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Evolution of a non-Abelian cosmic string network
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We describe a numerical simulation of the evolution of anS3 cosmic string network which takes fully into
account the noncommutative nature of the cosmic string fluxes and the topological obstructions which hinder
strings from moving past each other or intercommuting. The influence of initial conditions, string tensions, and
other parameters on the network’s evolution is explored. Contrary to some previous suggestions, we find no
strong evidence of the ‘‘freezing’’ required for a string-dominated cosmological scenario. Instead, the results
in a broad range of regimes are consistent with the familiar scaling law, i.e., a constant number of strings per
horizon volume. The size of this number, however, can vary quite a bit, as can other overall features. There is
a surprisingly strong dependence on the statistical properties of the initial conditions. We also observe a rich
variety of interesting new structures, such as light string webs stretched between heavier strings, which are not
seen in Abelian networks.@S0556-2821~98!00304-X#
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I. INTRODUCTION

A generic feature of many spontaneously broken ga
theories is the existence of topological solitons, such
strings~or flux tubes!, domain walls and monopoles. Man
grand unified models predict the formation of such defe
during a cosmological phase transition@1#. The defects could
be interesting as a potentially observable signature of
symmetry-breaking pattern, and could also have impor
consequences for the evolution of the universe. Dom
walls and monopoles, if they are stable and occur with
cosmic strings, generally are not considered phenomeno
cally viable. Domain walls tend to produce density perturb
tions that are much too strong@2#, whereas monopoles, i
they exist at all, are predicted to form in great abundan
which are incompatible with current observations@3#.
Among the possible categories of stable topological defe
stringlike defects, or cosmic strings, are considered the l
disastrous for cosmological models, and may be useful fr
a model-building point of view@4#. Among the potential ap-
plications, it has been proposed that the gravitational effe
of either infinite cosmic strings or closed loops of string m
serve as sources of density perturbations leading to galax
cluster formation@5,6#.

A persistent string network could conceivably also ha
profound effects on the evolution of the universe due to
bulk energy density, quite apart from the effects of fluctu
tions. If a network of strings becomes frozen so that strin
are fixed in comoving coordinates, then they will b
stretched by the expansion of the universe. If the networ
thought of as composed of a fixed number of segments,
number of segments per unit volume will be proportional
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a23 while the length of each segment grows asa due to
stretching, and so the total energy density will scale as

a233a1;a22,

wherea is the scale parameter representing the size of
universe. The energy density of nonrelativistic matter, on
other hand, scales asa23, and as the universe expands t
energy in strings will grow relative to that of matter until
eventually dominates. As explained below, such a froz
network is not a typical outcome for the types of strings th
have been studied to date. Instead, there are energy
mechanisms that allow strings to be progressively destroy
while those that survive continue to move relativistical
their total energy scaling in the same way as that of matte
has been suggested, however, that non-Abelian strings m
behave differently from Abelian ones, and might indeed le
to a string-dominated universe. A universe dominated
very heavy strings is not likely to be a viable model, bu
cosmological model with a fairly recent transition to a strin
dominated phase with comparatively light strings has so
desirable properties@7#. Strings could serve as an interestin
form of dark matter: giving density parameterV.1 as re-
quired by inflation, whileVmatter,1, and possibly resolving
the apparent discrepancy between estimates of the age o
universe from the expansion rate and from stellar ages.
modifying the equation of state of the universe, they co
mimic some of the effects of a cosmological constant. Th
has been a recent revival of interest in such a scenario@8#,
and testing its consistency is one of the chief motivations
the work described in this paper.

The evolution of Abelian cosmic strings has been stud
extensively, and we review some of the salient points her
order to point out contrasts with the non-Abelian case. T
simplest and best understood type of cosmic strings are th
which occur in the Abelian Higgs model@9# and are classi-
fied by their integer winding number~an element ofZ!. We
3317 © 1998 The American Physical Society
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3318 57PATRICK McGRAW
shall refer to these asZ strings.1 Assuming that only the
strings with unit winding number are stable~type-II strings!,
they can be formed either as infinite strings or closed loo
Monte Carlo simulations@10# indicate that the infinite strings
constitute a majority~63–80 %! of the total length of the
network initially formed by a phase transition, with the r
mainder comprising a ‘‘scale-invariant’’ distribution o
closed loops. A very important dynamical process of th
strings is intercommutation@1,11,12#, the process in which
two colliding strings reconnect so that a part of each strin
is connected to part of the other strings. Two infinite strin
intercommuting with each other twice~or a single string in-
tercommuting with itself! can form new closed loops from
pieces of the infinite strings, and this is thought to be
principal mechanism for the destruction of infinite strings

Dimensional analysis and energy conservation argum
@4,6# provide a plausible picture of the strings’ evolutio
Infinite strings are destroyed by intercommutation and t
lose energy to the network of loops. Loops, in turn, shrink
they lose their energy to gravitational radiation, and th
may also split into smaller loops by intercommutation. A
loop will eventually contract to a point and be destroyed. T
system reaches a dynamical steady state, or self-similar
lution, characterized by a single evolving length scale wh
is the size of the cosmological horizon. The rate at wh
new strings appear within the growing horizon is balanc
by the rate at which they are destroyed. An approximat
constant number~order unity! of long strings stretch across
Hubble volume at a given time, and intercommutations re
in the formation of a similar number of new closed loops p
Hubble volume, which are destroyed within a Hubble tim
While there is disagreement over details, numerical simu
tions @13# have supported this general picture. All results a
consistent with a scaling behavior in which the energy d
sity in strings remains a small, fixed fraction of the mat
density and there is no string domination.

We emphasize that intercommutation is crucial to this p
ture of the strings’ evolution. Since non-Abelian strings
general cannot intercommute, we might expect different
havior for such strings.

Somewhat less attention has been devoted to the evolu
of branched networks, in which several strings may join a
vertex. Branched networks occur when a U~1! gauge group is
spontaneously broken toZN with N>3, or when the unbro-
ken group is a non-Abelian discrete group. Among the w
that has been done is that of Vachaspati and Vilenkin@14#
who considered a network ofZ3 strings, which have the
novel feature that three strings may intersect in a vertexZ3
strings tend to form an infinite network of vertices connec
by string segments, with very few closed loops. It had p
viously been speculated that the nodes in a branched net
could settle to equilibrium positions, thus causing the n
work to freeze as a string-dominated universe requires,
the simulations of@14# indicated otherwise. Instead of reac
ing an equilibrium, the nodes pull together and annihila

1These are often referred to in the literature as U~1! strings since
they result from the complete breaking of a U~1! gauge group, but
it seems more logical to call them by their topological classificati
as is usual for other types of strings.
s.
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steadily reducing the number of nodes and strings. The
nihilation of vertices leads to a self-similar scaling behavi
as long as the nodes are able to come close enough to
other to annihilate. The phenomenological consequence
their model are rather similar to those ofZ strings: The num-
ber of vertices and string segments per horizon volume
mains roughly constant, and the energy density of the n
work is a small constant fraction of the matter density. T
strings never relax to an equilibrium, but continue to mo
with relativistic transverse velocities, following a self-simila
evolution pattern much as that ofZ strings.

The purpose of this paper is to explore the consequen
of a network of non-Abelian strings. Such strings are kno
to exhibit a number of exotic types of interactions@15,16#.
Particularly significant is the fact that when two non-Abeli
strings cross each other, they cannot generally intercomm
nor can they pass through one another without forming n
vertices and becoming joined by a new segment of str
@17#. Linked loops of string cannot usually become unlinke
and vice versa. One might expect that this would inhibit t
decay of a cosmic network by obstructing the removal
string segments. If new strings are continually being form
through string collisions, their energy must come from t
already existing strings, and an equilibrium with the string
transverse velocity damped out might seem a more lik
final state. Some evidence for slowing down of the networ
destruction was reported very recently by Pen and Spe
@8# in a class of models with non-Abelian global strings.

In this paper, we describe a numerical simulation o
network of S3 strings. Unlike the authors of Ref.@8#, we
consider gauge strings, which have no mutual long-ra
interactions. Our interest is in understanding the qualitat
nature of the fate of a non-Abelian string network. Do col
sions result in a nondiminishing or rapidly increasing nu
ber of strings? A static equilibrium state which is expected
be conformally stretched with the universe’s expansio
Does the network instead decay rapidly into finite netwo
and closed loops? Or does a dynamical self-similar evolu
emerge, as in@14#? Another question which we hope to illu
minate is: which processes play the most crucial roles in
network’s evolution? The importance of intercommutation
the evolution ofZ strings led to fundamental study of th
dynamics of intercommutation; likewise it is hoped that t
results obtained here will suggest which aspects of n
Abelian string dynamics are ripe for closer examination.

Our method of simulation is directly inspired by that
Ref. @14#: we generate initial conditions from a lattice Mon
Carlo simulation and then evolve the network according t
highly simplified model of string dynamics which we hop
captures the essential features of a string network losing
ergy. We find hints of some quite interesting physics in t
interplay between the two types of string in our model, an
rather surprising dependence of the network’s behavior
the initial conditions. Concerning the string-dominated co
mological scenario, we reach somewhat different conc
sions from@8#. For a wide range of conditions, the network
density follows power laws very similar to the ones arisi
in Abelian networks. Non-abelian effects can, indeed, sl
down the network’s decay in the sense that they change
,
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57 3319EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
coefficients of the power laws, but it appears as if the slo
ing down to a stable equilibrium happens only under spe
circumstances, if at all.

