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Phonon reflection at a sapphire-vacuum interface? 
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Abstract. Theoretical and experimental studies have been conducted of the transmission 
of phonons in sapphire and their reflection at a crystal-vacuum interface. The effects of 
crystal anisotropy on the reflection process, not previously noted in the literature, are dis- 
cussed in detail. The heat-pulse technique has been used to obtain high-resolution time- 
of-flight spectra as a function of the angle of incidence in accurately known crystallographic 
directions. The agreement with predictions from numerical calculations is excellent. The 
relevance of these observations to studies of the anomalous transmission of energy through 
a crystal-liquid helium interface is also discussed. 

1. Introduction 

In recent years, a number of experiments have been reported in which phonons are 
generated, transmitted ballistically through a crystal and detected (Maris 1970, Taylor 
et al 1970). The generator and detector may be on opposite faces of the crystal (these are 
called transmission experiments) or on the same face, so that the detected phonons first 
reflect from the opposite surface (reflection experiments). This latter class of experiments 
in particular has been used to study aspects of the Kapitza resistance (Guo and Maris 
1972, Long et a7 1973, Kinder and Dietsche 1974, Horstman and Wolter 1977, Folinsbee 
and Harrison 1978, Weber et al 1978). 

A spectrum typical of those observed in reflection experiments is shown in figure 1. 
For this and all other spectra presented in this paper, the generator is a 100 nm evapor- 
ated aluminium film used as an Ohmic heater and the detector is a 200nm tin film 
operated as a superconducting bolometer with the help of a magnetic field. The crystal 
is sapphire, mounted so that it is immersed in liquid helium at 2.0 K except for the re- 
flecting face, which is in vacuum. The spectrum is a record of signal intensity at the 
detector against time of flight after pulsing the heater. Three main peaks can be seen, 
attributable to the arrival of longitudinal phonons (the first to arrive), transverse phonons 
(the last) and phonons that have been mode converted upon reflection (in between). 
The sharp peaks arising from the reflection of ballistic phonons often lie on a broad back- 
ground due to phonons which have scattered from bulk impurities. 

Figure 2 shows a spectrum which is qualitatively different from those reported as 
typical. Here, six sharp peaks and some broader features can be clearly seen. In other 
orientations we have observed as many as eight sharp peaks. Our analysis of the processes 
of propagation and reflection of sound in real crystals indicates that there are as many as 
nine channels with different times of flight for transmitting energy from the heater to 
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Time ivsi 
Figure 1. Low-resolution spectrum similar to those seen in the literature. showing longitudinal. 
mode-conversion and transverse peaks. The heater and bolometer were linear strips, 14 mm 
long, separated by 2.5 mm. The sapphire crystal was 6.4 mm thick x 57 mm in diameter. 

the bolometer via reflection from a flat surface. The purpose of this paper is to describe that 
analysis and to present experimental data which support the conclusions. 

The principle new contribution of this analysis is concerned with the effect of crystal 
anisotropy on the reflected signal. It is well known that crystal anisotropy gives rise to a 
phenomenon known as phonon focusing. In any crystal, a packet of phonons with iso- 
tropically distributed wavevectors may have a very anisotropic pattern of energy flow. 
The phenomenon has been systematically investigated and its effect on phonon trans- 
mission has been widely noted (Maris 1970, Taylor et al 1970). The fact that the aniso- 
tropy of the elastic constants can dramatically affect the allowed reflection processes, 
as well as the directions and polarisations with which phonon beams are reflected, does 
not, however, appear to be so well understood. 

We are concerned in this report only with the effects of specular reflection from an 
ideal flat surface. The basic condition governing specular reflection is that the component 
of the incident wavevector parallel to the surface is conserved in the outgoing waves. 

Timeips1 

Figure 2. High-resolution spectrum showing six narrow peaks followed by a broad jump. 
The predicted arrival times of various channels, as discussed in 5 3, are shown on the abcissa. 



Phonon reflection at a sapphire-vacuum interface 4739 

However, because of crystal anisotropy, the direction of energy flow (that is, of the group 
velocity) is not necessarily the same as that of the wavevector (or phase velocity). Al- 
though the law governing reflection is conveniently expressed in terms of k vectors, the 
observed signal is due to energy flow from the generator to detector along a path defined 
by the group velocity vectors. This path is not simply related to the incident k vector and 
is generally not coplanar with the k vectors or the surface normal. Because the relation- 
ship between k vectors and group velocity vectors is rather complicated, the prediction 
of the observed reflection signal is necessarily an iterative process. An incident k vector 
must be guessed, the reflected k vector and the path of energy flow computed and then 
the incident k vector corrected until a path is found that carries energy from the generator 
to the detector. 

