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Exact solutions of the equations of motion of liquid helium II can be compared to experiments to
test Landau’s two-fluid theory. The best flows with which to conduct such tests are those in which
amplitudes and gradients are large and in which the calculations and measurements are free from
wall effects, e.g., shock waves. The four fundamental conservation equations of superfluid

mechanics have been integrated across a one-dimensional discontinuity (shock wave) propagating
into undisturbed helium II to yield a set of four algebraic equations (jump conditions) which, when
supplemented by thermodynamic state information, establish the equilibrium flow state behind
the shock wave for a given wave speed and undisturbed flow state ahead of the shock. These jump
conditions have been solved numerically for 19 points on the helium II p-T diagram with

upstream Mach number as the independent parameter. Representative results of the calculations
are presented for pressure shocks, temperature raising shocks, and temperature lowering shocks.
The results are compared to previous analytical approximate solutions to test the validity of those
approximations. They are also compared to experimental data for shock waves in helium I as a

means of testing the correctness of the full nonlinear two-fluid equations.

I. INTRODUCTION

This work was undertaken as an attempt to shed light
upon the implications of data from experiments on shock
waves in superfluid helium. The data provide a means of
testing the correctness of the nonlinear two-fluid model if the
shock jump conditions which follow from this model can be
solved. The two-fluid theory of superfluid helium (or helium
II) consists of two rather distinct parts: a fluid dynamic for-
mulation given by a set of conservation equations from
which the shock jump conditions are obtained, and a ther-
modynamic description in the form of state equations which
interrelate state variables appearing in the jump conditions.
The complexity of these equations precludes closed form,
analytical solutions, and only linearized approximations for
weak shocks have heretofore been obtained. The experimen-
tal shock wave data in some cases show significant disagree-
ment with these approximations, and an important question
then arises. Are the disagreements a consequence of the
weak wave approximation; or, more fundamentally, do they
indicate a failure of the two-fluid model? Our objective here
is to eliminate the former possibility by solving the super-
fluid jump conditions numerically.

We incorporate into our shock solutions the thermody-
namics of helium II given by Maynard.! His experiments
and calculations provide pressure and temperature depen-
dences of the state variables to a precision of about 0.3%.
Dependence on the counterflow velocity is approximated to
leading order by neglecting the w dependence of the normal
fluid fraction. The effect of this approximation on our solu-
tions is discussed.

The dynamics of helium II is described by four conser-
vation equations for mass, momentum, energy, and super-
fluid motion (see, for example, Landau and Lifshitz? or Put-
terman’®). The conservation equation of superfluid motion
preserves irrotationality in the superfluid velocity field. In
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nondissipative flows, i.e., those in which the products of gra-
dients with transport coefficients are negligible, entropy is
also conserved. In these cases, the entropy conservation
equation is equivalent to energy conservation and thus does
not overspecify the flow field. In flows with high gradients,
e.g., flows through shock waves, entropy is not conserved,
and Khalatnikov* has extended the hydrodynamics of heli-
um II to include dissipation and thus detail how entropy is
produced in such cases. Although shock waves, with their
large temperature and velocity gradients, produce entropy,
these gradients have no effect on an integral balance of mass,
momentum, and energy across the discontinuity. Whether
or not superfluid motion is conserved (i.e., whether or not the
superfluid velocity field remains curl-free) through shock
waves in helium II is more controversial. In a recent paper,
Atkin and Fox® compare the results of experiment with weak
wave theory for pure temperature shocks (cf. Sec. I B} to
determine whether entropy or superfluid motion is con-
served in addition to mass, momentum, and energy. They
find a slight preference for entropy conservation. In this pa-
per, following Khalatnikov,*¢ we have taken the more con-
ventional approach and have allowed for entropy genera-
tion.” The jump conditions are solved exactly (without
second-order expansions and without neglect of mode cou-
pling) for superfluid shocks propagating into quiescent lig-
uid, and the results are then compared to experiment. It
should be noted that the experiments and calculations pre-
sented here are tests of the shock jump conditions and do not
address the effects of nonuniform downstream flow and
shock decay.

Early experiments®® on temperature shocks in helium
II confirmed the nonlinear behavior of large-amplitude sec-
ond sound. In this laboratory, a series of experiments has
been carried out by Cummings'? (cf. also Cummings et al.!!),
Wise,'? Turner,'*'* and Torczynski.'> We compare the re-
sults of the present investigation with results from Wise and
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Torczynski. Preliminary numerical results were reported by
Sturtevant.'®

Comparison of the present results to pressure shock
data shows good agreement for experiments at temperatures
below 1.88 K. Disagreements above 1.88 K are probably due
to evaporative effects. Comparison to temperature shock
data shows agreement for low Mach numbers but significant
disagreement at higher Mach numbers. The higher Mach
number temperature shock data might be used to improve
the two-fluid thermodynamics. However, it is possible that
these data are not simply indicative of the approximate na-
ture of the thermodynamic relations used; they may also
indicate inaccuracy of the two-fluid conservation equations.