The remainder of this paper is organized as follows. S
tion II provides a brief summary of the properties of no
Abelian strings which bear on this simulation. We discu
some of the subtleties inherent in the description of nonco
muting magnetic fluxes, and the necessity of a~gauge fixing!
convention to resolve these ambiguities and allow the co
parison of fluxes of strings. Most importantly, we expla
why two colliding non-Abelian strings cannot, in gener
cross or intercommute without forming a new segment
string. Section III describes the particularS3 model which
we have chosen to simulate.S3 , the permutation group on
three elements, was chosen as the gauge group becaus
a simple non-Abelian group which exhibits all of the impo
tant general characteristics of non-Abelian strings. Anot
motivation for this choice is thatS3 containsZ3 as a sub-
group, allowing instructive comparisons with theZ3 network
simulations of Ref.@14#. Section III also describes our pro
cedure for simulating the network’s dynamical evolutio
giving enough details to allow an understanding of the
sults. Additional technicalities of the procedure are relega
to the Appendix. Section IV describes our procedures
generating initial conditions, and summarizes features of
networks these procedures generate. We use two diffe
Monte Carlo algorithms which generate initial networks w
somewhat different statistical properties. The network’s e
lution turns out to have a surprisingly strong dependence
the initial conditions. Section V presents results of the d
namical evolution simulation, exploring the influence of
number of different variables including the initial condition
of the network and the ratio of string tensions. These res
are compared with those for aZ3 network, which is Abelian.
In Sec. VI, we present our conclusions and suggest direct
for future work.

The Appendix describes our procedure for keeping tr
of string fluxes during the simulation and for establishi
them from the lattice Monte Carlo procedure, covering d
tails not included in Sec. III. The implementation of no
Abelian fluxes in a simulation presents a rather diffic
problem in its own right. A careful gauge-fixing procedure
required, and some of the subtleties that arise are of inte
from a field-theoretic point of view. The algorithm has be
described in greater detail in Ref.@18#.

In this discussion, the strings will be considered as cl
sical objects with well-defined fluxes~after a gauge has bee
fixed!. We will not consider quantum-mechanical effec
such as Cheshire charge@19#.

II. VORTICES AND STRINGS IN A NON-ABELIAN
DISCRETE GAUGE THEORY

In this section, we review very briefly the definition o
non-Abelian vortices and strings and some of the proper
which are important for the current simulation. The form
ism used here was developed for vortices in@20# and applied
to strings in@16#.

Generically, topological defects of codimension 1~vorti-
ces in two space dimensions, strings in three! occur when a
gauge symmetry groupG is spontaneously broken to a su
-
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groupH such that there are noncontractible closed loops
the vacuum manifoldG/H. These paths and the correspon
ing defects are formally classified by elements of the fi
homotopy groupp1(G/H)Þ1 @1,21#. For example, in the
case of a U~1! symmetry breaking completely~the Abelian-
Higgs model!, p1(G/H)5p1@U(1)#5Z, and strings are
classified by their integer winding number. In the remaind
of this discussion, we will assume, unless otherwise sta
G is simply connected and that the unbroken subgroupH is
discrete. In that casep1(G/H);p0(H);H. No light propa-
gating fields then remain in the broken phase, and the ga
connection is locally pure gauge everywhere outside of
fect cores. Ifp0(H) is non-Abelian, then the composition o
paths depends on the order. Hence the fluxes of strings
be noncommuting group elements, and that is what is me
by non-Abelian strings.

To describe the fluxes of cosmic strings, we consid
closed curvesG which lie in the~nonsimply connected! re-
gion R5M2$D%, where $D% is the union of all defect
cores~regions of nonvacuum! andM is the spatial manifold
on which the defects exist. Each string gives rise to a clas
noncontractible closed paths inM2$D% which encircle the
string.

The flux enclosed by any closed loopG ~e.g., one that
surrounds a string! is a group element defined as a pat
ordered exponential of the gauge field

flux5P expS R
G
A•dl D . ~1!

For anyG within R this must be an element ofH. This is
because the Higgs field is covariantly constant throughouR
and so the transformation that results from parallel transp
around a loop must leave the Higgs field invariant.

In a non-Abelian theory, this definition of the flux is no
gauge invariant, and may depend on the point at which
path begins and ends. However, the flux through any c
tractible loop which does not enclose a string is necessa
trivial. A corollary of this fact is that two closed loops whic
share the same beginning and ending pointx0 , and can be
continuously deformed into each other, have the same fl
Thus the relevant structure for the description of the sys
of defects is the fundamental group or first homotopy gro
p1(M2$D%,x0), defined with respect to a base pointx0 .
Each string is associated with a generator of the fundame
group. Oncex0 has been~arbitrarily! chosen, the fluxes of al
closed paths~and of all strings! are specified by a homomor
phism from p1(M2$D%,x0) into H;p1(G/H!. The only
remaining gauge freedom is a global one. However, ther
a considerable amount of ambiguity in what we mean
‘‘the flux’’ of one particular string: an arbitrariness in how
exactly the set of generators is chosen for the homot
groupp1(M2$D%,x0). In Fig. 1, for example, there are tw
loops, both beginning and ending atx0 , both enclosing the
same string without enclosing any others, which are none
less representatives of different homotopy classes~and con-
sequently may be associated with different fluxes!. An inter-
vening string prevents one path from being continuou
deformed to the other. The fluxes associated with the
different paths may differ through conjugation by the flux
the other string. In an Abelian theory, conjugation is trivia
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3320 57PATRICK McGRAW
not so in a non-Abelian one. It follows that fluxes cann
meaningfully be compared~say, to determine if they are th
same! if the paths used to define those fluxes pass on op
site sides of some other string. Comparisons must be m
using ‘‘nearby’’ paths.

Since the flux of the same string may described, depe
ing on convention, by distinct conjugate elements ofH, it
follows that strings whose fluxes are in the same conjug
class must be generate in tension. It is not true, however,
all fluxes in the same conjugacy class are the same. Ifa and
b belong to the same conjugacy class, it is by no me
guaranteed thata2 and ab also are conjugate, or thatab
5ba. Distinctions among elements within the same con
gacy class can have important consequences in any situ
where the product or commutator of two fluxes is relevant
is the case when two strings collide.

The path dependence of the flux of a string implies
important fact: two strings with noncommuting fluxes cann
pass through each other without forming a new segmen
string whose flux is the commutator of the fluxes of the t
original strings. Penetration without the formation of a ne
string would violate flux conservation@17#. This is illustrated
in Fig. 2. Noncommuting strings also cannot intercommu
We will be especially interested in the consequences of
entanglement process for the evolution of a string network
might impede the collapse of the network.

III. OUR MODEL AND ITS DYNAMICS

S3 strings. We consider here a model with unbroke
gauge groupH5S3 , the permutation group on three objec
The spectrum of this model will include strings whose flux
are elements ofS3 . S3 has six elements in all. The identitye
corresponds to the trivial permutation. There are three
permutations~two-cycles or transpositions! each leaving one

FIG. 1. The pathsa anda8 both enclose the same string and
other strings, but they cannot be continuously deformed into e
other without crossing another string. Thus, they represent diffe
elements of the fundamental groupp1(M2$D%,x0), and so the
fluxes associated with them may be different. Specifically, the
motopy classes ofa and a8 are related through conjugation b
another generator:a8;bab21. ~We follow the usual convention
of composing paths from right to left:bab21 means the path
formed by traversing first the reverse ofb, then a, then b. The
relation; represents homotopy equivalence.! The associated fluxe
are analogously related: a nontrivial relation if the fluxes do
commute.
t
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of the three elements invariant and interchanging the o
two. We may denote these, for convenience, byt1[$(123)
→(132)%, t2[$(123)→(321)%, t3[$(123)
→(213)%. In this notation,t i is the two-cycle which leaves
the i th element in the same position. The two nontrivial ev
permutations are the three-cycles, or cyclic permutatio
which we denote here bys1[$(123)→(312)%, s2

[$(123)→(231)%. In the more conventional cycle notatio
@22#, we havet15(23), t25(13), t35(12), s15(123), s2

5(132).
The two-cycles form one of the two nontrivial conjugac

classes, and the three-cycles form another. Thus our m
supports two types of strings, which we shall refer to as o
and even strings, or alternately ast ands strings. The three-
cycles generate aZ3 subgroup, so that our model contain
the Z3 model as a subset. Three even strings may meet
vertex, just as in theZ3 model. Another type of junction is
one where two two-cycle~or odd! strings merge to form a
three-cycle~even! string. Figure 3 shows the two types o
junctions in our model.

Since each two-cycle is equal to its inverse, opposit
oriented odd strings are topologically equivalent. An ev
string, on the other hand, possesses a natural orientation:
flux through a path encircling it with one orientation iss1 ,
while it is s2 for the opposite orientation. In subseque
figures, even strings will often be denoted by oriented lin
with the string carrying fluxs1 in the direction of the arrow,

h
nt

-

t

FIG. 2. Attempt to pass two strings through each other. In~A!
the flux of one string may be defined by either of the pathsa or g,
and that of the other string byb. Let the fluxes associated witha, b,
and g be a, b, and c, respectively. In this case,c5bab21. In
general,cÞa. Now, if we attempt to pass the strings through ea
other, no strings need cross the pathsa and g, so the associated
fluxes will not change. But if the strings were to pass through e
other freely, as in~B!, a andg would be continuously deformable
into each other. This is impossible if they have different fluxes.
order to conserve flux, the string must branch somewhere an
connected to the other by a new string whose flux as defined
pathd in ~C! is ca215bab21a21.
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57 3321EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
while odd strings have no arrow, reflecting their lack of o
entation.