In 0 2 of this paper we describe the analysis necessary to predict the times of arrival 
of the various reflected modes of our bolometer. Experiments designed to test the results 
of the analysis are present in 5 3 and the conclusions are discussed in 5 4. 

2. Analysis 

Let us first consider the predictions of isotropic elastic theory (Landau and Lifshitz 
1970). An isotropic solid has two elastic constants which can be chosen to be the longi- 
tudinal and transverse sound velocities cl and c,. The two degenerate tranvserse sound 
modes can have any polarisation normal to the direction of propagation. To analyse 
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Figure 3. Schematic diagram of a bolometer signal assuming an isotropic solid similar to 
sapphire with sound speeds e,  = 1.1 1 x lo6 cm s- ' ,  c, = 0,604 x IO6 cm s - ' .  The heater- 
bolometer separation is 6,7 mm, which is the same as was used for the spectrum in figure 6 .  
The calculation also includes the effects of a Debye density of states which accotints for the 
factor of approximately eight difference in the longitxdinal -P longitudinal and transverse --t 
transverse peak heights. The reflection processes which contribute to each peak are also 
indicated. The inset shows the possible reflection processes and the consequent paths that 
connect the heater and the bolometer in an isotropic solid. 



4740 P Taborek and D Goodstein 

reflection it is convenient to choose one transverse polarisation vector normal to the 
plane of incidence and the other in the plane of incidence. These are referred to respectively 
as SH and sv waves, SH standing for shear horizontal and sv for shear vertical (the termin- 
ology comes from the seismological literature). 

The inset of figure 3 shows the paths that would connect the heater and bolometer 
in a reflection experiment. In addition to the non-mode-converted path for which the 
angle of incidence equals the angle of reflection, there are two mode-conversion paths. 
Although these have the same time of flight in an isotropic system, they are not entirely 
equivalent. The sv --f L (longitudinal) path should dominate because more T (transverse) 
phonons are excited by the heater, because of their larger density of states at low fre- 
quencies. In addition, the two paths have different angles of incidence. 

At normal incidence, all three modes are uncoupled and reflect independently. 
The SH waves are uncoupled from the other modes at all angles of incidence, but the sv 
waves convert to a longitudinal path with an amplitude that increases from zero at 
normal incidence up to a critical angle 6, = sin-’ (ct/c,), where the reflected mode- 
conversion amplitude drops back to zero. 

The results of detailed calculations of signal intensity against time of arrival, includ- 
ing a Debye phonon density of states and solid-angle effects, are shown in figure 3. 
Note that signals corresponding to several different. angles of incidence arrive at the 
bolometer even for an isotropic solid. Although it might be expected that this analysis, 
which predicts only three peaks, would be sufficient for sapphire, the most nearly iso- 
tropic of the commonly used crystals (e.g. the transverse sound speeds differ by only a 
few per cent), a comparison of figure 3 with figure 2 shows that a more sophisticated 
analysis is needed. 

The starting point for the analysis of elastic waves in an anisotropic crystal is Newton’s 
law in the form 

where p is the density, ui is the displacement and the components xk are any convenient 
basis of three orthogonal vectors (Federov 1968, Landau and Lifshitz 1970, Musgrave 
1970). The repeated index convention is observed throughout. The stress tensor oik 
is in general related to the strain tensor ulm by 

The elastic tensor ciklm has 34 = 81 elements, but crystal symmetries and stability criteria 
reduce the number that are independent. For sapphire, there are six independent elastic 
constants, which are noted in table 1 (Farnell 1961). 

Table 1. Elastic constants of sapphire (10” N m-2:  Farnell 1961). 

4,968 4,981 1.474 1.636 1.109 -0.235 

These c,, form a 6 x 6 matrix, the remainder of whose elements are given by c z 2  = c 1  1 ,  

c23 = c l 2 ,  cS5 = c44, -ez4  = cS6 = cI4,  ( ( , 6  = +(eli - c12). All others are equal to zero. 
The elastic tensor cijkl  may be constructed from these elements by replacing subscripts, 
m + i,j and n -+ k, 1 according to the following scheme: 1 -+ 1, 1; 2 --* 2 , 2 ;  3 -+ 3, 3 ;  4 -+ 

2, 3 = 3, 2; 5 -+ 1, 3; 6 -+ 2, 1. 
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In terms of the elastic tensor, Newton’s law takes the form 

p(a2Ui/at2) = C i j l m ( a 2 u m / a X j a X * ) .  

