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High-resolution time-of-flight phonon-reflection spectra in sapphire crystals are analyzed with the aid of 
detailed numerical calculations. It is argued that spectra from vacuum interfaces may be understood if about 
half the incident phonons are assumed to be reflected specularly, the remainder diffusely. A simple model of 
the effect on spectra of diffuse scattering is presented and compared to experimental data. We show that the 
specularly reflected signal is unaffected by placing helium at the interface, but that the diffuse part is 
transmitted almost entirely, accounting for the anomalous Kapitza resistance. It is shown that conventional 
calculations of phonon focusing are not suitable for interpreting our data, and a new, more correct theory of 
phonon focusing, aided by formal catastrophe theory, is introduced. We argue that the experimental 
resolution and theoretical analysis we have presented are essential for understanding phonon-reflection 
experiments. 

I. INTRODUCTION 

For about a decade, experiments have been r e -  
ported in which a pulse of thermal phonons propa- 
gates ballistically through a pure crystal  a t  low 
temperature. At the far  surface, part  o r  a l l  of 
the phonons a r e  reflected, and return to be de- 
tected a s  a function of time of flight. The primary 
purpose of these experiments has been to measure 
the reflection coefficient of phonons which impinge 
on a crystal-helium interface; the smal l  reflection 
coefficient of ballistic phonons is  thought to be a 
manifestation of the well-known anomalous Kapitza 
thermal boundary resistance. 

Although this type of experiment has yielded a 
number of important insights into the nature of 
the Kapitza resistance,  we wish to suggest that 
the time-of-flight resolution in most previous ex- 
periments has been s o  low that crucial aspects of 
the phenomena involved have been obscured or  
misinterpreted. In this paper, we present an anal- 
ysis  of our high-resolution phonon-reflection time- 
of-flight spectra which utilizes detailed numerical 
calculations of phonon trajectories and intensities 
in the crystal. The result  is  a fa r  more complete 
understanding than has previously been possible of 
the phenomena occurring in these experiments. 

Figure 1, from our own early data, is  typical of 
low-resolution spectra. Three broad peaks a r e  
seen in the reflected signal. The f i r s t  and last  
a r e ,  respectively, due to longitudinal and t rans-  
ve r se  phonons. The intermediate peak i s  due to 
phonons that changed polarization upon reflection, 
making one t raversa l  of the crystal  a s  longitudi- 
nal, the other a s  transverse.  In that experiment, 
a s  in a l l  the experiments reported in this paper, 

the sample i s  a cylindrical sapphire single c rys-  
tal ,  with evaporated Ohmic heater(s) and a super-  
conducting-transition bolometer on one face, which 
i s  kept in a regulated superfluid bath. The other 
face is  sealed into a cell, where it may be either 
kept in vacuum, o r  covered with liquid helium. 
Both faces a r e  optically polished. 

By contrast, a high-resolution spectrum i s  
shown in Fig. 2. The experimental techniques em- 
ployed to obtain high-resolution spectra have been 
described in a previous paper.' In that paper we 
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FIG. 1. Typical low-resolution phonon-reflection sig- 
nal ,  showing peaks corresponding to longitudinal (L), 
t r a n s v e r s e  i T ) ,  and mode-conversion i M C )  processes .  
Upper curve  i s  the reflection signal f rom a vacuum in- 
te r face ,  while lower curve  i s  the signal  f rom a c rys ta l -  
liquid-helium interface. 
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FIG. 2. High-resolution phonon-reflection signal for 
an unoriented sapphire crystal  6 mm x57 mm diameter. 
The signal i s  due to firing the middle of the five heaters 
shown in  the inset. The heater-bolometer separation 
i s  6.7 mm; isotropic elastic theory predicts a signal like 
that shown in  Fig. 1. In this and all subsequent spectra,  
the heater pulses were of approximately 30-nsec dura- 
tion, 8 V in  height into a 50-S2 A1 heater at temperature 
2 K. 

showed there could be a s  many a s  nine separate 
peaks due to specular reflection of phonons, and 
described how their t imes of flight could accurately 
be predicted by numerical techniques. This paper 
i s  devoted to analyzing the shapes of those peaks, 
and other features of the reflection spectra. The 
arguments we present here will seek to establish 
the following points: 
(1) Of the phonon energy incident on the reflect- 

ing surface, in vacuum, some fraction (roughly 
half in our own experiments) i s  reflected specu- 
larly. Adding helium to the interface never has 
any detectable effect on those phonons. Their  be- 
havior i s  in full agreement with classical elastic 
theory. They do not participate in the anomalous 
Kapitza effect. 

(2) The remainder of the phonons, a t  a vacuum 
interface, a r e  reflected in some other way. It is  
consistent with a l l  of our observations to assume 
they a r e  reradiated with isotropically distributed 
<vectors  back into the crystal. When helium i s  
added to the interface, these phonons a r e  largely, 
perhaps almost entirely, transmitted across  the 
interface. They a r e  responsible for the anomalous 
Kapitza effect. 

(3) In certain crystal  orientations, phonon-re- 
flection spectra a r e  strongly influenced by the phe- 
nomenon known a s  phonon focusing. Previous the - 
or ies  of phonon focusing a r e  numerically com- 
plicated and cumbersome to apply for  general di-  
rections in crystals. A simpler ,  and in principle 
more  correct  method of computing the phonon in- 

tensity i s  presented, and we show how it leads to 
an  understanding of our results. 

(4) As a result  of the above points, the outcome 
of a phonon-reflection experiment depends, often 
critically, on details of the geometry of the ex- 
periment which sometimes were not even reported 
in previous work. We consequently believe that 
much of the prior  work done in this field needs to 
be reinterpreted o r  possibly repeated in light of 
these new arguments. 

The remainder of this paper i s  arranged a s  fol- 
lows. In Sec. 11, we present some simple argu- 
ments showing how diffuse scattering a t  the inter-  
face affects a spectrum when strong focusing ef- 
fects a r e  not present. The results  a r e  compared 
to data, permitting an estimate of the fraction of 
diffuse scattering in our experiments, and showing 
that the diffusely scattered phonons become trans-  
mitted when helium i s  present. Section 111 r e -  
counts our attempts to account for  other important 
features of our observations by means of conven- 
tional phonon focusing calculations. These at- 
tempts were not successful. In Sec. IV we intro-+ 
duce a new more  correc t  theory of phonon focusing 
and show that i t  does succeed in accounting for  
our spectra. The geometrical picture of phonon 
focusing provided by this theory i s  helpful in 
understanding many aspects  of phonon propagation 
and reflection experiments. A summary of our 
arguments and conclusions i s  presented in Sec. V. 