Note that the parity is conserved at any junction: i.e.,
odd string entering a junction must be matched by ano
odd string leaving. In this sense, odd strings can never e
even if they change their flux at a junction. Even strings,
the other hand, may end at a junction. It is helpful to vie
the network as being composed of two interacting s
systems. One subsystem consists of infinite or closet
strings~as withZ strings, they have no free ends!. The other
comprises a branched Abelian web ofs strings, some of
which end ont strings. The simulation results presented la
in this paper exhibit an interesting interplay between th
two subsystems.

String dynamics.The system we simulate consists
three-way junctions, or nodes, joined bys andt strings. The
strings are approximated as straight segments between
tions. In effect, we are averaging over transverse oscillati
of the strings. However, it is possible for a string segmen
be interrupted by a pair of nodes doubly linked to each ot
as in Fig. 4. Doubly linked nodes tend to annihilate fai
quickly, and such configurations play the role of transie
kinks on otherwise straight segments.

As in @14#, the nodes are assumed to undergo dam
motion under the influence of string tensions. The ene
loss leads to the shortening of strings. As an approxima
for the energy loss of a real string network, the model
damped motion of the nodes is most realistic if one suppo
that the string junctions are monopoles which carry so
unconfined magnetic flux, as in a model with the symmet
breaking pattern

FIG. 3. String junctions in theS3 model.~A! Two possiblesss
junctions: three strings with the same flux,s1 or s2 , emanate from
the node.~Or two s1 strings merge into a singles2 , etc.! ~B! One
of the class ofstt junctions: Twot-strings merge into ans string.
Fluxes are defined with respect to a base pointx0 by the paths
shown. Here, as in many subsequent figures, ans string is drawn as
an oriented line. The string carries fluxs1 in the direction of the
arrow; i.e., a counterclockwise path around the arrow encloses
s1 .
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S33@SU~3!3SU~2!3U~1!EM#

D
,

whereD is a discrete factor divided out so that the mon
poles at string junctions may carry electromagnetic U~1!
charge. Their magnetic charges should then result in ra
tion damping.2

Our simulation proceeds in discrete time steps. Dur
each time step, each node is moved by a displacement
portional to the vector sum of all tensions acting on it. Th
type of evolution corresponds to damped motion for
}velocity. The constant of proportionality is a parame
which may be absorbed into the size of the time step. Th
in appropriate units,

Dx5Dt(
r

Trnr , ~2!

where Dt is the time step,nr is the unit vector along the
direction of ther th string connected to the node, andTr is
the magnitude of that string’s tension.r runs from 1 to 3 for
the three strings that meet at each node. Since our mode
two types of string with possibly different tensions, the ra
of these two tensions is a variable parameter of the sim
tion. When we present the results in Sec. VI, we use u
such that the lattice spacing of the initial-condition Mon
Carlo algorithm is 1 and the tensions are of order un
~More specifically, thet-string tension is normalized to 1
while the other tension is varied.!

Each node is moved in turn. During the motion of a nod
the strings attached to it may collide with other strings. T
annihilation of two nodes is allowed if they approach ea
other more closely than a certain distancedann. The proce-
dures for handling collisions of strings or nodes are
follows.3

~i! Intercommutation. If, in the process of moving a no
from its initial to final position, one of its string segmen

2A model has been constructed in which topologicalZn strings
become attached to monopoles which also carry other charges@23#.
Constructing a model withS3 strings joined at monopoles might b
slightly harder, but it is not our main concern here. For a hint
how such a model could arise, consider the monopoles that f
when an SU~5! group is broken in the familiar way to
SU~3!3SU~2!3U~1!/Z6 . This transition is known to yield stable
monopoles with SU~3!, SU~2!, and U~1! flux @24,25#. We could
imagine a second symmetry-breaking stage in which the SU~3!/Z3

factor is broken down toS3 in such a way that the resulting string
also carry nontrivial flux in theZ2 center of SU~2!. Whenever three
such strings join, the resulting netZ2 flux can unwind through a
monopole, which has both SU~2! and U~1! flux.

3Some of these procedures differ in minor details from those
scribed in@18#.

x

FIG. 4. Doubly linked nodes. A pair like this can interrupt a
otherwise straight string or act as a kink.
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3322 57PATRICK McGRAW
intersects some other segment, then the fluxes of those
segments are compared at the point where the crossing
curs. If the fluxes commute, then the two segments may
ther pass through each other unaltered, or intercommute.
probabilities of these two outcomes may in principle
taken as an adjustable parameter of the simulation, but
have chosen to let the probability of intercommutation b
in all cases. It is widely believed that intercommutation
generically the more common outcome whenever two c
mic strings cross. In the self-dual limit, it can be shown th
Nielsen-Oleson strings always intercommute. Therefore
choice to set the intercommutation probability to 1 seem
natural one.

Intercommutation may occur in two possible situation
either both strings are three-cycle (s) strings, or both are
two-cycles. In the latter case, the fluxes of the two strin
must in fact be equal. In an intercommutation, the string e
are rearranged in such a way as to conserve flux. In the
of two s strings, there is always only one way to rearran
the ends, as shown in Fig. 5~a!. A string end carrying fluxs1

to the point of intersection may not be joined to one carry
the inverse fluxs2 . When twot strings intercommute, how

FIG. 5. ~a! When two three-cycle ors strings intercommute,
there is a unique rearrangement which is compatible with the
entations of the strings.~b! Sincet strings~two-cycle strings! have
no orientation, an intercommutation can result in either of two p
sible rejoinings of the ends.
wo
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ever, there are two possible rearrangements of the ends,
ing to the fact that a two-cycle is equal to its own inverse a
two-cycle or t strings consequently have no preferr
orientation4 @Fig. 5~b!#. In the absence of a reason to pref
one of these rearrangements over the other, the choic
made randomly.

When an intercommutation occurs, we join the segme
with a pair of ‘‘kinks’’ ~doubly linked nodes as in Fig. 4!
which will later annihilate and allow the segments
straighten. By delaying the straightening of the rejoined s
ments, we prevent the highly noncausal cascades of in
commutations which might otherwise occasionally occ
within a single time step and lead to computational infin
loops and other unpleasant consequences.

~ii ! Noncommuting collisions~NCC!. If two noncommut-
ing strings intersect, then it is assumed that they form a n
pair of nodes and thus become linked by a new segm
This may happen in two possible ways. The two strings m
pass through each other and become linked by a new
ment which stretches between them, as shown in Fig. 6~a!.
We refer to this outcome as the ‘‘bridge’’ configuration. Th
flux of the intervening string segment is uniquely determin
by the requirement of flux conservation.~The intervening
flux of the bridge must always be a three-cycle, as the co
mutator subgroup ofS3 is Z3 .! Another possible outcome
consistent with the topology, is that the two colliding se

4Strictly speaking, we can only say that there is notopological
reason for at string to have a preferred orientation. It is possib
that the field equations could have two distinct solutions, cor
sponding to differently oriented strings, which are topologica
equivalent but can be deformed into one another only by surmo
ing a finite energy barrier. A situation of this sort occurs in t
global vortices of nematic liquid crystals. This was pointed out
me by Preskill.

i-

-

FIG. 6. The intersection of two strings whose fluxes do n
commute causes them to become linked by a new segment in
‘‘bridge’’ configuration~A!. Alternatively, they may coalesce alon
part of their length, forming a ‘‘zipper’’~B!.
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57 3323EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
ments stick together in the ‘‘zipper’’ configuration shown
Fig. 6~b!. The possibility of collisions resulting in zippe
formation have recently been mentioned in the context
type-I Abelian strings@26#. Which of these two outcomes i
more likely is a dynamical and kinematic issue to be a
dressed in future work. It may depend on the relative velo
ties and angles of the colliding strings. Short-range for
between strings may also affect the growth of zippers, es
cially for low-angle, low-velocity collisions. Attractive inter
actions make zipper growth more likely and more rapid th
otherwise expected. In the present simulation, we cons
both possibilities separately and examine their consequen
some runs were performed with only ‘‘bridge’’ NCC’s, an
some with only ‘‘zipper’’ formation. In fact, we find that th
choice makes little difference for the network’s evolution

Whenever two new nodes are created by a NCC, we s
rate them immediately by a small initial distance compara
to the time step and subsequently allow them to move n
mally under the influence of string tensions. String tensio
may cause a zipper or bridge to grow longer after it
formed.

~iii ! Annihilation. When two nodes approach each oth
within a distancedannwhich is a parameter of the simulation
they are allowed to annihilate.~In this work,dann50.08 was
chosen.! The segment~s! which join the two nodes is elimi-
nated, and the other segments emanating from the two a
hilating nodes are joined to each other.

Two nodes are able to annihilate only if there is a cons
tent way to rearrange the free string ends~i.e., each string is
able to find a partner with the same flux!. Annihilation is
always possible if the two nodes are doubly linked as sho
in Fig. 7. In the case of double link annihilation, the segm
is straightened~or straightened until an obstruction is e
countered, such as a collision with another string.! Annihila-
tion is also always possible if both junctions are of thesss
type, even if they are only singly linked. In this case, the
are two possible rearrangements of the free string ends~Fig.
8!. One of these two is chosen at random. When twostt-type
junctions approach each other, on the other hand, there
be at most one consistent rearrangement of the free ends
it may not be possible for the nodes to annihilate at
Annihilation requires thateachof the two segments on on

FIG. 7. A pair of nodes linked by two strings may annihilat
leaving a single string.
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side be matched with one on the other side carrying thesame
flux. Figure 9 shows an example of a pair of nodes wh
cannot annihilate because there is no consistent rejoinin
the string ends.