Substitution into equation (3) of plane-wave displacements 

ui = e ,  exp[i(k. x - ot) 

(3) 

where .G is a unit polarisation vector and k and o are the wavevector and frequency yields 
the eigenvalue problem 

(Aijlmn,nj - u26,,) e, = 0. (4) 

Here Aipm = (l/p) cijlm and k = ( o / v )  A where 12 is a unit vector. 
The solutions of equation (4) determine the three orthogonal polarisation vectors 

and phase velocities v for any given direction f i , but the polarisations have no particular 
orientation with respect to A or the surface of the crystal, so they can only be described 
as quasilongitudinal or quasitransverse. The directions along which energy is transmitted 
are given by the power-flow vector p : 

p ,  = -o,,(au,/dt). ( 5 )  

p i  = $wcijlmklejem. (6) 

The time-averaged power flow may be written in terms of the elastic tensor as 
- 

Thus, an elastic wave in an anisotropic medium is described by three vectors k ,  2 and 
p whose mutual orientation is a complicated function of direction. 

As in an isotropic solid, translational invariance along the surface requires that on 
reflection, the component of k parallel to the surface must be conserved. However, this 
law cannot be expressed in simple trigonometric form because the magnitude of k 
for each polarisation depends on the direction in the crystal. The values of the reflected 
wavevectors for any given incident geometry must generally be found by solving a 
sixth-order polynomial equation, the solutions of which may be represented graphically 
as shown in figure 4. Here, in a polar plot, curves of constant (kl for each mode in the 
plane of incidence are drawn. The intersections of those curves with the line given by 
k:pf = k); (the symbols represent the parallel components of the reflected and incident 

Figure 4. Schematic polar plot of curves of constant Ikl (with o a fixed constant) in a particular 
crystallographic plane. The inner curve represents the quasilongitudinal mode, which always 
has the largest phase velocity. The larger curves correspond to the two quasitransverse 
modes. The k vectors of the three reflected waves, which are related to the incident wave by 
the relation kil = k y ’ ,  are determined by the geometrical construction shown in the figure. 
For sufficiently large kin, the construction may yield less than three intersections; this corres- 
ponds to complex k-vectors which represent exponentially damped waves. 
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wavevectors respectively) give the permitted solutions for outgoing waves. The line 
may intersect all three polarisations, giving rise to three outgoing waves, or there may 
be evanescent solutions as occur in an isotropic medium when the critical angle is 
exceeded. 

The curves shown in figure 4 are described algebraically by the condition 

det(Lij,,k,kj - d i m )  = 0 (7) 

which yields a very complicated polynomial in the components of k. It is easier to evalu- 
ate the coefficients of the polynomial in a rotated frame in which k p  = 0. In this frame 
kin = (kli', 0, k:) and kref = (q;, 0, k;;'). Since kl; is given, equation (7) reduces to a 
sixth-order polynomial equation in the single variable kTf. Three of the solutions (those 
with Re(k'Ff) > 0) correspond to refracted modes which are not allowed at a vacuum 
interface. Solutions with Re(k;e') < 0 correspond to possible reflection processes, al- 
though if ky' has a complex part, the reflected wave will be exponentially damped. 

Once the permitted solntions have been determined, the amplitude of each is ob- 
tained wing (as in the isotropic system) the stress-free boundary condition at the surface: 

oikmk = 0 (8) 
where h is the surface normal. 

If we imagine a coordinate frame defined by the polarisation vectors for each k ,  
then the coupling between the various modes upon reflection is proportional to the 
projection of a given incident polarisation on each of the three reflected polarisations. 
In other words, the coupling is governed by how much the coordinate frame twists 
when the waves change direction because of reflection. The important point here is 
that the twisting of the polarisation frame is not simply related to the anisotropy of 
the phase velocity. That is why, wen for sapphire, which is almost isotropic, mode- 
mixing in an arbitrary orientation may be strong, giving rise to complicated results 
like those shown in figure 2. 

Computation of the trajectories that transport energy from the heater to the detector 
is particularly difficult because energy flows along the p vector, but reflection is governed 
by the k vector which is not collinear with it. Moreover, the vector kin of an emitted 
beam that will result in a signal at the detector need not be in the plane that contains the 
heater, detector and surface normal. It is not uncommon to find the necessary kin more 
than 30" out of that plane. Thus the process of finding the right path for a given com- 
bination of modes is similar to artillery ranging. A beam is sent in some direction from 
the heater and the point at which energy in the desired reflected mode arrives back at 
the same surface is computed. The aiming direction is then adjusted and the computation 
repeated until a hit is scored on the bolometer. To complicate matters further, the time 
of flight of (say) the sv + L path is no longer equal to that of the L + sv path because, 
unlike an isotropic solid, each of the velocities now depends on direction. Instead of the 
three processes shown in the inset of figure 3, an anisotropic solid has nine distinct 
channels that connect the heater and the bolometer and the above artillery practice 
must be repeated nine separate times for each configuration of the heater and bolometer 
to predict a complete spectrum. 