11. SIMPLE EFFECTS OF DIFFUSE SCATTERING 

It has been observed in many 
that peaks in the reflection signal due to specular 
reflection of t ransverse phonons a r e  often followed 
by straggling tails; this effect i s  particularly visi- 
ble in the last  peak in the high-resolution spec- 
t rum shown in Fig. 3. The tails represent  energy 
arriving a t  a time that cannot be accounted for  by 
any specular reflection process. When helium i s  
introduced, the peak i s  hardly affected, but the 
tai l  almost vanishes. Thus the tails clearly a r i s e  
from processes that occur a t  the interface and 
cannot be explained a s  an  artifact due to bulk sca t -  
tering o r  slow detector response. In this section 
we show how the tai ls  and other features of the 
data may be accounted for  by a model based on the 
picture of diffuse scattering outlined in Sec. I. 

Although the details of the diffuse scattering 
f rom an  optically polished crystal  surface a r e  un- 
doubtedly very complicated, we have found that 
many aspects  of the experimental data can be ex- 
plained by assuming that a constant fraction 17 of 
the radiation incident a t  the surface i s  reradiated 
uniformly into a l l  solid angles, while fraction 
(1  - q) reflects specularly. For mathematical con- 
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FIG. 3. Reflection signals showing tails. Note es- 
pecially the last  peak. The solid curve i s  the crystal- 
vacuum interface spectrum, while the dotted curve i s  
the signal from a crystal-liquid helium interface. Note 
that the large mode-conversion peak at 2.8 psec which 
i s  well separated from the diffuse scattering signal i s  
not affected at all by the addition of helium. This spec- 
t rum was made in a crystal  9.53 nlm thick x12.6 mm 
diameter,  with heater and bolometer separated by 12.6 
mm along the C axis. Reflection i s  from the CX plane. 
See Ref. 1 for further details. 

venience, we will ignore the effects of c rys ta l  
anisotropy in th i s  section and a s s u m e  that energy 
flows in the direct ion of the phonon vector. We 
will a l s o  assume that the heater  and boloineter 
a r e  very s m a l l  and very close together and can 
be  t reated a s  coincident points. 

Since the bolometer signal i s  proportional to the 
heat  flux, the diffuse scat ter ing signal i s  the r a t e  
a t  which phonons a r e  scat tered back to the detec- 
tor .  The geometry of the calculation i s  il lustrated 
in  Fig. 4, where h is the thickness of the c rys ta l ,  
c i s  the velocity of sound, and r and q5 a r e  the po- 
l a r  coordinates on the reflection surface;  t i s  the 
t ime  a f te r  the heater  pulse, and Q(t) i s  the heat 
flux ( ~ / s e c )  emitted by the heater  a s  a function of 
time. 

Each element of a r e a  d A  = r d r d 4  on the top s u r -  
face i s  i r radiated by phonons f rom the heater  
which a r r i v e  a t  t=  ( r 2 +  h2)1/2/c. If each element 
absorbs  the fract ion q of the incident energy and 
re rad ia tes  it ,  each a r e a  element can be considered 
a s  a new source  of s t rength dQ,,: 

The diffuse signal S(t) observed a t  the bolometer 
i s  due to  the s u m  of a l l  these elementary sources ,  
and i s  given by 

FIG. 4. (a) The geometry for the diffuse signal calcu- 
lation. (b) The contribution to the diffuse signal at a 
t ime t comes from a circular annulus on the reflection 
surface. (c) A plot of the signal expected from diffuse 
scattering. The signal has a sharp onset at the time 
that a specular signal would ar r ive  t =2h/c.  The cross-  
hatched regions represents the diffuse signal from points 
inside the annulus, 

d~~~~ [ L  - ( r 2 +  I L ~ ) ~ /  2 / ~ ]  
r2 + 1z2 

coso .  (2) 
a l l  

sources 

Substituting cos8= h / ( r2+  and performing 
the angular integration gives 

If we assume a delta-function heater  pulse Q(t) 
= Q,b(t), the remaining integral can be evaluated 
explicitly to  yield 

The diffuse signal r i s e s  abruptly to  i ts  maximum 
value of ~ , n q c / h ~  a t  t =  2h/c, the a r r i v a l  time of 
the specularly reflected pulse, and then decays a s  
t q 5  a s  shown in Fig. 4. The diffuse-signal pulse 
shape i s  essentially the resu l t  of two competing 
geometr ical  effects: F o r  l a r g e  t imes  the a r e a  of 
the annulus on the reflecting sur face  which con- 
t r ibutes  to the signal becomes l a r g e r ,  but the s ig -  
nal i s  nevertheless  s m a l l  because of the two fac-  
t o r s  of (distance)-' which account fo r  the decreas -  
ing intensity of the incident and sca t te red  energy. 
In view of the s imple model used, this pulse shape 
s e e m s  to be in reasonable agreement  with the ex- 
perimentally observed tails. Th is  calculation a l s o  
indicates that a tail  due to  nonspecular scat ter ing 
has  a r a t h e r  sharp  maximum a t  the s a m e  a r r i v a l  
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time a s  the specular pulse, so  i t  i s  intrinsically 
difficult to distinguish between them experimental- 
ly. Numerical calculations show that the sharp 
maximum a t  the specular a r r iva l  time and the a s -  
ymptotic decay a s  t-5 remains valid even if the 
heater and bolometer a r e  separated by a finite 
distance. 

In the model described above, there i s  only one 
f r ee  parameter ,  q, the fraction of nonspecular 
scattering. q can be extracted from the experi- 
mental data by comparing the total energy which 
i s  scattered back to the detector in the specular 
and nonspecular channels. The total energy in the 
specular channel i s  the a r e a  under the specular 
peak. For  a delta-function heat pulse ~ ( t )  = &,6(t), 
the integral of the specular signal i s  

The total energy E d ,  which ar r ives  a t  the detector 
via nonspecular channels i s  

The rat io of the specular to diffuse energy de- 
pends only on the fraction of diffuse scattering: 

This rat io can also be obtained from the experi- 
mental data. The only difficulty is  in clearly sep- 
arating the specular and diffuse signal close to the 
specular a r r iva l  time. If the pulse shape of the 
diffuse signal i s  extrapolated back to the onset of 
the specular pulse, the a r e a  under the respective 
curves can be obtained by counting squares. When 
this procedure i s  applied, for example, to the las t  
peak in Fig. 3, we find q - 0.5, a result typical of 
al l  our data. The amount of energy which ar r ives  
a t  the bolometer via nonspecular channels i s  about 
6 t imes greater  than the specularly reflected en- 
ergy, but this i s  due to geometrical factors. The 
specular contribution comes from a single smal l  
spot on the reflection surface. Although the en- 
t i re  reflection surface contributes to the diffuse 
signal, the region close to the specular spot i s  
most important. 

