result, only part of the full crossing matrix comes into
play, and the eigenvalues of this part of the crossing
matrix are not all &=1. In the present section, we wish to
spell out the relationship between the full crossing
matrix and the truncated crossing matrix used in the
perturbation studies.

There are ten different w/V scattering reactions, and
two P states (J=% and $) for each, so the full P-wave
crossing matrix operates on a 20-dimensional space.
It is convenient to choose as a basis the 20 linear
combinations

SR(wtp — whp; J=5)+oR(xp—ap; J=37),

R(rtp—atp;,  FH)—0R(@p—np; 1),
R(mtn— mtn;  $H4+oR@Tn—7n; 37,
SR(wtn — tn; Y —OR(rn — 7n; ),
dR (7% — w°p; 1),

OR(w%n — 7; ),

SR (wtn — 7p; 3T)+R(x% — 7 p; ),
OR(rtn — m°p; 3+H)—R(w'n — 7p; i),
R(m=p—a'n;  §H)+OR(x" —atn;  §),
R(mp—n;  §H)—8R(r —atn;  §1),
SR(rtp—atp;  §H)FOR@p—a7p;  §Y),
R(ztp— atp;  §H)—0R@p—rp;  §),

etc., for J=4§+,

In this basis, each linear combination of charge states
crosses to itself, and the crossing matrix has the simple

fOrm
>
C

where the numbers —43, %, %, and % refer to static spin
crossing coefficients relating the J=24* and J =4 states
of the s channel to those of the % channel, and

fl 3

Q
el

3.2)

oy el
a
ol

(3.3)

L 0 1)

11 See, for example, R. C. Hwa and S. H. Patil, Phys. Rev. 138,

B933 (1965).
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gives the crossing between s- and #u-channel charge
states. Since the spin crossing matrix

has eigenvalues ==1, one easily sees that the full crossing
matrix has ten 41 eigenvalues and ten —1 eigenvalues.
In our model of perturbations we set some of the 6R

equal to zero, for two reasons. The first reason is time-
reversal invariance, which provides the four conditions

Wy col
Wi eoli

SR(rtn— w°; J)—8R(x% — wtn; J)=0,
SR(r%%n — 7 p; J)—8R(x~p — mn; J)=0,

J=31+ &+, 3.4)
To see the effect of removing these four linear combina-
tions, we choose a new basis in which the first eight
linear combinations of residues satisfy time-reversal in-
variance and the next two do not:

dR(ztp— ntp; 37)+O0R(np — 7 p; 51,
SR(wtp — wrp; 3T)—8R(mp— 7 p; §1),
SR(ntn — wtn; §H)+0R(rn — 7w n; §1),
SR(wtn— wtn; 1) —0R(wn — v n; 3F),
SR(r% — w°p; 31),
SR(mn — wn; §*),
[oR(ztn— ;) +OR(xp — wtn; 3) ]
+[6R(xn— 7 p; )+ R p— ='n;57) ],

[3R(rtn — 7°p; 31)+38R(x% — 7tn; §+)]
—[6R(xn— n=p; §7)+OR(rp— nn;51) ],

[SR(rtn— n°p; §+)—6R(x"p — ntn; 3%) ]
+[R(xn— n~p; 5T)—R(rp—='n;31)],

[SR(r*tn— 7°p; §4)—8R(x" — ntn; 3) ]
—[8R(rn— 7=p;3T)—R(xp—='n;3%)],

and, similarly, for J=35+. The crossing matrix in this
new basis turns out to be just the same as before [Eqs.
(3.2) and (3.3)]. Thus one easily sees that the combina-
tions which are noninvariant under time reversal cross
only among themselves, with two -1 eigenvalues and
two —1 eigenvalues. Dropping these combinations
from consideration, one is left with a 16X 16 crossing
matrix which has eight 41 eigenvalues and eight —1
eigenvalues.

The second consideration which further reduces the
number of 6R’s in our model is that some of the residues
of the NV and N* poles [ namely, SR(I=4% — I=%; J=41)
and 6R(I=%1—1=%;J=%")] correspond to SU(2)
symmetry breaking at both vertices simultaneously
and are thus negligible, of order e (these residues would
appear in an order e? calculation such as ours if there
were low-mass physical particles with =%, J=35* and
I=%, J=%%). Removing the linear combinations
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representing these six states from the list of 8R’s, we
are left with ten 8R’s, i.e., with a 10X 10 crossing matrix.

Since the 10X 10 crossing matrix arises from truncat-
ing a 16X 16 matrix in this manner, its eigenvalues are
not all ==1." Specifically, Thornber® finds that it has
three 41 eigenvalues and two —1 eigenvalues, with the
rest at the intermediate values 5/9, 1/3, —1/9, —7/9,
—7/9. These values are consistent with the following
general statements.