If two stt-type nodes do annihilate, it is easily seen th
there can never be more than one consistent rearrange
of string ends. If two of the outgoing ends ares strings and
two are t strings, then there cannot be more than one re
rangement because each string can only be joined with
in the same conjugacy class. If all outgoing strings are of o
type, then all four cannot have the same flux—if they d
then the total flux of any pair would be trivial and the
would not be connected by a segment. Nor may any th
have the same flux. It follows that, at best, each string e
may reconnect with a unique partner. When a singly link
pair of nodes annihilates, the segments are first rejoined
kink configuration, which may straighten later.

Another type of annihilation process, which is the inver
process of bridge formation, is not included explicitly in th
simulation but may occur through a multistep process
volving several string intersection and annihilation eve
~Fig. 10!. We expect that such a process probablywill occur
whenever the geometry is appropriate for the unlinking
two strings, so that it is not necessary to perform the unli
ing ‘‘by hand’’ in a single step within the simulation.

~iv! Rearrangement. If two nodes approach each ot
closely but are prevented from annihilation by flux cons
vation requirements, several outcomes are conceivable. T
may stick together and form a stable junction of more th
three strings. They may bounce back and move apart a
under the influence of string tensions. It is also plausible t
the nodes could rearrange their connections and under
sort of quasi-intercommutation, as shown in Fig. 11. In t
simulation, we allow the nodes to bounce by introducing
small repulsion at distances shorter thandann. We also allow
rearrangement with some probability, and examine the c
sequences of setting that probability either to zero or to so

FIG. 8. Annihilation of twosssnodes joined by a single string
There are two possible ways to reconnect the strings consistent
their orientation.

FIG. 9. The two nodes shown here cannot annihilate, beca
there is no consistent way to reconnect the string ends.
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3324 57PATRICK McGRAW
nonzero value. The results presented in Sec. VI indicate
rearrangement speeds up the network’s decay.

We do not include nodes of more than three strings
fundamental objects, but it is quite possible for a pair
become stuck together very close to each other. The st
tension and short distance repulsion allow them to oscil
at a short distance, and such a configuration can behave
a single junction of four strings. Such adhesion becomes
portant under certain conditions, as we will see in Sec. V

IV. INITIAL CONDITIONS

In order to perform our dynamical simulation, we mu
start with an initial configuration. The generation of initi
conditions models the symmetry-breaking transition wh
produces the strings. As is frequently done, we use a la

FIG. 10. Unlinking of two strings—the inverse of the proce
shown in Fig. 6—can occur in several steps if the string tensi
pull in the right direction to unlink the strings. A linking followed
by two annihilations has the net result of removing the short in
vening segment and unlinking the two longer strings. In this figu
the base point is assumed to lie behind the page, so that the d
tion of an s string’s flux changes when it passes in front of anyt
string.

FIG. 11. Rearranging the connections of two nodes which c
not annihilate.
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Monte Carlo procedure to generate an initial string netwo
The lattice spacing is to be identified with the correlati
length of the Higgs field at the time of string formation. Th
Higgs vacuum expectation value~VEV! is thus uncorrelated
over distances longer than a lattice spacing, and at each
of the lattice, it takes a random value within the vacuu
manifold. With a suitable interpolation along the length
each link, any plaquette of the lattice is mapped to so
closed loop on the vacuum manifold. If this path is one of t
noncontractible loops, then a string must pierce
plaquette. Each link of the plaquette is associated with
element ofG which relates the Higgs values at the two en
of the link. The product of these elements around a clo
plaquette must lie within the unbroken groupH, and can be
taken as the flux of the string which pierces that plaque
Strings which pierce the faces of a given unit cube must
joined together inside the cube in some way. If only tw
faces of the cube have nontrivial flux, then we interpret t
as a single string segment passing through the cube. If t
faces are nontrivial, we infer that there is a single ver
inside the cube. Cubes pierced by more than three end
quire a more complicated arrangement of nodes and str
inside the cube. There may be more than one consistent
to join the string ends, and one must be chosen arbitrari

Two different lattice Monte Carlo algorithms have be
used for the current simulation to generate different init
distributions of strings. The first, very simple way to gene
ate a random network of strings is to use an infinite tempe
ture lattice gauge theory: simply assign a random elemen
the unbroken groupH5S3 to each link of the lattice, and
evaluate the product of links on the plaquette to find the fl
through the plaquette. We refer to this as the lattice ga
Monte Carlo. There is no direct reference to a Higgs field
this technique.

The other method we use is a discrete Higgs simulat
analogous to that of Refs.@27,28#. The essence of this
method is that a discretized vacuum manifold is used. T
breaking of continuous groupG is modeled by using some
discrete subgroupG,G which contains the unbroken grou
H. Each lattice site is then assigned randomly to one of
discrete cosets in the spaceG/H, corresponding to a choice
of vacuum. With each link of the lattice there is associated
element ofG which transforms the Higgs field value at on
end of the link to the value at the other. The element relat
one coset to another is not unique; the possible elem
themselves form a coset. The convention in this discr
Higgs method is to choose the ‘‘smallest’’ possible elem
for each link variable. ‘‘Small’’ is defined with reference to
metric on the continuous groupG: if all elements are written
in the formg5exp(iaT), whereT is a normalized element o
the Lie algebra ofG, then the smallest element is the on
with the smallest numbera. In this way the Higgs field is
effectively interpolated in the smoothest possible way
tween lattice points.

A suitable gauge transformation can be performed so
all Higgs field values lie in the same coset, and all link va
ables lie withinH, allowing all subsequent computations
be performed in terms of onlyH link variables. This is a
lattice implementation of unitary gauge.

For the present simulation, we takeG to be one of the
discrete subgroups of SU~3!. The simplest choice is the 24
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57 3325EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
element ‘‘dihedral-like’’ subgroup of SU~3! known asD~24!
@29#. This group is generated by the matrices

T1[S 21 0 0

0 0 21

0 21 0
D , S1[S 0 1 0

0 0 1

1 0 0
D ,

and

A~1,0![diag~1,21,21!.

D~24! is the smallest subgroup of SU~3! that containsS3 ,
and in fact it is isomorphic toS4 , the permutation group on
4 elements: an isomorphism may be defined which map

T1↔t15~23!, S1↔s15~123!;

these generate the subgroupH0.S3 of permutations on ele
ments 1–3.H0 may be viewed as the little group of
‘‘Higgs’’ VEV which has the formh0[(0,0,0,1): permuta-
tions of the first three positions leaveh0 invariant. The ele-
ments A(1,0)5diag(1,21,21), A(0,1)5diag(21,21,1),
andA(1,1)5diag(21,1,21) may be mapped toS4 by

A~1,0!↔~14!~23!, A~0,1!↔~24!~13!,

A~1,1!↔~34!~12!.

These act nontrivially onh0 , and together with the identity
they generate the four distinct left cosetsH0 , A(1,0)H0 ,
A(0,1)H0 , and A(1,1)H0 . Each of the three nontrivia
cosets consists of the set of elements which transformh0 to
one of three other possible VEV’s. For example, element
A(1,0)H0 take ~0,0,0,1! to ~1,0,0,0!.

To generate a network of strings, the discretized Hig
VEV is randomly assigned to one of its four values at ea
lattice site. For a smooth interpolation, the link between t
neighboring sites is chosen to be the smallest within the
propriate coset. In the cosetA(1,0)H0 , for example, the two
smallest elements are A(1,0)T2(14)(23)(13)and
A(1,0)T3(14)(23)(12). Both of these have equal measure
random choice may be made between them. In the iden
coset, of course, the identity element is the smallest. E
other coset has two smallest elements of the formAT, where
AP$A(1,0),A(0,1),A(1,1)% andT is one of the two transpo
sitions inS3 that fail to commute withA.

After assigning vacuua and group elements, one can
transform to the unitary gauge in which the Higgs VEV
the same at each site, and all flux information is encode
S3 variables on the links, just as it is in the lattice gau
Monte Carlo.

Properties of the initial network.Both of the Monte Carlo
algorithms described above create infinite branched
works. The lengths of string segments between branching
distributed exponentially, reflecting a constant probability
branching per unit length. In this respect, the two meth
are similar, but the resulting networks differ in other stat
tical properties. In Table I, we summarize some of the
features. For comparison, we also include the correspon
information for theZ3 system~including both aZ3 lattice-
gauge method and the tetrahedral discrete-Higgs simula
of @28#!. The Z3 discrete-Higgs numbers are from Ref.@28#
of
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and theZ3 lattice gauge data are based on the author’s sim
lations ~see also@30#!. For each method, the fraction o
plaquettes pierced by strings of each type is reported.~In the
Z3 case, of course, there is only one type.! Note that in the
lattice gauge method, each group element is weigh
equally; therefore2

3 of all plaquettes are pierced by strings
the Z3 lattice gauge case, and56 for S3 . Below this are the
fractions of cubic lattice cells with 0, 2, 3, 4, 5, and 6 of the
faces pierced by strings, the number densities of the diffe
types of nodes per unit volume, the average length betw
junctions and the branching length~obtained from the expo-
nential decay of the length distribution! for each string
species.5

Pictures of typical initial string networks~Fig. 12! illus-
trate qualitatively the comparison between the differentS3
initial conditions. It is evident that for bothZ3 and S3 sys-
tems, the lattice gauge method produces a denser netw
more cube faces are pierced by strings and more cells h

5Initially, string lengths are naturally clustered near integer m
tiples of the lattice spacing. The distribution looks smooth and
ponential only when string lengths are placed in bins of at least
lattice spacing. For this reason, the decay length is not necess
identical to the average segment length.