In summary,  then, our picture that a fraction 
(1  -17) of the incident energy i s  reflected specu- 
larly,  the remaining 17 being scattered isotropical- 
ly, leads us  to expect a sharp specular peak (ex- 
perimental width -50 nsec) superimposed on a tail 
like that shown in Fig. 4. We do indeed s e e  that 
behavior, for  example in Fig. 3, in Fig. 17 below, 
and in many other cases,  when the surface i s  in 

vacuum. These observations indicate that even 
the simple problem of phonon reflection from zt 
crystal-vacuum interface cannot be adequately de- 
scribed by a model which only considers specular 
reflection. 

The importance of the diffuse component of the 
signal is  even more evident when one considers 
reflection from a crystal-helium interface. In a l l  
cases,  the part  of the signal we interpret to be due 
to diffuse scattering i s  drastically reduced when 
liquid helium i s  added to the cell. Although the 
specular peak i s  also usually observed to decrease 
when helium i s  added, we believe that this appar-  
ent decrease i s  entirely due to the removal of the 
superimposed diffuse signal. When the overlap of 
the diffuse tail and the specular peak is  properly 
accounted for, a l l  of our data a r e  consistent with 
the interpretation that the specularly reflected 
phonons a r e  not affected by the addition of helium 
a t  all. According to classical elastic theory, the 
acoustic mismatch between sapphire and liquid 
helium i s  so  severe that we should not be able to 
detect any change in the signal in these experi- 
ments when helium i s  added to the cell. Thus, we 
believe that the specular part of the signal obeys 
elastic theory, and i t  i s  the diffusely scattered 
phonons which a r e  solely responsible for  the 
anomalous Kapitza effect. 

That point of view is  supported by a number of 
phenomena observed in our data. Specular peaks 
which a r e  well resolved from a superimposed dif- 
fuse signal a r e  observed to change very little or  
not a t  al l  when helium is  added. Figure 3 shows a 
transverse -- longitudinal mode-conversion peak 
which has very little diffuse background and i s  un- 
affected by the presence of helium on the reflec- 
tion surface. This is  in contrast to most previous- 
ly published  experiment^^‘^ which report  large 
changes in the mode-conversion peak. We believe 
that this discrepancy i s  due to the poor resolution 
of previous experiments and the failure to distin- 
guish between specular and diffuse scattering. It 
should be emphasized that the null effect of helium 
on the mode-conversion peak in Fig. 3 i s  not due 
to any special surface preparation. Figure 5 
shows a spectrum in which the mode-conversion 
peaks a r e  accompanied by a diffuse background; 
in this case helium yields a noticeable effect, al-  
though the peak heights actually decrease by l e s s  
than 10%. The las t  t ransverse peak has a sub- 
stantial tai l  which decreases monotonically with 
increasing helium-gas pressure  (and therefore in- 
creasing liquid-helium film thickness). We have 
never observed the time-delay phenomena de- 
scribed in Ref. 8. In a l l  of our spectra the effect 
of helium on the last-arriving t ransverse  peak and 
the last  mode-conversion peak i s  grea ter  than on 
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FIG. 5. Spectrum showing a helium effect in the mode- 
conversion peaks (between 2 and 3 bsec; arrows show 
peak maxima in bulk helium). Heavy curve: Vacuum in- 
terface. Dashed curve: Bulk He. Light curves:  He 
partial  saturation, p / p o ,  respectively 6 x10-~ ,  3 x10-~ ,  
and 3 x10-~.  Experimental arrangement a s  in Fig. 3 ex- 
cept that heater-bolometer separation was 6.7 mm. 

the preceding peaks a s  shown for  example in Fig. 
6. We believe that this i s  due to the fact that a 
later-arriving specular peak is  riding on top of 
the diffuse tail of the preceding peaks. The addi- 
tion of helium eliminates the diffuse tails, and the 
apparent effect on the last  specular peak is  large. 
Another feature which we observe in a l l  our data 
i s  that the longitudinal peak i s  never followed by 
a diffuse tail, and the longitudinal peak is  always 
unaffected by helium. The systematic correlation 
between the effect of helium on the specular peaks 
and the presence of an underlying diffuse tail sup- 
ports our contention that the only effect of adding 
helium i s  to remove the diffuse component of the 
signal; the specular peaks appear to decrease only 
if the associated diffuse tail decreases. 

Another relationship which can be derived from 
the diffuse scattering model i s  the scaling behavior 
of the specular and diffuse signals a s  a function of 
the crystal  thickness. The time integral of both 
signals scales a s  lz", a s  one would expect, but 
the maximum of the nonspecular signal scales a s  
h*3 .  The rat io of the specular to the diffuse-scat- : 

tering signal a t  t =  2h/c, the specular pulse a r -  
rival time, 

increases linearly with h. Thus, experiments 
with long crystals  allow a better separation of 
specular and diffuse scattering than short ones. 

Among our earl iest  experiments were a s e r i e s  

FIG. 6. Spectrum showing that the helium effect in- 
creases  with each successive peak. Experimental a r -  
rangement as  in Figs. 3 and 5 except that heater-bolom- 
e ter  separation was 9.3 mm. 

performed in a long crystal  (42 mm x 22 mm diam- 
eter). To our considerable surprise,  the peaks 
in the spectrum seemed to be affected only slightly 
by adding helium to the vacuum interface. We now7 
understand that to have been a result of length 
scaling. It has recently been reported that i~z situ 
cleaving can eliminate the helium effect on reflec- 
tion spectra."e have here another way to 
achieve that result. In fact, the question of wheth- 
e r  and how the anomalous Kapitza effect is  to be 
observed in a given spectrum always depends on 
details of the geometry of the experiment. It may 
be la rger  o r  smaller  than one might naively ex- 
pect. In some crystallographic orientations of 
heater and bolometer, the effect of helium on the 
reflection signal can be remarkably large, a s  i s  
discussed in the following sections. 