If the incident (i.e. emitted) and reflected p vectors are, respectively, pi" and pref, 
the mathematical criterion for scoring a hit on the bolometer is 
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where H is the thickness of the crystal and x is the vector separation of the heater and 
the bolometer. A computer is programmed to guess kin, to calculate kref by imposing 
the condition ki; = k;:' and to solve numerically, using equation (7), for the intersections 
shown in figure 4. Equations (4) and (6) are then used to find the associated p vectors 
for each combination of polarisations. If pin and pref do not satisfy equation (9) to within 
a tolerance set by the size of the generator and detector, kin is corrected and the calcula- 
tion repeated until the error is satisfactorily small. Moreover, the calculation must be 
repeated until all nine channels have been found. 

Prediction of the received spectrum in detail, including pulse shapes, heights and 
widths, is a very much more complicated problem that will be discussed briefly in 5 4. 
Our purpose here is principally to compare experimentally observed times of flight for the 
various channels with the results computed as outlined above. We turn to that comparison 
in the next section. 

3. Experimental results 

To test the calculations outlined in the previous section, we have performed experiments 
using a crystal, orientation of which was chosen to simplify the spectrum and facilitate 
the computations in at least one plane of incidence. The crystal was cylindrical, 9.53 mm 
thick and with the two faces (which are optically polished; estimated roughness scale 
z 30 nm) lying in the C-X plane of the sapphire lattice (the X ,  Y and C axes in the sapphire 
lattice are shown in figure 5). Thus the surface normal is always the Y axis. Alternative 
standard designations are 90"M or (1TOO) normal to the faces. The diameter of the 
cylinder, 57.2 mm, was large enough to ensure that reflections from the side walls did 
not interfere with the spectrum. 

The C-Y plane is a particularly simple one for phonon propagation in sapphire 
because one of the transverse modes had polarisation perpendicular to the plane and 
the other two polarisations are contained in it. Moreover, for waves propagating in the 
C-Y plane, the k and p vectors, while still not collinear, are at least all in the plane, which 
greatly reduces the number of iterations needed for the calculations (the coplanar 
feature is especially economical since each change in the k'" surface-normal plane re- 

C (threefold axis) 
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Figure 5. The X-Y-C  coordinate \ystem. The C axis I &  the body diagonal of the trigonal unit 
cell of sapphire. There are three equivalent twofold axes in the plane perpendicular to C, 
one of which is chosen to be the X axis. The Y axis is then chosen perpendicular to the C-Y 
plane to form a right-handed system as shown. 



4144 P Taborek and D Goodstein 

quires rewriting the elastic tensor in a new basis). As in an isotropic solid, the mode with 
polarisation perpendicular to the C-Y plane is decoupled from the other two modes, 
so that there are only five reflection channels (rather than nine) in this plane. Because 
of the simple orientation of the polarisation vectors, each mode can be uniquely labelled 
by its polarisation as L, sv or SH. 

We have thus conducted experiments in which the heater, bolometer and surface- 
normal lay in the C-Y plane. For contrast, we also present results with the heater- 
bolometer-surface-normal in the X- Y plane, where none of the above simplifications 
are applicable. In the first case, one bolometer and five heaters were laid out at intervals 
along the C axis. In the second case a bolometer and five heaters were laid out along the 
X axis. In addition to testing our calculations, the data presented here constitute, to 
our knowledge, the first systematic study of phonon reflection as a function of angle of 
incidence (see however Long et a1 1974). 

Time Ips) 

Figure 6. Spectrum from heater number 3 in the C-Y plane (see table 3 for details). Predicted 
arrival times of the various channels are marked on the abcissa. 

An example of a spectrum on the C-Y plane is shown in figure 6. Here the heater 
(number 3) and bolometer are separated by 6.7 mm along the C axis. Five peaks can be 
seen, just as expected. Figure 2, shown above, was taken in the same crystal with the 
heater and bolometer separated by 9.0 mm along the X axis. 

Because the purpose of these experiments was to measure times of flight for as many 
channels as possible in each orientation, all experimental parameters were chosen to 
optimise the resolution of peaks such as those seen in figures 2 and 7. The width of a peak 
is a time that is a consequence of some six separate phenomena, each of which may in turn 
be characterised by a time: the width of the initial heater pulse, the thermal relaxation 
times of the heater and the bolometer, effective times due to solid-angle effects at the 
heater and bolometer and the aperture of the boxcar integrator used to read out the data. 