FIG. 12. Sample Monte Carlo initial configurations~actually
shown after a single time step of dynamical evolution!. The even, or
three-cycle, strings are shown in the darker color. Volume show
83 in lattice units.
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3326 57PATRICK McGRAW
high numbers of strings emerging through their faces. C
respondingly, in the lattice gauge method, fewer strings c
tinue through more than one lattice cell without branchin
Regardless of the initial conditions,stt junctions outnumber
sss junctions in theS3 network, and we can infer that
majority of thes strings end on at string at at least one end

Although we have not extracted detailed statistics on
presence of disconnected loops and finite networks in
initial distributions, they do not appear to form a significa
part of the system. In this respect theS3 networks are similar
to theZ3 ones. The results presented in the next section s
that in theS3 model, unlike theZ3 , differences in the statis
tical properties of the initial networks can have a very p
nounced effect on the network’s evolution.

V. DYNAMICAL RESULTS

In this section, we present results from the dynami
simulation. The aim is to give a qualitative picture of th
evolution and to determine which factors are most import
in determining the fate of the network. The qualitative natu
of the evolution depends on the ratio of the different str
tensions. Two contrasting regimes are of interest: one
which the even strings are light, and another in which th
are heavy. We also examine the influences of other fact
The results show a surprisingly marked dependence on
tistical properties of the initial network.

This section is organized as follows: First, we revie
some features of the behavior of Abelian,Z3 strings, for
comparison with theS3 results. TheZ3 results are taken in
part from @14# and in part from simulations by the autho
The self-similar scaling evolution and the associated pow
law behavior are demonstrated. After this come theS3 re-

TABLE I. Statistics of initial conditions.

Method Z3 L.G. Z3 Higgs S3 L.G. S3 Higgs

Faces with
s string 0.67 0.52 0.33 0.14
t string 0.50 0.37

Cubes with
0 ends 0.01 0.04 0.00 0.06
2 ends 0.12 0.34 0.01 0.32
3 ends 0.17 0.20 0.05 0.21
4 ends 0.38 0.32 0.21 0.31
5 ends 0.24 0.09 0.20 0.02
6 ends 0.09 0.02 0.55 0.08

Density of
sssnodes 0.56 0.28 0.22 0.03
stt nodes 1.36 0.67

Av. length
bet. junctions

s string 2.38 3.71 1.02 1.27
t string 1.05 1.59

Branching length
s string 1.65 3.33 0.69 0.83
t string 0.78 1.53
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sults. We describe the dependence of these results on pa
eters of the simulation, focusing especially on tw
contrasting regimes of string tensions, and then discus
other important factors. Finally, we make a few comme
about fluctuations and the effect of the finite simulation v
ume.

The Z3 network and power-law evolution.SinceS3 con-
tainsZ3 as a subgroup, our program can easily be modifi
to simulate aZ3 network by generating onlys strings in the
initial conditions. Figure 13 shows the total string length a
total number of nodes as a function of time for a typical r
on a 303 simulation volume. The initial conditions were gen
erated with aZ3 lattice gauge method, rather than the d
crete Higgs method of@14#. ~In fact, these data were obtaine
in a simulation without any intercommutations—strings we
allowed to pass through each other. There is no topolog
obstruction to prevent this in an Abelian network, and t
inclusion of intercommutations makes only a small diffe
ence in the results.! The units used for this plot are the one
in which the initial lattice spacing is 1 and the string tensi
is T51.

The time variable plotted on thex axis in the figure is
iDt, wherei is the number of elapsed time steps.~This will
be our convention for all remaining plots.! All distances and
lengths are measured in units of the original lattice spac

A transformation of the data shows more clearly t
‘‘scaling’’ behavior of the network. The scaling hypothesis
that the gross properties of the network are described b
single length scalel , which grows with time as the networ
relaxes. Ifl is the typical distance between nodes, then
number of nodes per unit volume isn;l 23. In a scaling
solution, the average length of a string segment betw
nodes is also;l , while the number of segments per un
volume is proportional to the node densityl 23. Hence the

FIG. 13. Number of nodes and total string length as a funct
of time for Z3 strings on a 303 volume.
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57 3327EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
total string length per unit volume~or the energy stored in
strings! scales asl 22. In Fig. 14, we plot two scale variable
with the dimensions of length: The inverse cube root of
number of nodes per unit volume, which we denoteDn , and
the inverse square root of the string length per unit volu
Dl . From Fig. 14, we can see that both of these length sc
are approximately equal and grow linearly with time. T
slope of approximately 0.3 is close to that observed in R
@14#. Although the results plotted in Fig. 14 and those of@14#
were obtained from different initial conditions, the resu
agree very closely. Evidently, all noticeable differences d
appear after just a few time steps. As withZ strings, the
late-time evolution is essentially independent of the init
conditions.

Evolution of theZ3 network is self-similar in the sens
that network looks statistically the same at all times exc
for the increase in scale. The distribution of string segm
lengths, for example, is exponential at all times, with on
the scale changing. This can be seen in the semilogarith
histograms of Fig. 25. Qualitatively, a portrait of part of th
network at a given time is indistinguishable from a suitab
magnified portrait of an earlier time.

S3 network: general comments.In the remainder of this
section we describe results of theS3 simulation, which was
run using a variety of different combinations of initial co
ditions, string tensions, and other parameter choices. N
works generated by lattice-gauge initial conditions were
on an 83 simulation volume, while the less dense discre
Higgs-generated networks were evolved on a volume of 13.
Statistical variables were obtained from averages over
eral runs. Computation time constraints made it unfeasibl
run many times on larger volumes, but a few runs were p
formed on both larger and smaller volumes in order to
amine the effects of finite size.

Key results are displayed graphically in Figs. 15–25 a
Table II. Some results for an Abelian,Z3 network are also

FIG. 14. Scaling behavior ofZ3 strings on a 303 volume. The
typical distance between nodesDn grows linearly with time, and so
does the inverse square root of the string energy densityDl .
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FIG. 15. ~a! A series of snapshots showing the evolution of
S3 network with light strings. The heavier, odd strings are shown
darker color. We can observe long strings straightening and lo
of t string contracting. The initial network was generated by t
lattice gauge Monte Carlo algorithm: it is the one shown in Fig.
The full 83 simulation volume is shown. In the first frame, att
52, the odd strings are quite crumpled and are connected b
dense web of even strings.~b! t54. ~c! t56. ~d! t58.
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3328 57PATRICK McGRAW
shown for comparison. Figures 15–19 show thre
dimensional pictures of simulated cosmic string netwo
during their evolution@31#. The pictures show several of th
different patterns of evolution that can occur under differ

FIG. 16. ~a! Snapshots from the evolution of anS3 network with
heavyS strings, from lattice gauge initial conditions. TheS strings,
or even strings, are shown in thicker lines. The full 103 simulation
volume is shown. Notice the rapid shrinking of even segme
which leads to the formation of clusters that are slow to untan
The first frame shown here is att51.5. ~b! t53.0. ~c! t54.5. ~d!
t56.0.
-
s

t

conditions. Pictures of aZ3 network are provided as well
The plots in Figs. 20–22 show the evolution of some leng
scale variables as functions of time. These variables incl
Dn , the inverse cube root of the density of nodes, the av
age segment length between junctions for each type of str
and the two quantitiesDs and Dt . The last two are analo
gous to Dl defined above; the inverse square root of t
string length per unit volume, computed separately for e
type of string.~Some of these variables may be redundan!
With some exceptions discussed below, these length s
variables exhibit~after some transients at early times! the
linear increase characteristic of self-similar evolution. Su
plots were made for simulations run under a wide variety

s,
.

FIG. 17. ~a! Evolution of a network from Higgs initial condi-
tions with heavyS strings. The qualitative behavior is rather simil
to that of the denser lattice gauge network, except that the netw
disappears much more rapidly, with large voids opening up v
quickly. This figure:t51.0. ~b! t52.0. ~c! t53.0.
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57 3329EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
FIG. 18. Evolution of a network with equal string tensions, fro
lattice gauge initial conditions.~a! t52.0. ~b! t54.0. ~c! t56.0. ~d!
t58.0.
conditions giving a survey of the simulation’s parame
space. A few representative plots are shown here in orde
show their typical shapes. The remainder are summarize
Table II, which gives their slopes. The last set of figures
this section, Figs. 23–25, consists of a series of histogra
which show how the distribution of string segment lengt

FIG. 19. Snapshots from the evolution of a pureZ3 network,
included for comparison with the non-Abelian network.~a! t50.
~b! t52.0. ~c! t54.0. ~d! t56.0.
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FIG. 20. Scaling-law variables as a function of time forS3 network with Ts52, lattice gauge initial conditions, bridge NCC and n
rearrangement. The top two plots are the curves ofDs , Dt , andDn shown at two different magnifications. All three variables are plotted
the same axes, color coded as indicated. The bottom plot shows the average segment length for each of the two string types.
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evolves with time. Distributions are shown for two contra
ing cases discussed below, and corresponding data is
provided for theZ3 network for the sake of comparison.