111. CONVENTIONAL PHONON FOCUSING 
AND DIFFUSE SCATTERING 

The spectrum shown in Fig. 7 has six sharp 
peaks, each a t  the predicted ar r iva l  time for one 
o r  more specular reflection channels. Following 
the last  of these six peaks, there i s  a large bump, 
somewhat broader than the specular peaks. The 
bump does not correspond to the time of a r r iva l  of 
any specular process, but it i s  energy that returns 
from the reflecting surface in a narrow, concen- 
trated period of time. We have observed many 
features of this kind, some of them much la rger  
than the one in that spectrum. We shall show that 
these bumps a r e  due to diffusely scattered radia- 
tion which goes from heater to surface to detector 
along intense directions of phonon focusing. How - 
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time ( p s e c )  

FIG.  7. Spectrum showing peaks due to various reflection 
processes. Polarizations are labeled 1 , 2 , 3  in order of 
wavespeed, arrows indicating the change in polarization 
on reflection. Labels refer to lines along the time axis 
showing arrival times predicted by numerical calcula- 
tions from elastic theory. See Ref. 1 for details. Ar- 
rangement differs from that of Figs. 3 ,  5 ,  and 6 in that 
heater and boIometer are separated by 9.0 mm, this 
time along the X-axis. Note the large bump after the 
last (3 - 3) predicted peak. 

ever,  our initial attempts to identify the source of 
these features using standard  technique^'^^^'*^ to 
analyze the effects of phonon focusing proved fu- 
tile. We were able to deduce the origins of the 
bumps only after  developing a new, more  correc t  
theory of phonon focusing. Before introducing the 
new analysis, we wish to recount our efforts to 
use conventional techniques in order to demon- 
s t ra te  their inadequacy. 

Phonon focusing occurs in a l l  rea l  crystals  a s  
a consequence of crystal  anisotropy. Because the 
2 vector and the energy flux o r  Poynting vector 
5 of a phonon in a crystal  a r e  not collinear, the 
energy flux emitted from the heater i s  not uniform 
even if, a s  we assume, the vectors of the 
emitted phonons a r e  uniformly distributed. Pho- 
non focusing influences the amount of energy which 
reaches a given point on the surface f rom the 
heater, a s  well a s  the intensity of scattering from 
this point in the direction of the detector. 

Crystal  anisotropy also influences the diffusely 
scattered part  of the spectrum in another way. In 
the isotropic case,  the contribution to the diffuse 
signal between t and t + A t  comes from a circular  
o r  elliptical ring on the reflection surface (see  
Fig. 4). In a rea l  crystal ,  however, the s e t  of 
points on the reflection surface which have total 
flight time t from heater to detector via the su r -  
face i s  some irregular  curve that has no conven- 
ient analytic expression. 

In order to take these effects into account and to 
identify the position on the reflection surface 
which was responsible for  bumps like that in Fig. 
7, we se t  out to make contour plots of the energy 
distribution on the reflection surface and the flight 
time for  each mode. By superimposing these con- 
tour plots, we hoped to examine the intensity on 
the reflection surface a t  points which had flight 
t imes  which corresponded to the la rge  diffuse 
peaks. Unfortunately, severe  difficulties a rose  
i n  carrying out that project. 

The contour plots were constructed by interpo- 
lating values of the intensity and t ime of flight 
from a 20 x 20 table of computed values. This 
grid of 400 points represented a 4-cm2 a r e a  on the 
reflection surface centered above the heater. 
Both the intensity and the time of flight depend on 
the Poynting vector 5, which in turn depends in a 
complicated way on the k vector and polarization. 
We have previously described s imi lar  calculations 
for  specular reflection.' For each point on the 
grid, it was f i r s t  necessary to find the k vectors 
which corresponded to the Poynting vectors which 
cause energy to flow f rom the heater to the grid 
point and then back to the detector. This involves 
iterative calculations s imi lar  in principle to those 
for  specular reflection.' Since the c-vector cal-  
culation had to be performed hundreds of t imes 
per contour plot, it was necessary to write an ef- 
ficient algorithm to find kt given the direction of 5 
in order to keep the computing time within reason- 
able limits. 

By analogy to the specular reflection analysis, 
one might expect that there a r e  nine processes 
which connect heater and detector via an  arb i t ra ry  
grid point. Since each of the nine scattering pro- 
cesses  has a distinct a r r iva l  time, one would ex- 
pect to require nine separate arr ival- t ime con- 
tours for  a complete description. In order to 
simplify the problem, we confined attention to the 
non-mode-conversion transverse-transverse 
scattering processes,  which the experiments in- 
dicated were most important. 

The apparently simple matter  of labeling the 
transverse modes in an  anisotropic solid turns 
out on closer inspection to present an  insoluble 
difficulty. In Ref. 1 we discussed the disadvan- 
tages of the simple (L,  FT,ST) phase-velocity la-  
beling scheme. We suggested a labeling method 
which consisted of choosing a direction in 
space, labeling the three modes 1 (longitudinal), 
2 (fast transverse), and 3 (slow transverse)  in 
order of their speeds in that direction, then con- 
tinuing the polarizations smoothly along the slow- 
ness surface to any direction of interest. The 
slowness surface i s  the surface of constant w in 
space representing each of the three modes. Un- 
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fortunately, this labeling scheme did not give 
unique answers when applied to a general grid 
point. More precisely, the polarization can be 
continuously transported along a closed path on 
the slowness surface,  and the initial and final po- 
larizations may not be equal. The reason for  this 
behavior seems to  be that there exist points where 
the curves of constant w (sections of the slowness 
surface) for the two transverse modes osculate, 
as shown in Fig. 8.  In a sense, the surfaces touch 
without crossing. Starting f rom one curve on one 
side of the point A,  one can continue the polariza- 
tion continuously to either curve on the other side 
o f  the point. This seems to mean that there is  no 
way, even in principle, to divide the transverse 
reflection processes into globally distinct classes 
which have a continuous variation of  some vector- 
ial characteristic of the phonon. The previous 
success of  the method for the analysis of the spec- 
ular processes is  due to the fortunate circum- 
stance that no osculation point was in the vicinity 
of the connecting paths. 

Because of  the phonon labeling problem, it is  
irnpossible to associate with each grid point the 
flight t ime of a given transverse-phonon scattering 
process; the best that can be hoped for i s  to asso- 
ciate with each grid point four vectors and four 
t imes which correspond to two outgoing ( f r o m  the 
heater) and two ingoing transverse phonons. Even 
this is optimistic, since in fact there may be more 
than two transverse phonons which cause energy 
flow between the heater and a given point on the 
reflection surface. 