Heater pulses 35 ns wide were used. Since the signal was observed to scale linearly 
with the square of the heater pulse height in the range 3-10 V, the pulse height could be 
chosen within this range to optimise the accuracy of the read-out electronics. The re- 
laxation times of the heater and bolometer were not known accurately, but were mini- 
mised by being at  an interface between sapphire and superfluid helium. They are be- 
lieved to be less than 50 ns. Broadening arising from the solid angle subtended by the 
heater and the bolometer may be estimated from (w/v)  sin 0 where w is a dimension of 
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the device, U is the speed of sound and 8 is the angle of incidence or reflection. The heaters 
were of serpentine form localised to 0.4 mm2 (with resistance R z 40 R at T = 2 K); 
the bolometer was slightly larger. Since in sapphire v x lo7 mm s - l ,  we estimate a 
characteristic time of up to -50 ns for these geometric effects. Finally, the boxcar 
aperture was set at 25 ns. Thus, all of these times were of the same order of magnitude, 
around 50 ns. The times interact in a complicated way, but the resulting peaks may be 
observed to have widths of roughly 50 ns. It is probably possible to resolve peaks if they 
are more than -25 ns apart. The absolute time of flight of each mode, measured from 
the beginning of the heater pulse (detected on the bolometer signal by elcctronic cross- 

Table 2. Heater-bolometer-surface-normal in the C-Y plane. 

Channel e,, eref e,, (deg) t (ps) predicted r ( p )  observed 

Heater number 1: heater-bolometer separation = 1.5 mm; U, = 4.57" 
1 - 1  L + L. 0,987 7,45 1,714 
3 + 1  sv -+ L 0,0205 0.57 2,428 
1 + 3  L + sv 0,206 10.3 2,455 
2 - 1 2  sn + SH 1 ,o 4.57 2,956 
3 - 3  sv + sv 0.998 2,29 3,156 
Heater number 2: heater-bolometer separation = 4.3 mm; Bo = 12.8" 
1 + 1  L + L  0.89 17.18 1,765 
3 + l  sv + L 0,147 4.18 2.442 
1 + 3  L + sv 0,385 18.5 2,523 
2 - 2  SH + SH 1 .o 16.0 3,044 
3 - 3  sv -+ sv 0,987 6.3 3.191 
Heater number 3: heater-bolometer separation = 6.7 mm; 0, = 19.5" 
1 + 1  L + L  0,748 24,6 1,851 
3 + 1  sv + L 0.302 8.59 2,484 
1 + 3  L + s v  0,516 23,5 2.602 
2 - 2  SH -+ SH 1 .o 24.1 3,165 
3 - 3  sv + sv 0.97 9.62 3,241 
Heater number 4: heater-bolometer separation = 9.3 mm; Bo = 25.9" 
1 - 1  L + L  0.57 30.4 1.967 
3 4 1  sv --f L 0,479 13.6 2.566 
1 + 3  L + sv 0.65 29.6 2,7 18 
2 + 2  SH + SH 1 ,o 31.0 3,318 
3 + 3  sv + sv 0,942 13.4 3,320 
Heater number 5: heater-bolometer separation = 12,6 mm; 8, = 33,4' 
l + l  L + L  0.36 35.6 2,134 
3 - 1  sv + L 0,702 20.0 2,710 
1 + 3  L +sv  0,788 35.5 2,896 
3 + 3  sv + sv 0.87 19.2 3,471 
2 + 2  sn + sn 1 ,o 40.4 3,612 

1.71 
2.43 

2.93 
3.10 

1,74 
2,42 
2.49 
2.98 
3.14 

1.84 
2,48 
2.58 
3.1 1 
3,20 

1.94 
2,53 
2,68 

3.26 

2.12 
2.69 
2,87 
3.45 
3,55 

talk) and the beginning of the rise of the peak is probably determined to better than 
50 ns, but there is a geometric uncertainty of that order inherent in the iterative process 
used to predict the times of flight. 

The results of calculation and experiment for the heater-bolometer-surface-normal 
in the C-Y plane are summarised in table 2; the spectra themselves are shown in figure 7. 
Data and calculations for the X-Y plane are given in table 3. 