(i) Each R removed in the truncation process can
be expressed as a linear combination of eigenvectors of
the crossing matrix. By suitable choices of the degener-
ate eigenvectors, the first 6R can always be taken as a
linear combination of at most one eigenvector cor-
responding to eigenvalue 41, and one eigenvector cor-
responding to eigenvalue —1. Thus after the crossing
matrix has been reduced from 16X 16 to 15X 15 by re-
moval of the first 6R, there are still at least seven 41
eigenvalues and seven —1 eigenvalues. Similarly, each
successive 6R removed can always be taken as a linear
combination of at most one of the remaining eigen-
vectors with eigenvalue 41, and one remaining eigen-
vector with eigenvalue —1, plus the mixed eigenvectors
with nonunit eigenvalues produced by previous trunca-
tions. By this general reasoning, at least two (=8—6)
eigenvalues +1 and two eigenvalues —1 must remain
after the crossing matrix is truncated from 16X16 to
10X 10. Actually, Thornber? finds three eigenvalues at
+1 and two at —1, which means that the six removed
0R had components along only five independent direc-
tions in the space of eigenvectors with eigenvalue +1.

(ii) It can also be shown that if all eigenvalues of the
full crossing matrix were =1, the eigenvalues \; of the
truncated crossing matrix must satisfy —1<\<1.
Again, this is consistent with Thornber’s results.

The analogous arguments for the truncated SU(3)
version of the static model, with B and A poles, do not
require any =1 eigenvalues but do of course predict
—1<\;<1. Detailed calculations®”-!2 have shown that
in fact all eigenvalues satisfy —1<\;<1 in the SU(3)
static model. Some of the eigenvalues did lie near +1,
however. From the present point of view, this represents
a near-survival of a few of the +1 eigenvalues in the
full untruncated crossing matrix

IV. CONTRIBUTIONS FROM OTHER TERMS

Aside from the crossed channel N and N* poles,
many other terms contribute to §R,. In the linear-D
approximation with static crossing relations we have,
according to Eq. (2.9),

8Ru— X 4pRs
=— / [8Ro'(W')— X s8R (W') JAW'+6R4*, (2.9)
M

12R. Dashen, Y. Dothan, S. Frautschi, and D. Sharp, Phys.
Rev. 151, 1127 (1966).
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where the 6R,’ are the s-channel contributions, the
X.30Rg" are the wu-channel contributions, and the
{-channel effects have been lumped together in 0R.'.

We may think of (2.9) as an inhomogeneous equation
in the N and N* residues 6R,, which has homogeneous
solutions corresponding to the unit eigenvalues of the
truncated X,

XasRs=Ra. 4.1)

There are two possibilities:

(i) The homogeneous solutions are orthogonal to
the right-hand side of (2.9). In this case they are finite,
but our equations do not determine their size or require
them to be large.

(ii) The homogeneous solutions are not orthogonal to
the right-hand side of (2.9). In this case the solutions
of (2.9) diverge, but if the eigenvalues are perturbed
slightly away from unity (e.g., by adding a nonlinear
term to D), the corresponding eigenvectors are deter-
mined by the equation to be large (“enhanced”) and
finite [of the form 6R,= (1— X) s (right-hand side)4].

We now proceed to show that in fact all terms on the
right-hand side of (2.9) are orthogonal to the homo-
geneous solutions, so that possibility (i) is what occurs,
unless #-channel exchanges with JP=0% 2%, --. are
included. For each s-channel term, together with its
u-channel partner, the proof is immediate. Each
s-channel contribution crosses (in the static model
with linear D function) in the same way as the V and
N* residues did. Thus each R’ contributes

0R,'— X 250Rs'=(6R,'—6R.")=0 (4.2)

to an eigenvector satisfying (4.1). Note that the full
untruncated X matrix may occur in some of these s-
and #-channel terms, but the additional terms this im-
plies are orthogonal to the eigenvectors satisfying (4.1).

Turning to #-channel exchanges, we first note that the
¢ channel contributes equally to J=3* and J =% cou-
plings in the static limit. To see this, recall that the
J=I%1 amplitude, f;+=e®*sind;+/q, is related to
partial-wave projections on the invariant amplitudes
A and B by

for=(1/322W{[(W+M)*—p2J[Ar+ (W —M)B,]
F+LW—M)— 2[4+ (W+M)Bin ]} (4.3)

In the static limit [u/M — 0, (W—M)/M — 0], the
coefficient of 44, is down by a factor [(W—M)2—u%]/
4M? compared to the coefficient of 4;. Explicit evalua-
tion shows that the /-channel contributions to 444
(unlike the s- or #-channel contributions) cannot pro-
vide compensating factors of M /u or poles at W=M,
and therefore they can be neglected. Similarly, the
coefficient of By relative to B; in the static limit is
[W—M)2—u?])/2M(W—M), and ¢-channel contribu-

135, W. MacDowell, Phys. Rev. 116, 774 (1960).
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tions to By, do not provide compensating factors, so
the B, term dominates By, except in a circle about
W =M whose radius shrinks to zero in the static limit.
Since the {-channel contributions to By; inside this
circle are finite (again unlike the s- and #-channel case),
the ¢-channel part of Byy; can be neglected altogether
as the circle shrinks to zero radius. Thus, to the leading
order, only the terms 4; and B; which contribute the
same to J=I+31 survive.