T o  see how this can happen, it i s  useful to r e -  
member that the group velocity of a wave packet, 
which is  in the direction of energy flow, is given 
by v- ,w .  Thus ,  the normal vectors to the w =  con- 
stant surface,  or slowness surface,  are parallel 
to the energy-flux vectors. The problem of finding 
all phonons that transport energy f rom the origin 
to  a given point ii can be interpreted geometrically 
as finding all points on the slowness surface with 

normal vector parallel to 8. I f  the slowness sur-  
face i s  convex like a sphere or ellipsoid, there i s  
only one solution to the problem. I f ,  however, the 
surface is  more complicated, multiple solutions 
arise as shown in Fig. 9. The  figure shows three 
distinct $vectors which yield normals and energy 
flow in precisely the same direction, although the 
magnitudes of  the three group velocities are nqt 
obliged to be equal. The far field due to an instan- 
taneous point source may be quite complicated in 
an anisotropic medium; instead of observing three 
pulses corresponding to longitudinal, fast trans- 
verse and slow transverse, in some directions 
one nlay observe several pulses f rom each po- 
larization.'' It appears that in sapphire the longi- 
tudinal sheet of the slowness surface i s  actually 
convex, so multiple solutions occur only for  the 
transverse modes. It i s  easy to convince oneself 
that multiple solutions for  the transverse branches 
are not confined to special high-symmetry points, 
but occur in general directions as well. Detailed 
numerical calculation shows that there are many 
regions in sapphire in which f ive or six trans- 
verse pulses can be observed. 

Before it was fully realized that many cvec tor s  
might lead to energy propagation in the same di-  
rection, the computational procedure for  finding 
the vector which sent energy in the .% direction 
was based on using GI/ 5 as a f i rs t  guess, and then 
improving the guess until a solution was found. 
As  can be seen f rom Fig. 9 ,  this technique would 
only yield the solution kt,; 6 and & cannot be 
reached by improving a guess which is  close to kt,. 
Moreover, there is  no way to generate a guess a 
priori which i s  close to & or c3. Mathematically, 
the problem i s  to find the global solutions to a 
coupled set of nonlinear vector equations in vector 

FIG. 8. Schematic diagram showing two sheets of a 
slowness surface which osculate a t  point A .  

FIG. 9. Schzmatic diagram of a slowness surface 
showing three Ir vectors which produce energy flow in 
the same direction. 
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unknowns. Since the only practical way to solve 
nonlinear equations is to improve a sufficiently 
good guess, it was necessary to compute the 
Poynting vectors for a dense grid of kt vectors on 
the entire slowness surface to find good initial 
guesses for cases like & and & of Fig. 9. With 
these added complications, one must be prepared 
to associate more than two ingoing and/or outgoing 
transverse-phonon 2 vectors with each grid point. 
Once a l l  the vectors have been found, the time 
of flight can be computed for each process in a 
straightforward manner. 

The computation of the intensity of the wave 
packet corresponding to each vector involves 
the theory of phonon f ~ c u s i n g . ~ ~ ~ ' '  The way elastic 
anisotropy may focus o r  defocus energz i s  illus- 
trated in Fig. 10. A wave packet wit& k vectors 
contained in a solid angle given by di2,= d &  X d &  
sends energy into a solid angle d6,= d &  x dfi,. In 
an isotropic solid, the kt and 6 vectors a r e  paral- 
lel, so  ds,= ds,, and there i s  no focusing. In an  
anisotropic solid, however, the k-vector pyramid 
and the corresponding Poynting-vector pyramid 
may have considerably different shape. If dfi, 
> dfi,, the energy is  focused, while if dQ,< dQ,, 
the energy i s  spread over a larger a rea  and the 
intensity i s  low. The ratio dCL,/d~1,, which i s  
called the focusing factor, can be used to measure 
the intensity of the energy flux which travels along 
fi. In order to calculate the differential a r ea  dQ,, 
one must know the change dij  caused by a change 
dc .  This i s  given by the formula 

'Pi doi=- 
dkj , 

where i or  j = x , y , z  and we use the summation 
convention. Because of the dependence of p i  on 
the polarization which in turn depends on c, the 
derivative 8p,/akj i s  rather complicated. First ,  
the k derivative of the polarization must be com- 
puted. The result is'' 

where e:(kj) denotes the i th component of the unit 
polarization vector of the a, mode (a= l , 2 , 3 )  with 

FIG. 10. A wave packet in space and the correspond- 
ing Poynting vectors in rea l  space, showing, in this 
case ,  phonon defocusing. 

k vector kj, and v, i s  the corresponding phase 
velocity. c,,,, is the elastic tensor. Substituting 
into this expression the formula 

yields the required derivative which can be used 
to compute the focusing factor. A computer pro- 
gram was written to evaluate the various deriva- 
tives and the intensity for each kt vector asso-  
ciated with a grid point. Although these formulas 
have previously been used to  calculate the intensi- 
t ies in high-symmetry directions in cubic crys-  
tals,'' most published phonon-focus ing calcula- 
tions have used a statistical method which yields 
only low-resolution information about the relative 
phonon intensity. 

Once the analysis outlined above has been com- 
pleted, each grid point has associated with it a 
l is t  of incoming and outgoing intensities and a r -  
rival times. In order to construct a contour plot, 
one phonon process must be selected a t  each grid 
point with its corresponding flight time and inten- 
sity. Because of the phonon-labeling complications 
discussed above, there may not be a unique way 
to make the choice. This i s  not an insurmountable 
problem, since the contours will contain informa- 
tion of interest a s  long a s  they a r e  reasonably con- 
tinuous and smooth. It was found that smooth con- 
tours could be obtained by choosing the two pro- 
cesses with highest intensity and labeling them ac-  
cording to the magnitude of the group velocity a s  
fast transverse and slow transverse. 

A typical s e t  of contour plots which results 
from this analysis a r e  shown in Figs. 11 and 12. 

FIG. 11. Contours of constant intensity on the surface 
of a sapphire crystal .  Heater i s  below the spot marked 
@. Surface normal is the Y axis. See text for  details. 



P E T E R  T A B O R E K  A N D  D A V I D  L .  G O O D S T E I N  22 - 

FIG. 12.  Contours of constant ar r iva l  l ime corres-  
ponding to intensities in Fig. 11. Heater below @, de- 
tector below B. 

Figure 11 shows the intensity distribution of the 
fast  t ransverse mode on the upper surface of the 
sapphire crystal. The rather dramatic effects of 
elastic anisotropy on energy flow in the crystal  
can be clearly seen. Figure 12 shows the contours 
of constant a r r iva l  time for  al l  scattering proces-  
s e s  that involve ingoing and outgoing fast  t rans-  
verse  phonons for  the experimental geometry cor-  
responding to the reflection signal shown in Fig. 
16 below. The ar r iva l  time of the large nonspecu- 
l a r  bump in Fig. 16, 3.5 psec,  is  marked by the 
heavy contour. When the ar r iva l  time and intensity 
contour maps a r e  superimposed, the heavy con- 
tour overlaps several  regions of high intensity, 
but many other time contours overlap equally in- 
tense regions. The large diffuse features seen in 
Figs. 7 and 16 a r e  apparently not due in any simple 
way to the fact that the heater emits  energy an- 
isotropically. 