Each of these tables has a separate section for each heater, headed by the heater- 
bolometer separation and O,, the angle of incidence for which an equal angle of reflection 
would connect the heater and bolometer. The first two columns in table 2 give the channel 

G22 
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that connects the heater and bolometer. The channels for each heater are listed in order of 
their predicted arrival time. The modes within each channel are identified first by number, 
1,2 and 3, then by name, L, SH and sv respectively. Identification by name is possible only 
in the C-Y plane; even here it would be more accurate to say quasi-r, and quasi-sv. 
The number scheme (also used in the X-Y plane) labels the modes in order of their phase 
velocities in the direction of the surface-normal. A mode in any direction 12 can be 
identified with one in the surface-normal direction h by tracing along smooth curves 
like those shown in figure 4; the correct curve can be identified by a smoothly varying 
polarisation. We found that this was the best procedure for monitoring the modes under 
all possible circumstances. Note, however, that although mode 2 (SH) is the second 
fastest along the surface-normal, the SH-SH channel is the last to arrive when fired 
from heater number 5. 

Time Ips) 

Figure 7. Ail five spectra in the C-Y plane. The ordinate scales have been chosen so that the 
tallest peaks in each spectrum are roughly the same height. 

The third column of table 2 gives the projection of the incident polarisation vector 
onto the reflected polarisation vector for each channel. This quantity measures the 
strength of the coupling on reflection from one mode to the other. The channels not 
listed (i.e. L .+ SH) would have zeros in this column and hence are not expected to arrive. 
The fourth column of table 2 gives the angle of incidence in the path used by that channel 
to connect the heater and bolometer. For orientation it may be compared to Bo which 
would be the angle of incidence of an L .+ L or T -+ T channel if the crystal were isotropic. 
Finally, columns 5 and 6 show the predicted and observed times of flight. The observed 
times are listed on the same level as the predicted times to which they are believed to 
correspond. 

Table 3 differs from table 2 in that the modes can be identified by number only. 
In addition, since the required incident k-vector does not stay in the X-Y plane, an 
azimuthal angle for the incident (i.e. emitted) ray is also given. The coordinate system 
that identifies 6 and q5 is shown in figure 8. In table 3 there are nine channels with non- 
zero coupling for each heater, all of them listed. 

In total, for the ten heaters in both planes, 54 peaks with non-zero coupling and at 
least 25 ns separation are predicted to occur. Every one is observed experimentally, 
with an arrival time that agrees with the predicted value to within the estimated expected 
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Table 3. Heater-bolometer-surface-normal in the X-Yplane 

Heater number 1:  heater-bolometer separation = 1.5 mm; 6, = 4.50" 
1 + l  0,987 4.50 0.0 1.701 
1 - 2  0.069 10.6 71.6 2,347 
2 - 1  0,069 6,59 - 72.2 2,350 
1 - 3  0,177 10.89 31,5 2.448 
3 + l  0,178 6,02 - 29'22 2,448 
2 + 2  0,975 1.89 0.0 2.952 
2 - 3  0,475 4.87 0.0 3.060 
3 - 2  0.475 4.58 0.0 3,060 
3 - 3  0.606 12.9 0.0 3,204 

Heater number 2: heater-bolometer separation = 4.2 mm; Bo = 12.4" 
1 - 1  0,910 12.4 0.0 1,744 
1 + 2  0,212 14.0 42.4 2,378 
2 - 1  0,209 8,25 -43.5 2,379 
1 + 3  0,318 21.2 12.0 2,513 
3 - 1  0.329 11.2 - 13.2 2,516 
2 - 2  0,819 5.73 0.0 2,978 
2 + 3  0,766 13,2 0.0 3.121 
3 + 2  0.769 12.0 0.0 3.124 
3 - 3  0,525 18.9 0.0 3.331 

Heater number 3: heater-bolometer separation = 6.6 mm; Bo = 19.3" 
1 - 1  0,788 19.3 0.0 1,803 
1 + 2  0,359 18.9 22.9 2.425 
2 - 1  0,361 11.2 - 23.6 2,429 
3 - 1  0,406 14.8 -5.15 2,602 
1 - 3  0.417 29.2 6.30 2,606 
2 + 2  0,563 11.5 0.0 3,034 
2 - 3  0,787 21.2 0.0 3,227 
3 - 2  0,786 18.0 0.0 3,229 
3 - 3  0,510 23.5 0.0 3,489 

Heater number 4: heater-bolometer separation = 9.0 mm; Bo = 25.3" 
1 - 1  0,636 25.3 0.0 1,886 
2 - 1  0,512 15.4 - 12.0 2,507 
1 - 2  0,520 26.9 11.5 2.513 
1 - 3  0,482 36.3 2,64 2,721 
3 - 1  0,480 18.0 - 2.29 2,721 
2 - 2  0,286 20.0 0.0 3.129 
3 - 2  0,723 24.4 - 1'26 3.381 
2 - 3  0,721 29,2 1.14 3,388 
3 - 3  0.5 10 27.2 0.0 3,665 