The parameter space surveyed in Table II includes
different initial condition simulations, several different ratio
of the string tensions, and two other binary choices affect
string collisions and close encounters between nodes.
choice between ‘‘bridge’’ and ‘‘zipper’’ configurations fo
colliding non-Abelian strings is one choice~abbreviated B
and Z in Table II!. The other choice determines what ha
pens when two neighboring nodes are within distancedann
but are topologically unable to annihilate. In the cases
beled R, such nodes undergo a rearrangement of connec
~see previous section! with a probability of 0.2 per time step
In the cases labeled N, no rearrangements are allowed,
the nodes simply bounce.

As a rough measure of the importance of intercommu
tions and NCC’s, Table II also gives, in the last two co
umns, the ratio of the total number of NCC events to
number of intercommutations, and the ratio of the numbe
NCC’s to the cumulative net number of nodes annihilat
~For theZ3 network, there are no NCC’s and the number
intercommutations is shown instead.!

Unless otherwise specified, all numerical quantities
given in units such that the initial lattice spacing is 1, t
displacement of each node during a time step is given
Dx5( rTrDt, and the magnitude of the tensionTt of theodd
strings is normalized to 1.~This normalization was chose
because the special status of odd strings: they are the
-
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-
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which cannot end, and in none of the cases simulated
they show a tendency to become extinct. Even strings, on
other hand, disappear almost completely under certain c
ditions.! The tensionTs of the even strings was varied rela
tive to this fixed value.

One salient feature of the results is hardly unexpected:
ratio of the tensions of different string species has a str
effect on the behavior of the network. The case of heavs
strings, in particular, is an exceptional one which will b
discussed further below. Much more surprising is the stro
difference in behavior between networks with different in
tial conditions. Evidently, different initial conditions lead t
quite different trajectories which appear self-similar.

We will address the issues in the following order. Fir
we discuss the different evolution patterns that occur w
different choices of string tension, focusing on the contra
ing limits of heavy and light even strings. Then we comme
on other effects, including the effects of different initial co
ditions. Finally, at the very end of the section, we will ma
a few remarks about uncertainties and finite-size effects.

S3 network with light even strings.Consider a network in
which the even, or three-cycle, strings have a much low
tension than the odd strings. In this case, the odd strings
pass through each other with comparative ease by form
new segments of the lighter even string. The odd strings m
shrink with comparatively little energy cost in the creation
new strings. Furthermore, a zipper-type collision of two o
strings may have a result which, from the point of view
the odd string subsystem, resembles an intercommuta
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~see Fig. 26!. The newly formed light string offers compara-
tively little resistance to the straightening of the rejoined
heavy strings. We might expect that in this limit, the odd
strings might behave as a network ofZ2-like ~i.e., un-
branched and unoriented! strings moving through a viscous
medium formed by the branchedZ3 network of even strings.
The odd strings can shorten and cut themselves into decay
loops while transferring part of their energy to the even
string network. The even network, in turn, can dissipate it
energy in much the same way as aZ3 network.

Simulation results seem consistent with the above pictur
Figure 15 shows a series of portraits of the evolution of
network with tensionsTs50.5, Tt51.0, beginning from lat-
tice gauge initial conditions. The configuration at timet50
is in fact the one shown shown in Fig. 12. In the early stage
of evolution, we see a large number of highly crumpled
apparently Browniant strings with thick webs ofs string
stretched between them. As time progresses, the odd strin
begin to straighten and some closed loops shrink away a
vanish. However, even though the odd strings are shorteni
at the expense of stretching the even ones, the population
even strings is at the same time being reduced through t
annihilation of nodes, with the result that neither species o

FIG. 21. Length scales forS3 network with light S strings.Ts

50.5, lattice gauge initial conditions, bridge NCC, no rearrange
ments.
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string becomes entirely dominant over the other. Instead, the
evolution appears self-similar, with an approximately con-
stant ratio between the amounts of the two different string
species. This constant ratio is evident in Fig. 21 from the
linear evolution of both length scale variablesDs and Dt .
Apparently, after some transient behavior at very early times,
a sort of dynamical equilibrium is established, with energy
being transferred in a steady cascade from thet network tos
network and then lost to damping. Interestingly, decreasing
the even string tension still further to 0.25 does not allow the
odd strings to contract more quickly~see Table II!—
evidently they are impeded by the larger population of even
strings.

S3 network with heavy even strings.A situation which
contrasts with the case of lights strings is one in which the
s strings have a large tension. In this subsection, we discus
simulation results for the case withTs52, Tt51. A glance at
Figs. 16 and 20 reveals that this leads to quite different re-
sults. Thes, or even, strings are in this case only marginally
stable against decay into pairs oft strings. If a heavys string
ends on at string, then the twot segments pulling against the
s string at the junction cannot prevent thes segment from
shrinking unless the angle between thet segments is suffi-
ciently small; in this marginal case ofTs52 they must be
collinear in order for the tensions to balance. In either lattice

-

FIG. 22. Length scales forS3 network with equal string ten-
sions, Higgs initial conditions, bridge NCC, rearrangement allowed.
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FIG. 23. Evolution of the distribution of length of even (S) and odd (T) string segments between junctions, for a network with heavS
strings (TS52).
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gauge or discrete Higgs initial networks, the majority ofs
strings end ont strings, and so there is very little to preve
these heavy strings from shrinking rapidly.

The shrinking of an individuals segment frequently
brings together a pair of nodes which are topologically u
able to annihilate. The nodes stick together because to s
rate them again would require stretching thes segment.
Similar adhesion happens whenever two noncommutint
strings collide. Soon the network consists predominantly
odd strings stretched between small tangled clusters, an
further annihilation can occur until separate clusters mee
the geometry changes sufficiently to allow some strings
pull free. Figure 20 shows the scaling variables as functi
of time. The rapid disappearance ofs string is evident from
the extremely fast increase in the variableDs in the upper
plot, and from the lower plot which shows that the avera
length of ans segment quickly drops to near zero. This is
exceptional case: in all other cases besidesTs52, the aver-
age segment length for both string types increases with ti

Even though thes strings do not obey the usual standa
scaling behavior, it appears that the averaget segment length
does increase linearly with time, as doDn and Dt . Evi-
dently, the overall system obeys scaling once most of ths
strings have shrunk.

The prevalence of clusters connected by shorts segments
is apparent in the snapshots of Fig. 16 and is illustrated
-
pa-

f
no
or
o
s

e

e.

a

different manner by Fig. 23, which shows semilogarithm
histograms of the distribution of segment lengths at a
quence of times. The length distributions for the two stri
types evolve in different ways. For lengths larger than o
lattice spacing, thet segments follow an exponential distr
bution~which appears linear on semilogarithmic axes! with a
steadily increasing decay length. While the few longs seg-
ments that remain are also exponentially distributed, ther
no clear tendency for the decay length of this distribution
increase with time, and the number of long segments quic
shrinks into insignificance compared with the large popu
tion of very short segments in the lowest bin of the his
gram. The presence of so many short segments is assoc
with the adhesion of many pairs of nodes.

Compare Fig. 23 with the length distributions in th
Ts50.5 case, shown in Fig. 24. In the latter, we see that b
distributions develop a peak at short lengths~indicating that
some clusters do occur!, but the peaks are less pronounc
and the number of such short segments decreases at a
commensurate with the remaining population of strings. T
exponential decay lengths for both distributions increa
with time, as expected in a self-similar evolution. Evident
the pile-up of clusters is less significant in the light-s-string
case. Length distributions for the Abelian network~Fig. 25!
show no excess at all at short distances.

Other effects.The non-Abelian simulation has been ru
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FIG. 24. Segment length distributions for network with lightS strings (TS50.5).
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under a variety of conditions. For the most part, the res
are consistent with some type of self-similar evolution. Va
ables having the dimensions of length all increase linea
with time. The exception is for networks with heavys
strings, in which the averages segment length decrease
This is the only case for which one type of string domina
completely over the other. In all other cases, the amount
the two string types approach a constant ratio.

The evolution of the network has some interesting dep
ts
-
ly

s
of

-

dence on parameters other than the string tensions. Most
prising is the very strong dependence on the statistics of
initial conditions. When the Higgs initial conditions are use
the network decays much faster, especially in the case
heavys strings. Not only the absolute sizes, but the ratios
coefficients can have quite different values depending
which initial conditions are used. This dependence is som
what mysterious. The lattice gauge initial conditions a
much more dense than the Higgs initial conditions, but
FIG. 25. Segment length distributions for the AbelianZ3 network, included here for comparison with Figs. 23 and 24.
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TABLE II. Coefficients for network’s evolution: rates of change forDs , Dt , Dn , and average segment length of each type, ratio
NCC’s to intercommutation events, and cumulative number of NCC’s per node, reported for different conditions. The final row gZ3

results. Uncertainties~estimated by analyzing subsets of the data! are approximately62 in the last decimal place, or60.02 for most of the
values given. Abbreviations: LG5lattice gauge initial conditions, H5Higgs initial conditions, B5bridge NCC, Z5zipper NCC,
R5rearrangements allowed, N5no rearrangements, IC5intercommutation, NCC5noncommutative collision.