IV. PHONON CAUSTICS: THEORY AND EXPERIMENT 

During the course of further analysis of intensity 
contours like Fig. 11, it was discovered that the 
numerical routines were unstable in some regions 
of high intensity, and the computer would some- 
t imes converge on isolated points where the focus- 
ing factor was very large. Because the Eqs. (10) 
and (11) for  the focusing factor a r e  rather com- 
plex, it i s  difficult to get a physical understanding 
of why the intensity i s  much higher in some r e -  
gions than in others. In an  attempt to gain some 
insight into this problem, we developed a differ- 
ent method of analyzing phonon focusing based on 
an  analysis of the asymptotic field from a point 
acoustic s ~ u r c e . ' ~ * ~ ~  The integrals which a r i s e  

in the problem a r e  of the type dealt with in formal 
catastrophe theory, and this theory can be used 
to make very general statements about the form 
of regions of high focusing using some simple 
geometric arguments. 

A general expression of the acoustic field a t  x 
from a point source a t  x' i s  obtained by constuct- 
ing the Green tensor g,,(x lx') which satisfies the 
anisotropic wave equation with a periodic point 
source: 

where, if c,,,, is  the elastic tensor, then 

and i t s  Fourier transform i s  

A similar  equation for  the f a r  field from a point 
source in an  anisotropic medium is  analyzed in 
Refs. 15 and 16; the treatment here i s  adapted 
from those references. 

To examine the field a t  a point P due to a source 
a t  the origin, we transform to a f rame in which P 
has coordinates (O,0, 2). The solution i s  

where B,, i s  the matrix of cofactors of E,,, G 
= d e t i  and the integral i s  over the slowness su r -  
face defined by G =  0 (surface of constant w in 2 
space). Equation (13) represents  the field a t  P in 
terms-of a weighted sum of plane waves which 
have k vectors on the slowness surface. The inte- 
gra l  cannot be carried out exactly, but for  large 
z it can be approximated using the principle of 
stationary phase. The phase i s  stationary a t  
points where (ak,/ak,) and (ak,/ak,) a r e  zero; 
geometrically this represents  points on the slow- 
ness surface with the normal vector in the & di- 
rection. Waves with 2 vector in the vicinity of the 
stationary point go= (k:,k:,k:) contribute to the 
integral in Eq. (13), but waves with other k vec- 
t o r s  tend to be out of phase and cancel each other. 
The exponent in Eq. (13) can be expanded to second 
order around the stationary point, which, in an 
appropriately chosen coordinate system yields: 

When this i s  substituted into Eq. (13) and the 
limits a r e  extended to i-, the leading order be- 
havior of the field i s  obtained: 

The product a0 i s  the Gaussian curvature of the 
slowness surface a t  the point of stationary phase 
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l?', and in this approximation, the field decreases 
a s  z-I and the intensity i s  inversely proportional 
to the Gaussian curvature ap. We have thus con- 
structed a geometric representation of phonon 
focusing. In retrospect it i s  evident that the ratio 
of solid angles shown in Fig. 10 is  formally iden- 
tical to  the curvature of the slowness surface a s  
defined by Gauss. 

The geometric measure of focusing has consid- 
erable advantages for making qualitative predic- 
tions over the traditional approach. For in- 
stance, it is  clear that directions of high focusing 
a r e  associated with regions of small  curvature on 
the slowness surface and that points of zero curv- 
ature yield an infinity in the field amplitude. An 
infinite o r  even very large displacement i s  of 
course incompatible with linear elastic theory. 
This result i s  due to a breakdown of the geomet- 
rical optics approximation that has been made in 
deriving Eq. (15). 

The possible forms of regions of zero curvature 
can be investigated by considering perturbations 
of the slowness surface of an iso_tropic solid, for 
which each sheet i s  a sphere in k space. The ef- 
fect of elastic anisotropy i s  to deform the spheres 
slightly; this generally (but not inevitably) leads 
to regions of negative curvature. Regions of posi- 
tive and negative curvature a r e  separated by 
smooth curves along which the curvature vanishes. 

Vectors normal to the slowness surface along 
such a closed curve correspond to Poynting vec- 
tors which sweep out a (topologically) conical sur-  
face emanating from the point source on which the 
field i s  intense but cannot be computed using geo- 
metrical optics. Such surfaces a r e  known a s  
caustics in classical wave theory, and higher- 
order approximations to the wave equation must 
be used to  analyze the field in their vicinity. 

If, for example, a in Eq. (14) i s  close to zero, 
the expansion i s  not sufficiently accurate and 
another term must be included: 

The retention of the third-order term i s  necessary 
because there a r e  two nearby points where the 
phase is stationary, corresponding to two parallel 
rays, a s  shown in Fig. 13. On the caustic, a= 0, 
the rays merge, and the geometrical optics ap- 
proximation goes to infinity, but the actual field 
is finite and is  given by 

The intensity is not uniform along the caustic a s  
suggested by the geometrical optics approxima- 

FIG. 13. Section of a slowness surface which contains 
a point A+ of zero curvature. On either side of A ,  there  
a r e  two k vectors yhich yield energy flow in the same 
direction. A s  the k vectors approachA, the two r ays  
merge. Note that in the vicinity of A ,  the slowness sur-  
face can be  approximated by a cubic polynomial-like Eq. 
(16).  

tion, but rather depends on the third derivative 
term y; remarkably, the field also has a z - 5 1 6  
spatial dependence, rather than the 2'' dependence 
normally expected from a point source. 

The breakdown of geometrical optics that occurs 
on a caustic is  an example of a catastrophe in the 
sense of formal catastrophe theory; this point of 
view i s  developed in Refs. 17 and 18. It should be 
emphasized that the catastrophes a r e  not physical 
ones. In fact, this analysis replaces nonphysical 
infinities in the old theory by intensities that a re  
finite everywhere. For elastic waves in a solid, 
catastrophe theory allows only two types of struc- 
turally stable caustic behavior. The simplest, 
known as  a fold catastrophe, corresponds to the 
coalescence of two rays, and is  associated with a 
third-order expansion such as  Eq. (16). Figure 13 
shows how the rays merge a t  a simple inflection 
point. Along the caustic, y may occasionally van- 
igh a t  isolated points, where a fourth-order ex- 
pansion i s  required. These points a r e  known a s  
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cusp catastrophes (because of the characteristic 
shape of the caustic) and correspond to the coales- 
cence of three rays.'" simple analysis shows 
that the field at  a cusp has spatial dependence 
~ ' ~ 1 ~ .  NO catastrophes of yet higher order can 
exist at  a typical point. A summary of the catas- 
trophe theory analysis of caustics in anisotropic 
media i s  shown in Fig. 14. 