Heater number 5: heater-bolometer separation = 12.7 mm; 6, = 33.7' 
1 - 1  0.383 33.7 0.0 2,054 
1 - 2  0.7 17 39,5 0.0 2,689 
2 - 1  0.718 22.6 0.0 2.691 
1 - 3  0,542 45.8 -0'86 2,939 
3 - 1  0,543 21.9 0.92 2,944 
2 - 2  0,145 37.8 0.0 3,391 
2 - 3  0,595 38.3 1.15 3,684 
3 + 2  0,593 32.1 - 1.15 3,688 
3 - 3  0.549 32,l 0.0 3,974 
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error. We thus believe that the calculations and procedures we have described have been 
fully validated. 

These results have a number of interesting features that should be noted. For four out 
of the five heaters in the C-Y plane, the sv -+ L and L -+ sv channels are clearly resolved. 
One result is that in three of the cases five peaks, which is the maximum number possible, 
are clearly seen. By contrast, in the X-Y plane, all of the mode-conversion peaks arrive 
within 10 ns of their inverse channels. For example, in heater number 2 in the X-Y plane, 
the 1 -+ 3 and 3 -+ 1 channels are expected at 2,513 and 2.516 ps respectively, although 

t Surface-normal 

/Heater- bolometer 
axis 

Figure 8. Coordinate system used to define 0 and 4, as given in tables 2 and 3 

they must have followed quite different paths through the crystal. The experimental 
consequence is that it is never possible to resolve more than six separate peaks in this 
plane (as seen, e.g., in figure 2). This behaviour is apparently a geometrical accident that 
is peculiar to the X-Y plane. As mentioned above, in previous experiments on a crystal 
whose orientation was not well known, we observed as many as eight peaks. Calculations 
for propagation in arbitrarily chosen crystal orientations indicate that seven or eight 
peaks should often be resolved by 20 ns or more. 

So far, little has been said about the relative heights of the peaks in the various 
channels. Only a small amount of progress can be made on this point without elaborate 
new calculations, but a brief discussion may be useful, in order to bring out where the 
complexities lie. 

Let us leave aside for the present the difficult question of what distribution of phonons 
actually emerges from the heater into the crystal. Some progress can still be made by 
the following argument. The L-L peak height (for example) is proportional to the inten- 
sity of the L beam incident at the surface, multiplied by the L-L reflection efficiency at 
the interface, given by gin. $ref. The L-sv peak height should be given by the incident L 

intensity at  the surface multiplied by the L-sv conversion efficiency. Thus, if we denote 
the peak heights in each channel SiWj and the conversion efficiencies Ri-j, it might be 
expected that 

SLsv  = R w J s L - L / R d *  
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The same would be true, of course, for any other combination of converted and uncon- 
verted channels. 

Consider, for example, heater number 1 in the C-Y plane. The sv -+ L channel and 
the L + sv channel are expected to arrive 27 ns apart, at the edge of resolvability. How- 
ever, the L --+ sv coupling is 0.2 whereas the sv + L coupling is only 0.02. One small 
peak is observed at the expected arrival point, which on careful inspection proves to be 
noticeably broader than the other specular peaks in the same spectrum. We wish to 
know whether this peak can be assigned to one channel, or whether it is an unresolved 
combination of both. 

Application of the above argument indicates it probably belongs to both. The reason 
is that although RLsv x 10 R,,-,, we observe SsvSv x 10 SL-L (see figure 8 ;  the L-L 
and sv-sv peaks are, respectively, the first and last for heater number 1). Thus we expect 
SLsv x Ssv-L. Quantiatively the argument predicts that each channel will contribute 
a peak, the height of which is about 2 the maximum of the observed peak. Thus the argu- 
ment agrees very well with observation if the peak is an unresolved doublet. If the channels 
were of greater intensity, we could probably resolve the two peaks. 

After systematic application of the same analysis to all other relevant combinations 
of peaks, we find reasonable agreement in about half the cases, but serious disagree- 
ment in at least some instances. For example, for C-Y heater number 3 (figure 7), 
RS,,/Rsv sv N 0-3. We thus expect that the sv-L peak (the second to arrive) will be 
about f the height of the sv-sv peak (the last one). After subtracting the background, 
however, we find that the former peak is only about & the height of the latter, or about 
three times smaller than expected. 

We believe that such discrepancies arise from the phenomenon of phonon focusing 
in the incident mode, In the example cited, the sv beam that reflects into the sv-sv 
channel does not follow the same path as the sv beam that reflects into the sv + L 
channel. Even if the heater emits an isotropic distribution of sv phonons, the two beams 
will not generally have the same intensity. Thus the argument we have presented needs 
to be corrected for the effects of phonon focusing in the incident mode. We expect to 
present the required analysis in future work, including all crystallographic effects. 