Conditions dDs /dt dDt /dt dDn /dt d(avg.S)/dt d(avg.T)/dt NCC/IC NCC/node

Ts52.0, LG
B N 0.9 0.10 0.11 ,0 0.15 5.9 0.83
Z N 0.7 0.10 0.11 ,0 0.15 8.6 0.93
B R 1.4 0.25 0.40 ,0 0.37 5.6 0.64
Z R 1.5 0.29 0.35 ,0 0.63 8.1 0.91

Ts52.0, H
B N 2.7 0.55 0.69 ,0 1.2 4.2 0.23
Z N 2.8 0.46 0.59 ,0 1.1 4.5 0.25
B R 3.0 0.71 0.91 ,0 2.0 2.9 0.17
Z R 3.7 0.82 1.1 ,0 1.9 4.0 0.22

Ts51.0, LG
B N 0.15 0.15 0.11 0.08 0.09 5.3 0.33
Z N 0.16 0.12 0.10 0.05 0.08 5.8 0.23
B R 0.30 0.20 0.18 0.11 0.17 6.3 0.06
Z R 0.34 0.22 0.17 0.09 0.11 3.8 0.06

Ts51.0, H
B N 1.0 0.56 0.50 0.19 0.41 3.9 0.17
Z N 1.0 0.53 0.43 0.12 0.33 3.0 0.10
B R 1.1 0.65 0.54 0.18 0.35 2.8 0.05
Z R 1.2 0.72 0.61 0.21 0.33 3.1 0.04

Ts50.5, LG
B N 0.10 0.10 0.07 0.05 2.9 2.9 0.37
Z N 0.09 0.13 0.07 0.03 0.03 2.4 0.23
B R 0.17 0.20 0.13 0.07 0.07 2.5 0.09
Z R 0.17 0.26 0.13 0.07 0.07 2.3 0.07

Ts50.5, H
B N 0.19 0.15 0.10 0.04 0.05 2.1 0.17
Z N 0.20 0.20 0.13 0.07 0.11 6.3 0.02
B R 0.47 0.43 0.30 0.18 0.20 2.5 0.06
Z R 0.44 0.39 0.29 0.16 0.17 2.0 0.05

Ts50.5, LG
Z R 0.09 0.17 0.08 0.04 0.06 1.9 0.13

Ts51, Z3

~with intercommutations! 0.37 0.38 0.25 0.12
o
s

ue
ca
fo

th
b

p
io
ar
n

of
gh-
ar-
ost
by

ge
lly

ults
of
n

overall density of nodes decreases during the evolution, s
reaching a density comparable to that of the initial Higg
initial-condition-generated network, yet the two contin
evolving at very different rates. Evidently, some statisti
property other than the total density is important, such as,
example, the distribution of voids, or even correlations of
fluxes. A better understanding of this phenomenon should
the goal of future work.

Notice that the details of the behavior of closely a
proaching nodes makes some difference in the evolut
The inability of some pairs of nodes to annihilate is app
ently an important impediment to the network’s destructio
Rearrangements~quasi-intercommutations! of the connec-
on
-

l
r

e
e

-
n.
-
.

tions of neighboring nodes evidently increase the mobility
flux, and increase the likelihood that eventually some nei
boring pairs of nodes will be able to annihilate. As is app
ent from Table II, the inclusion of rearrangements alm
invariably speeds up the decay of the network, often
roughly a factor of 2. The choice of either zipper or brid
configurations for colliding noncommuting strings genera
makes a smaller difference, if any.

Finite-size effects, fluctuations, and uncertainties.A few
remarks are in order concerning the interpretation of res
and the effects of simulating on a finite volume. The size
our simulation volume is limited in practice by computatio
time; the flux computations~see Appendix! are computation-
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ally intensive. Typical plots of scale variables like those
Figs. 20–22 exhibit some transient behavior at early tim
followed by a period of linear increase. As the typical d
tance between nodes increases, however, a point is ev
ally reached where only a few nodes remain within the sim
lation volume. At this point, both systematic and rando
deviations from linear scale growth begin to occur. W
fewer nodes, curves become bumpy due to lower statis
Many strings wind all the way around cycles of the period
boundary, so that the simulated network can no longer
expected to mimic an infinite one. A typical run meets one
two distinct fates at the end of its period of self-similar ev
lution. It may undergo a very sudden collapse as the
remaining nodes annihilate, leaving either no strings at al
a few strings stretched across the entire volume. This sud
collapse is visible as a sharp upward turn in the plots
length scale versus time. Alternatively, the network m
reach a stable or metastable configuration with a small n
ber of nodes~typically of order 10 or fewer.! The character-
istic length scale ceases its linear increase and reaches a
teau. Needless to say, we cannot make reliable infere
about an infinite network once the scale of our simulat
volume becomes the important one, and we can only ext
information on scaling behavior from the linear part of t
curve. The conclusion that our data are consistent with s
ing is based on the existence of a linear stretch which ty
cally continues until at least one of the length scale variab
has grown to one half the width of the simulation volum
We cannot rule out slow~e.g., logarithmic! deviations from
scaling.

With respect to fluctuations, not all simulation runs a
alike. Runs with lattice gauge initial conditions andTs52
seemed to undergo quite a bumpy evolution characterize
periods of temporary freezing alternating with cascades
annihilation. The bumpiness was smoothed out only by
eraging over multiple runs. Runs withTs52 without rear-
rangement almost always end with a few nodes remain
rather than with complete collapse. This is reflected in F
20, where the curves ofDt andDn versus time begin leveling
off as the average segment length approaches 4~which is
half the width of the volume!. This leveling is probably a

FIG. 26. Two collidingt strings form ans-string zipper. If thes
string is ignored, this event looks very similar to an intercommu
tion.
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finite-size effect and not indicative of the behavior of
infinite network for the following reasons: It occurs whe
only a few nodes are left in the simulation volume, and
occurs at later times as the simulation volume is increased
fact, one run performed on a larger 103 volume did not level
off at all, but collapsed entirely instead. Higgs-initia
condition-generated networks tend to evolve more smoo
and to be more likely to undergo total collapse at the end
the simulation.

VI. CONCLUSIONS AND DISCUSSION

One of the motivations for undertaking a simulation
non-Abelian string dynamics was to test for deviations fro
the familiar power-law behavior of the network’s energ
density as a function of time, and especially to look for e
dence for or against the conjecture that the tangling of stri
would cause a non-Abelian network to freeze into a sta
~fixed in comoving coordinates! equilibrium. The results we
have found suggest that such a scenario, if it can occur a
requires very special conditions. Over a range of differ
regimes, the results found here are consistent with so
form of self-similar evolution, and with a density decaying
a rate commensurate with that of matter,n5Ct22. The co-
efficient C, however, can vary in quite interesting ways d
to non-Abelian effects. In a cosmological scenario, this
efficient controls the fractional contribution of strings to th
energy of the universe.

The interplay between the different string species cau
the self-similar evolution to be realized in some novel wa
which can be quite different under different conditions. Fe
tures such as the ratio of the populations of different str
species may depend in rather complicated ways on var
factors. Particularly striking and new is the strong influen
of the initial distribution of strings on the subsequent evo
tion. Evidently, different self-similar evolutionary trajecto
ries are possible, and initial conditions may be attracted
one trajectory or another depending on some statistical
ture other than the network’s overall density. This behav
seems almost paradoxical, going against the notion th
scaling evolution is one which has no memory of its init
state.

There are interesting questions to investigate at both
‘‘microscopic’’ and ‘‘macroscopic’’ level. By microscopic
questions, we mean those concerning the dynamics of i
vidual strings and individual collisions. Our results indica
that the behavior of nodes in the network as they encou
each other has a controlling influence on the network’s e
lution. The inability of non-Abelian nodes to annihilate is a
important impediment to the removal of strings, and config
rations with nodes close together or coalescing into comp
ites appear to be especially important in the interesting c
of heavys strings. The process we have called ‘‘rearrang
ment’’ of two nearby nodes seems to increase the mobility
strings and allow the network to decay more quickly. Th
simulation was run with ratherad hoc assumptions abou
node collisions. A better microscopic understanding
nodes’ behavior and that of multinode tangles will help p
vide input for improved simulations and understanding
macroscopic questions.

At the macroscopic level, it would be desirable to obtain
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better understanding of the principles governing the interp
between different string types and the strong influence
initial conditions. The types of network behavior seen h
may open up new possibilities for cosmological model bui
ing, aside from the string domination scenario. Some of
types of structures seen here, such as webs of light str
stretched between heavier ones~as in the light-s-string sce-
nario of this simulation! or the tangled clusters seen in th
Ts52 simulation might have interesting cosmological e
fects. We have seen hints that the strength of fluctuation
string density is different under different circumstances,
ing especially strong forTs52. Might these fluctuations be
interesting sources of structure formation? Along with a
lytical study, more refined simulations of branched and n
Abelian networks may well prove worthwhile.
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APPENDIX: SIMULATION OF NON-ABELIAN
FLUXES

The subtle nature of non-Abelian magnetic flux in discr
gauge theories has been the subject of quite interesting
search@15,16,20,32,33#, and presented algorithmic and com
putational challenges for this simulation. Ambiguities in t
definitions of non-Abelian fluxes, mentioned in Sec. II, r
quire that we design a very careful procedure to fix con
tent definitions and maintain their consistency as the stri
move. This must be done in order to allow us to make
appropriate comparisons of fluxes when two strings coll
or two nodes attempt to annihilate. Additional subtleties
cur as a result of our using periodic boundary conditions:
are dealing with a discrete gauge theory on a nonsimply c
nected space manifold, and holonomies associated with
trivial cycles become important.