Once i t  was realized that the intensity distribu- 
tion on the top surface of the crystal  would be 
dominated by the caustic curves where the focus- 
ing factor was infinite, the computer programs 
used to construct the contour plot of Fig. 11 were 
rewritten so  that the caustics could be located and 
plotted, a s  shown in Fig. 15. As expected on the 
basis of catastrophe theory, cusps where the field 
i s  particularly high a r e  a prominent feature in the 
figure. A comparison of Fig. 11, which was con- 
structed from a table of intensities on a finite grid 
and Fig. 15 which locates the caustics, shows that 
the intensity distribution interpolated from the 
finite grid can be quite misleading; only some of 
the high-intensity regions visible in Fig. 11 a r e  
associated with an underlying caustic, but these 
a r e  the most important. An important implication 
of the catastrophe analysis and the structural  s ta -  
bility of caustics i s  that phonon caustics a r e  a 
typical feature which can be expected to exist in 
most crystals. The structure of the caustics and 
the resulting fine structure in the phonon intensity 
distribution in Ge has been vividly revealed in a 
recent experiment." 

The caustic s tructure of the point source can 
be used to understand the sharp  nonspecular fea- 
tures  which a r e  observed in some reflection ge- 
ometries but not in others. It must be kept in 
mind, however, that in a reflection experiment 
diffusely scattered phonons can be refocused by 
the crystal  anisotropy. Thus, there a r e  two se t s  
of caustics which a r e  important to describe a r e -  
flection experiment: the heater caustics intersect 

* 
k space real  space  

FIG. 14. The $ vectors which correspond to points of 
zero curvature on the slo_wness surface define a topolog- 
ically conical surface in k space which has a smooth 
boundary, without sharp  cornezs. The Poynting vectors 
which a r e  associated with the k vectors also sweep out 
a topologically conical surface,  but it generally has 
sharp  cusp-like edges. 

FIG. 15. Location of caustics for both transverse 
modes in sapphire. The curves a r e  the intersection of 
the topologically conical caustic surface which emanates 
f rom the heater with the upper surface of the crystal .  
The position of the heater i s  marked by the circled 
cross .  Compare with Fig. 11. 

the reflection surface in curves of high incident 
intensity, while similar  caustics a r e  associated 
with the detector and can be interpreted a s  a se t  
of points where a source would focus strongly back 
to the detector. The insets of Figs. 16 and 17 
schematically show the orientation of the heater 
and detector caustics (detector caustic i s  dotted) 
for  the two representative experiments. Although 
the caustics a r e  drawn a s  lines, they have a width 

FIG. 16. Reflection signal for heater and bolometer 
displaced along the X axis (Y axis i s  the reflection sur-  
face normal). The inset shows the intersection of the 
heater (solid curve) and bolometer (dotted curve) caustic 
surfaces with the crystal  reflection surface. The inter-  
section of the two caustics provides a high-focusing 
channel for nonspecular scattering which gives r i s e  to 
the large bump in the reflection signal. Dashed curve in 
the main figure shows the effect of adding helium. Ex- 
perimental arrangement as  in Fig. 7,  except that heater- 
bolometer separation i s  2.0 mm. 
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FIG. 17. Reflection signal for  heater and bolometer 
displaced along C axis. The inset shows that for  this 
geometry, the heater and detector caustics do not inter- 
sect .  The ratio of specular to diffuse scattering i s  much 
higher in this geometry than in X Y  plane reflection 
shown in Fig. 14. The dashed curve in the main figure 
shows the effect of helium. Experimental arrangement 
a s  in Figs. 3 ,  5, and 6 except that heater-bolometer 
separation was 2.0 mm. 

given by the size of the source and detector. 
The sapphire crystal is  trigonal. It has one 

three-fold axis which we designate the C axis, and 
three two-fold axes in the plane perpendicular to 
C. We designate one of the two-fold axes to be X, 
then choose Y so  that X, Y, C form a right-handed 
Cartesian system. All of the samples in the ex- 
periments to be described in the remainder of 
this section a r e  cylinders whose axis i s  the Y axis 
of the crystal, and whose faces a re  therefore In 
the CX plane. 

If the heater and detector a r e  displaced along the 
X axis, a s  in Fig. 16, the caustics overlap and 
there i s  a spatially localized high-intensity non- 
specular scattering channel. The time-of -flight 
of this process agrees precisely with the arrival  
time of the large diffuse peak. If the heater and 
bolometer a r e  placed along the C axis, the caus- 
tics do not overlap and there i s  no prominent peak 
in the diffuse scattering signal, a s  shown in Fig. 
17. 

In both Figs. 16 and 17, the effect of adding heli- 
um to the reflecting surface i s  also shown. In 
Fig. 17, where there i s  no nonspecular bump, the 
behavior i s  just as  we would expect from the argu- 
ments of Sec. 11. In fact, we have already seen 
much the same result in Figs. 3 ,  5, and 6. The 
reasoning that led us to expect that result arose 
from the assumption that radiation that is  diffusely 
scattered a t  the vacuum interface would disappear 
into the helium when helium i s  present. The same 
argument, together with our assertion that the 

large bump in Fig. 16 is all  due to diffuse scatter- 
ing, leads us to expect that the entire bump will 
disappear in the presence of helium. That expec- 
tation i s  dramatically confirmed. 

In another experiment which was designed to test 
the intersecting-caustics interpretation of the large 
nonspecular peak, the heater and bolometer were 
placed along the X axis a s  in Fig. 16, but on a 
longer crystal (24 mm X 22 mm diameter). In this 
configuration, the caustics do not intersect on the 
reflection surface, but rather hit the side wall, 
a s  illustrated in the inset of Fig. 18; note that 
there i s  no large diffuse peak which follows the 
specular transverse peaks. Since the high-focus- 
ing channels for diffuse scattering intersect the 
side wall, the diffusely scattered phonons arrive 
at a much earlier time than the specular phonons, 
which have made two traversals of the full length 
of the crystal. When the same crystal was cut and 
repolished, the diffuse-scattering channel inter- 
sects the back reflection surface again, and the 
familiar diffuse bump following the specular chan- 
nels is recovered, a s  shown in Fig. 19. Note that 
the specular peaks, although shifted to different 
arrival  times, a re  essentially similar in the two 
experiments; only the diffuse scattering i s  strong- 
ly affected by the shape of the crystal. 