The pattern of ¢-channel contributions to different
charge states depends on whether the ¢-channel ex-
change couples to a symmetric or antisymmetric =w
charge state. Biswas, Patil, and Saxena!* have shown
that exchanges coupling to symmetric =7 charge states
are eigenvectors of C,, (the untruncated s- to #-channel
charge crossing matrix) with eigenvalue +1, and ex-
changes coupling to antisymmetric == charge states
are eigenvectors of C,, with eigenvalue —1. Since the
pions satisfy generalized Bose statistics, these results
also imply that even- (odd-) J exchanges contribute only
to couplings which are eigenvectors of C,, with eigen-
value +1 (—1). Furthermore, since the ¢ channel con-
tributes equally to J=3* and J=%+* couplings, and
equal 3+ and $* couplings constitute an eigenvector of
the s- to #-channel spin crossing matrix

1 4
Sau=< >
3

with eigenvalue +1, we see that the above statements
apply to the combined charge and spin crossing matrix
X as well as to C. An immediate consequence is that
vector exchanges (v, p, w, ¢), being odd in J, contribute
nothing to coupling shifts which are eigenvectors of X
with eigenvalue +1, as can be verified by direct calcula-
tion. This conclusion survives the truncation of the
N-N* crossing matrix, of course, because contributions
which are orthogonal to all eigenvectors of X with
eigenvalue +1 before truncation must remain orthogonal
to the surviving eigenvectors with eigenvalue 41 after
truncation.

It is also interesting to note that in the static limit,
as pointed out by Chew,! all t-channel contributions
to the residue of a pole at W=M vanish. Thus in a
model where the N* pole is set at the same W as the
nucleon pole, none of the f-channel exchanges would
contribute to coupling shifts. This behavior arises as
follows. The partial-wave amplitude simplifies to

fir=1/8m)[Air+(W—M)B+(g.*/4M?)
X(—A111+2MByy)] (4.5)

in the static limit. The residue of a pole at W=M is
Ris= lim [(W—30)/usT; (46)

(4.4)

wl=

145 N. Biswas, S. H. Patil, and R. P. Saxena, Ann. Phys.
(N. Y.) 42, 494 (1967).
15 G, F. Chew, Phys. Rev. Letters 9, 233 (1962).
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for poles at W=M the B, term does not contribute and

. (W——M) 932 932
R;== lim l:————————(Az— A+ Blﬂ;l)]
L.t 8T 4aM? 2M
1 (W'—M) 1
= lim — W' —
WeMowi)e  (W'—M)8r
gs'? s
X <A —A H:l+"‘“_BH;1>
42 2M
1 aw’
Comi ) 8
' g."?
><<A;(W’)— Azil(w/’)—i—wB;il(W’)). (4.7
4M2 2M

The discontinuities due to #-channel exchanges include
cuts from

(i) s=(M—p)?to (M—+u)? (exchanges of mass zero
to 2u);

(i) S=M? to s=—M? along the circle |s|=M?;

(ili) S=—M?2to s=0 and — .,

Explicit evaluation of these discontinuities shows that
they cancel systematically [the part from s= (M —pu)?
to s=M? cancels the s=M? to s=(M-+u)? piece; the
two halves of the circle cancel, and the pieces from
s=—M?to 0 and from —M? to — o cancel]. Thus the
¢t channel contributes nothing to residues at W=M.
For poles at W=M*#M, one must include the term
(W—M)B,, and the factor (IW—M) in this term spoils
the cancellation, so the ¢ channel does contribute to
residues in this case.
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V. DISCUSSION

We have found several self-consistent coupling shifts
in the N-N* static model. Within the context of the
linear-D approximation, we find no particular reason
why one of these self-consistent coupling shifts should
be dominant—i.e., no simple predictions emerge.

The most closely related previous study was the
analogous investigation of perturbations on the SU(3)
static model.®7 A similar conclusion was reached; there
were several approximately self-consistent coupling
shifts. By the introduction of curved D functions, the
effect of mass shifts on coupling shifts was investigated
and shown to be an important effect which might domi-
nate. The present study supports this conclusion, inas-
much as we have shown that a number of other effects
fail to “drive” the self-consistent shifts.

The one case in which a single self-consistent set of
coupling shifts has been found in perturbed static
models is the parity-violating weak couplings of the
B-A reciprocal bootstrap. Experimentally, this self-
consistent set fits the observed effects very well.
Theoretically, however, it has not been established that
the “driving terms” actually drive this particular set of
couplings. The results of the present paper do not bear
directly on this matter, since we have assumed C and P
conservation, so the question of the driving terms in the
parity-violating weak interaction remains open.
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