This appendix describes our procedure for defining a
comparing the fluxes of non-Abelian strings. Further deta
may be found in@18#. As in Sec. II, we use the formalism
developed in@16,20#.

Gauge fixing conventions.In our algorithm, the strings
and nodes exist inside a rectangular volume with oppo
sides identified: a three-torus. The subtleties associated
the periodic boundary conditions will be discussed later:
now we simply consider a network inside a rectangular v
ume with boundaries. We choose a cubic volume with o
corner at~0,0,0! and with side lengthL. As explained in Sec
II, it is necessary to define fluxes using paths that begin
end at some base point. We choose a base pointx0 at the
center of our simulation volume,x05(L/2,L/2,L/2). Let
each node be associated with a straight line segmen~a

‘‘tail’’ ! along the directionBNW from the base point to the
node’s location. Then let the flux of each outgoing string
defined with respect to a path which runs outward along
y
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tail to a point which is taken to be vanishingly close to t
the node. The path then encircles the string in a coun
clockwise direction and returns to the base point along
node’s tail. This is illustrated in Fig. 27. This will be ou
convention for defining the fluxes of the strings which join
a given junction.

As illustrated in Fig. 28, flux conservation requires th
the product of all three fluxes emanating from a node
trivial when the fluxes are multiplied in a clockwise ord

with respect to the directionBNW . That is, if the strings in
clockwise order area, b, andc, then

cba5e. ~A1!

In our algorithm, a record is maintained of the geometry
each node: the strings carry labels indicating the appropr
clockwise orientation.

In the case of a doubly linked pair of nodes~Fig. 4! two
segments are collinear, and the order is therefore ill defin
In such a case we allow the order to be arbitrary, but
fluxes of the two strings must be defined in a way consist
with that order, such that the product of all three fluxes is
usual trivial. The ordering must also be compatible betwe
the two nodes which the segments join, so that the flux o
given segment is consistent at its two ends.~The consistency
of segments from one end to another will be discussed
low.!

The collection of standard paths defined above repres
a set of generators forp1(M2$D%). The flux state of a
network of strings is fully specified when we know the flux
enclosed by all of these standard paths. The condition~A1!
supplies one set of relations among these generators.
each string segment, there is also a relation involving
fluxes defined at its two end points, as discussed below.

FIG. 27. Conventions for measuring the fluxes of the th
strings emanating from a node. Each string’s flux is defined as
flux through a path which leaves the base pointx0 along a straight
line toward the node, then encircles the string in a counterclockw
direction as seen from the far end of the string and returns to
base point.
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FIG. 28. The compositiongba of all three paths can be continu
ously deformed to a point. Thereforecba, the product of all three
fluxes taken in a clockwise direction as seen from above the n
must be trivial.

FIG. 29. When the fluxa of a string has been defined accordin
to a path which encircles it near one end, the fluxa8 of that string
at another point along its length can be defined by ‘‘sliding’’ t
standard patha to a8 as shown. If no other strings pierce the tr
angle which is swept out, then this merely represents a continu
deformation ofa, and thusa85a ~A!. However, if the triangle is
pierced by string with fluxb as measured by pathb, then the flux is
conjugated byb: a85bab21 ~B!. More generally, if the triangle@or
the oriented pathf shown in~C!# encloses fluxf , thena is conju-
gated by the total fluxf , i.e.,a85 f a f21. The total flux is given by
the product of individual string fluxes, taken in order of increas
angle from the initial tail.~This can be seen by deforming a produ
of loops to a single loop enclosing all strings.!
‘‘Sliding’’ flux from the end point.By the conventions
above, the flux of each string is defined at its two end poin
But for the purposes of this simulation it is necessary
make comparisons of the fluxes of strings at arbitrary po
along their lengths. For example, if two strings cross ea
other, their fluxes must be compared at the crossing poin
order to determine whether they commute. A meaning
comparison of the fluxes of nearby string segments can
obtained only if the paths used to define those two flu
remain close to each other everywhere except in the im
diate vicinity of the strings to be compared. In particular, t
‘‘tails’’ of the paths must not pass on opposite sides of a
string, because such paths would give different flux meas
ments for the same string. It is possible to define the flux
a string at an arbitrary point along its length by sliding t
standard path to the one which encircles the string at
point we wish to measure, as illustrated in Fig. 29. If anoth
string with flux b pierces the triangle which is swept out b
the sliding path, then the flux at the new position is con
gated byb. If multiple strings occur, then the new fluxa8 is
given by f a f21, wheref , the total flux inside the triangle, is
defined as the product of the fluxes of all enclosed strin

taken in order of increasing angle from the initial rayBPW .
The flux of each other string at the point where it pierces
triangle must in turn be defined by a similar sliding proc
dure from one of its ends. This procedure, applied rec
sively, can thus define the flux of any string at an arbitra
point P along its length, as measured by a path which f
lows a straight line fromx0 towards P and encircles the
string nearP.

If one slides the path all the way to the far end of t

e,

us

FIG. 30. Crossing of a node’s tail by a string. This can happ
either when the moving node drags its tail across the string~A!, or
when the string is dragged across the tail due to the motion
another node~B!. In both cases, the fluxes of all strings attached
the node whose tail is crossed must be conjugated by the flux o
crossing string.
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FIG. 31. Example of a holonomy interaction between strin
attached to the same node. When the string carrying fluxa is lifted
over the other string carrying fluxb, its flux must be redefined as
a85bab21, and the conventional clockwise order of the thre
strings changes, witha andb exchanging places. The flux conse
vation condition is maintained: ifcba5e originally, then also
ca8b5e.

FIG. 32. Transformation from one description of a flux to a
other at the boundary. Here a string is shown intersecting the pl
of the page precisely where it intersects the boundary of the cu
simulation volume~dotted line!. Under periodic boundary condi-
tions, the two points labeledx0 are identified. The flux of the string
may be described in terms of a path whose tail extends to the r
of x0 (a) or to the left (a8). If no other strings are present, thena
is homotopically equivalent toG21a8G. In the more general situa-
tion shown in ~B!, a;(fLGfR)21a8(fLGfR), and so the two
descriptions of the flux are related through conjugation byf LC fR ,
whereC is the flux associated with the pathG and f L and f R are the
overall fluxes enclosed byfL andfR , respectively. The latter can
be defined in terms of paths lying entirely on one side or the ot
of the boundary.
string, the resulting value of the flux must be consistent w
the value measured by the standard path at the other
This specifies an additional set of relations among the g
erators ofp1(M2$D%) and furnishes one way of testing fo
errors in the simulation, as well as being necessary in or
to define the fluxes of strings at the newly created nodes
result from string collisions.

A modified version of this sliding procedure is used
define all fluxes initially from the original lattice. Paths com
posed of lattice links are deformed by a series of steps
straight-line paths from the base point to the location of e
node.

Holonomy interactions.As the network evolves dynami
cally and nodes change their position, the fluxes defined
these conventions may change in several different wa
First, as a node moves, its tail may be dragged across ano
string segment. Conversely, a string segment may
dragged across the node’s tail by the motion of other nod
In both cases, the fluxes of all strings at the node must
conjugated by the flux which is crossed, as shown in Fig.
In addition, the geometry of the strings at a given juncti
may change, resulting in holonomy interactions among
three strings joined at that node. Such a process is show
Fig. 31: The motion of stringa causes its standard flux t
change, and also changes the clockwise ordering of
stringsa, b, andc. This requires both an adjustment of th
flux definitions and of the order labels.
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ne
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ht

r

FIG. 33. Interaction between a string and one of the large lo
of the three-torus. As a string with fluxa as defined by the patha
crosses to the right ofx0 as shown in~A!, the pathaG, whereG is
a straight-line path which wraps around the three-torus, can be
tinuously deformed to the new straight-line pathG8. Thus the flux
C associated withG must be multiplied from the right by the
string’s flux,C85Ca. If the string crosses to the left as in~B!, aG
is deformed toG8 and so the multiplication is from the other sid
C85aC.



o

th
hi

on
e
re
in

es
o

a

n
es

-

57 3339EVOLUTION OF A NON-ABELIAN COSMIC STRING NETWORK
Periodic boundary conditions.Because of the periodic
boundary conditions, our simulation volume has the top
ogy of a three-torusT3 . The nontrivial topology introduces
three additional classes of noncontractible closed loops o
than the ones associated with strings, namely, those w
wrap around one of the boundaries. These loops may
associated with nontrivial flux. As in the case of vortices
a Riemann surface@34#, the fluxes of these loops may hav
holonomy interactions with the fluxes of strings, and the
fore a full description of string fluxes requires us to mainta
a record of these large loops.

As representatives of the three ‘‘wrap around’’ class
we choose canonical straight-line paths parallel to the co
.

p.

t,

v.

l.
l-

er
ch
be

-

,
r-

dinate axes, which we will refer to asGx , Gy , andGz . Gx ,
for instance, leaves the base point along the1 x̂ direction,
wraps around the boundary fromx5L to x50, and then
returns to the base point from the2 x̂ side. Along with val-
ues of the fluxes for all strings, our algorithm maintains
record of theS3 holonomiesCx , Cy , andCz associated with
Gx , Gy , andGz , respectively. These values must be know
in order to make consistent comparisons of string flux
across the boundary.~The procedure for doing so is illus
trated by Fig. 32.! The values of theCi may change if a
string crosses one of the curvesG i ~see Fig. 33!.
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