The analysis of caustics and the experimental 
results presented above have several important 
implications for the proper interpretation of pho- 

FIG. 18. Reflection signal for heater and bolometer 
displaced along X axis (as in Fig. 16) but in a crystal  24 
m m  x22 mm diameter. The heater and bolometer caus- 
t ics  intersect  in several  places on the side wall of the 
crystal ,  giving r i s e  to the diffuse peaks D l ,  0 2 ,  0 3 ,  
and 04. The three sharp  peaks at 7.5 psec a r e  due to 
specular t ransverse  processes;  no large diffuse bump 
follows these peaks. 
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I \ the caustics. Instead, there a r e  regions of ele- 
vated intensity, some of which conceal underlying 
caustics and contribute heavily to the experimental 

I \ signal, and others which do neither. Thus, while 
the old phonon-focusing calculations can be helpful 
in interpreting certain simple cases,3 they cannot 
explain the details of the experiments described 
above. 

In addition to its utility in predicting experimen- 
tal  results ,  the geometric theory of focusing de- 
veloped here also provides an appealing theoreti- 
cal framework for  the discussion of phonon propa- 
gation in crystals. Although the detailed calcula- 
tions a r e  themselves rather involved, catastrophe 
theory provides a means of extracting a simple 

I 1 1 1 

0 5 and general picture: from a point acoustic source 
time ( t i sec )  in a crystal  there emanate topologically conical 

caustic surfaces (fold catastrophes) with occa- 
FIG. 19. Reflection signal for precisely the s ame  sional higher-order line singularities in those 

geometry as  in Fig. 18, except the crystal  has been cut surfaces (cusp catastrophes). On the caustics the 
to a length of 6.9 mm. The caustics intersect on the re-  
flection surface and cause the diffuse bump Dl .  field falls off more slowly than (distance)-', and 

on the cusps more slowly still ,  but it always r e -  
mains finite and calculable, a s  it must. 

non-reflection experiments. Perhaps the most 
important conclusion i s  that the diffuse-scattering 
signal behaves in two essentially different ways 
depending on whether the heater and bolometer 
caustics intersect o r  not. If the caustics do not 
intersect, the anisotropic emission of energy from 
the heater i s  washed out by diffuse reflection, and 
the signal can be adequately described using an 
isotropic model a s  we have done in Sec. 11. If the 
caustics intersect, the diffuse scattering produces 
rather sharp features which in the past may have 
been confused with specular peaks. The inter- 
section o r  nonintersection of the caustics depends 
critically on the relative orientation of the heater 
and detector and the shape of the crystal. These 
parameters have been given insufficient attention 
by previous investigators. Many experiments 
have been reported in which the crystallographic 
plane of the reflection surface i s  specified, but 
the plane which contains the heater -detector -sur-  
face normal i s  not. Even if the heater-detector 
separation i s  small, changes in the relative orien- 
tation with respect to the crystal  axes can com- 
pletely change the received signal, and the appar- 
ent effect of helium. 

It i s  interesting to note that the time-of-flight 
of the diffuse peaks can be predicted from the 
caustic s tructure of a point source alone; regions 
where the focusing factor i s  finite do not seem to 
contribute significantly to the diffuse peak. The 
published tables and  plot^'^*^^ of average phonon 
intensities computed on a grid a r e  misleading in 
the sense that they do not reveal the existence of 

V. SUMMARY AND CONCLUSIONS 

In this paper, we have discussed the effect of 
diffuse scattering of phonons a t  an interface on 
phonon-reflection spectra. In the absence of 
strong focusing effects, a simple isotropic theory 
accounts for  the observed line shapes. On the 
other hand, if the heater-detector-crystal geom- 
etry i s  such that heater and detector caustics 
intersect (especially near a cusp) on the reflecting 
surface, almost nothing else i s  important in 
understanding the diffuse part  of the reflected sig-  
nal. When helium i s  present a t  the interface, the 
phonons that would have been diffusely scattered 
a r e  transmitted instead, but the specularly r e -  
flected part  of the spectrum is not observably af- 
fected. Thus, it i s  the diffusely scattered portion 
of the thermal energy that i s  responsible for the 
anomalous Kapitza effect. 

The effects described in the paragraph above 
could not have been detected without the high-reso- 
lution time-of-flight spectra we have obtained and 
presented, nor could they have been understood 
without the new theory of phonon focusing we have 
presented. It is  important to realize, however, 
that although we have isolated part  of the cause of 
the Kapitza effect, the effect i s  s t i l l  not under- 
stood. We cannot be su re  even why part of the en- 
ergy is  diffusely scattered, much l e s s  why that 
part  of the energy transmits  easily through the 
interface. 

Specular reflection can be understood to be a 
consequence of the translational invariance of 
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the interface parallel to itself. The cause of non- 
specular reflection must, therefore, lie in what- 
ever lifts the translational invariance. Obvious 
candidates a re  surface roughness, imperfections 
such a s  dislocations near the surface, and patches 
of adsorbed impurities on the surface. Consider 
surface roughness a s  an example. If a surface is 
corrugated with a wavelength larger than that of 
the incident phonons, the phonons will be diffracted 
rather than reflected. The optically polished sur-  
faces used in our experiments have a characteris- 
tic roughness scale of approximately 25 nm. The 
thermal phonons in the heat pulses we used have 
an energy distribution that peaks at around 25 nm. 
Thus, one might expect that about half the energy 
was in the form of long-wavelength phonons for 
which the surface i s  flat, and which are,  there- 
fore, reflected specularly. The remaining short- 
wavelength phonons a re  diffracted, and (for some 
unknown reason) transmitted if helium i s  present. 
This argument would account nicely for our ob- 
servation that g = 0.5; i.e., we observe that about 
half the energy i s  reflected specularly and half 
diffusely. The same argument would lead one to 
expect that, if the detector could resolve phonon 
frequencies, i t  would be found that low frequencies 
a re  concentrated in the specular peaks, while high 
frequencies a re  concentrated in the large nonspec- 

ular bumps, e.g., in Figs. 7,  16, and 19. Experi- 
ments to check that idea a r e  planned. However, 
evidence already exists that high-frequency pho- 
nons a re  principally responsible for the Kapitza 
e f f e ~ t . ~ * ~ ~  Thus, the whole picture hangs together 
very well, but it still yields no insight into the 
mechanism of the effect. The theoretical picture 
of the effects of surface roughness on the Kapitza 
resistance seems c o n f u ~ e d . ~ ~ * ~ ~  A more realistic 
theory would be helpful in understanding the re -  
sults of these experiments. 

In conclusion, we wish to point out that the in- 
sights gained from the work we have presented 
here should lead to a new generation of useful ex- 
periments. For example, we now see how one can 
design a phonon generator-detector-crystal geom- 
etry in order to concentrate the most interesting 
part of the spectrum, the nonspecular part, into 
intense bumps, isolated from all specular reflec- 
tions. With the nonspecular part thus isolated, 
its behavior can be studied quantitatively and sen- 
sitively in ways not previously possible. 
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