In most previous experiments reporting phonon reflection spectra, emphasis has 
generally been laid on changes in the spectra that occur when helium is brought into 
contact with the reflecting surface. It is our contention that the interpretation of those 
experiments will necessarily remain contradictory and confusing until details such as 
those we are describing here are fully understood. We wish now to comment on some 
features of our observations that seem relevant to the problem of transmission of energy 
through the interface. A systematic account of the behaviour of our spectra upon admitt- 
ing helium to the cell will be presented later. 

For heaters numbers 1,2 and 3 in the C-Y plane, the sv mode is the slowest and the 
sv -+ sv peak is the last to arrive. However, in heater number 4, the sv + sv peak arrives 
almost in coincidence with the SH + SH peak (3.320 compared with 3,318 ps). In heater 
number 5,  the SH + SH peak stands alone, the last to arrive. This observation shows that 
it is possible, with a carefully designed geometry, to isolate the SH -, SH peak for separate 
study. According to elastic theory, an SH mode should always suffer total internal re- 
flection at a crystal-liquid interface, just as it does at a crystal-vacuum interface, because 
it cannot couple to longitudinal modes in the liquid. This simplification in the predicted 
behaviour might make this channel particularly rewarding for isolation and study. 

Finally, we come to a feature that is immediately obvious in figure 2 but has not yet 
been mentioned. For each of the spectra in the X-Y plane, typified by that shown in 
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figure 2, the last predicted channel, always observed as a narrow (i.e. width N SO ns) peak, 
is followed by a prominent broad bump. A broad bump following the (unresolved) 
transverse peaks has been noted previously (Folinsbee and Harrison 1978). In our 
experiments we invariably observed it in the X-Y but not in the C-Y plane. We cannot 
yet pinpoint the precise cause of this feature, but can say with certainty that it arises from 

\ 

I 1 I I I 
0 1 2 3 A 5 

Time IFS) 

Figure 9. Spectrum from heater number 1 in the X-Y plane (see table 3 for details). Curve C, 
reflecting surface in vacuum; curve B, reflecting surface in liquid helium. Notice the effect 
of helim on the broad bump after the last sharp peak. 

phenomena that occur at the surface. This is known because the principal qualitative 
effect on the X-Y spectra of admitting helium to the reflecting interface is to diminish 
dramatically the size of the bump, as shown in figure 9. 

4. Conclusions 

Although important insights about surface and interfacial phenomena have been gained 
from phonon reflection experiments, we believe that the method will not be fully ex- 
ploited until all of the phenomena governing the detected spectrum are understood. 
In a sense, the problem is similar to that in other forms of spectroscopy, where the posi- 
tions of lines are easily understood but predicting their shapes is a more formidable 
problem. This paper shows how the locations of all of the peaks in the spectrum may be 
accounted for or predicted. However, the lineshapes, heights and widths as well as 
other features of the spectra must also be understood before the method can be used for 
systematic quantitative studies. 

The following factors enter into the details of spectra like those presented here: 

(i) The width, height and shape of the pulse in the heater. 
(ii) The distribution of phonons that emerge. 
(iii) Crystallographic effects on transmission (e.g. phonon focusing). 
(iv) The times of flight in all channels that connecting the heater and detector in flat- 

surface reflection. 
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(v) The effects of surface roughness. 
(vi) The effects of transmission through the surface if there is a medium on the other 

(vii) The background signal due, e.g., to the scattering of phonons in the bulk of the 

(viii) Solid-angle affects at the heater and bolometer. 
(ix) The thermal response of the bolometer. 
(x) The resolution of the read-out instramentation. 

side (including effects at the heater-crystal and bolometer-crystal interfaces). 

crystal; 

If other methods of generation and detection are used, for example, superconducting 
tunnel junctions in place of the heater and/or bolometer, details of these factors change, 
but the basic problems all remain. 

It is remarkable that although each of these factors presents difficulties, progress 
can be made towards understanding every one of them. It is not beyond hope that we 
will eventually be able to calculate, measure or control, probably everything apart 
from (vi), which is basically the anomalous Kapitza resistance, and even then we may be 
able to parametrise this factor so that it can be studied systematically. 

In this paper, we have shown how to resolve point (iv) of the list and the same means 
enable us to deal with point (iii). We believe this to be an essential step towards conquer- 
ing the overall problem. Further new results, particularly concerning points (v), (vi), 
and (vii) should soon be ready for publication. 
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