A. The two-fluid model and thermodynamics of helium I

At temperatures below 2.17 K on its saturated vapor
pressure curve, “He exists as a superfluid liquid phase called
helium I1. Many of the peculiar behaviors of this phase have
been successfully explained by a macroscopic hydrodynamic
and thermodynamic model put forth by Landau and others
(see, for example, Refs. 2 and 3). This so-called two-fluid
model assumes that helium II consists of two components.
One, called the supercomponent, is imagined to be a perfect
liquid, while the other, called the normal component, is as-
sumed to carry all of the fluid’s entropy and to be responsible
for viscous interactions. Each component is assigned its own
density and velocity fields. The total fluid density p is given
by the sum of the super and normal component densities;

p=ps+pPn (1)
The relative velocity w between the two components (also
called the counterflow velocity) is defined as

w=u, —u, (2)
while the ordinary flow velocity u is given by

pu=pu, +p,u,. (3)
Because entropy (and thus heat) is convected with the nor-

mal component, the thermodynamic identity for the fluid
must be extended;

di = —5dT+ (1/p)dp — (p, /p)w-dw . (@)

Here, 1 is the chemical potential per unit mass, § the specific
entropy, T the temperature, and p the pressure. It is the last
term of the above equation which indicates reversible heat
transport by the normal component, and it is this depen-
dence of the thermodynamics on the dynamic quantity w”
which complicates the solution of the equations of motion,
but at the same time generates one of the greatest motiva-
tions for seeking solutions. If one assumes, for small counter-
flow velocities, that the normal fluid fraction p,, /p is inde-
pendent of w?, Eq. (4) may be integrated to give

Al p, Tw?) = u(p,T)— W72 p./p) (5a)

where all quantities on the right-hand side are functions of p
and T only. The tilde is used over state variables to empha-
size dependence on the counterflow velocity. Entropy and
density are then found by differentiating Eq. (Sa) with re-
spect to temperature and pressure;
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For our shock jump calculations, we use the above state
equations. Pressure and temperature dependences of all the
thermodynamic quantities are taken from the work of
Maynard.’

One may estimate an upper bound on the error which
results from using in Eqs. (5) the approximate quadratic de-
pendence on counterflow velocity. Using ideal Bose statis-
tics, Khalatnikov* derives an expression for p,, as a function
of temperature and counterflow velocity. According to his
result, at 7= 1.609 K, p, is increased by only 1.2% above
its static (w = 0) value when w = 3.8 m/sec, a value which is
larger than any of the experimental counterflow velocities
considered in this work. However, the predicted static value
is almost 20% below that measured by Maynard,' which
calls into question the validity of an ideal analysis at these
temperatures. The dependence of p, on w in vortex-free
fourth sound is apparently beyond current experimental re-
solution."’

B. Shock waves in helium Il and the jump conditions

Consider the quantities which specify an equilibrium
(i.e., nondissipative) flow state in helium II. Upon inspection
of Eq. (4) it is clear that pressure, temperature, and magni-
tude of counterflow velocity may be chosen as the indepen-
dent variables necessary to thermodynamically specify the
state. Dynamically, the vectors u and w (or equivalently u,,
and u,) are required. Therefore, two vector equations {con-
servation of momentum and superfluid motion) and two sca-
lar equations (conservation of mass and energy) are neces-
sary in the two-fluid model.

It is well known that linearization of these conservation
equations yields two uncoupled linear wave modes in the
approximation of zero thermal expansion. These modes de-
scribe the propagation of small-amplitude disturbances in
helium II. One is the familiar sound wave (called first sound
in helium II) which propagates pressure-density distur-
bances at a speed given by

172
a, = (QB_) , (6)
dp
while the other mode {called second sound) is unique to heli-
um II and propagates temperature-entropy disturbances as
waves at a speed given by
a; = (psszT/pncp)l/z‘ (7)
For large-amplitude disturbances, the nonlinear terms
in the dynamic and thermodynamic equations provide for
the occurrence of wave steepening and ultimately shock
wave formation. The jump in flow state across the shock is
deduced by integrating the conservation equations of mass,
momentum, energy, and superfluid motion across the dis-
continuity (shock wave). The integration is effected in the
usual manner by transforming to a steady coordinate sys-
tem. Consider a one-dimensional shock wave propagating
into undisturbed helium I with speed c (see Fig. 1), and from

s
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FIG. 1. Lab-fixed coordinates.

this lab-fixed coordinate system (denoted by /) transform to a
system in which the shock is fixed (Fig. 2). The zero subscript
refers to unshocked fluid. Note that the relative velocity w is
invariant under this transformation, and as a result, a con-
ventionally positive relative velocity in lab-fixed coordinates
(i.e., toward the shock) will be negative in the shock-fixed
frame. The flow is steady in the shock-fixed frame; thus the
fluxes of mass, momentum, superfluid motion, and energy

must match across the shock (see Khalatnikov*®),
pu = polty , (8)
P +pu* + (p.p./pIw* = po + potts » 9)
7+ Y] = po + ik, (10)
p5Tu,, + p,usw =poseTody, - (11)

The above four equations are the superfluid (i.e., helium II)
shock jump conditions, and one can note that they reduce to
their counterparts for a classical fluid when w = 0. It is help-
ful to rearrange the set in nondimensional form. Upon elimi-
nating u,, and u, in favor of ¥ and w, and then eliminating u
by Eq. (8), we may write

f, =P Po +(£2
Po 5 p

PP’
Po Py

~ I)M2+ =0, (12)

i — 1 (p fn Y1
f=M+—(T°aoM— Tw) — —M*=0, (13)
@ 2a3\p p 2

f3=(§T

50T,

pSTw

PoSoTo ao

— 1>M+

2

+i(@aoM+@w) —o0. (14)
PoSoTo a0\ p P

The wave speed ¢ = u, has been expressed as the product of a

shock Mach number M and a generic upstream sound speed

a,. It is generic because shock waves in helium II are of two

types which correspond to the linear wave modes of first and
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FIG. 2. Shock-fixed coordinates.
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second sound in the limit of vanishingly small wave
strengths. Thus the Mach number for a pressure (or first
sound) shock which primarily jumps the pressure, density,
and total flow velocity u is based on first sound speed a,,
while the Mach number for a temperature (or second sound)
shock which primarily jumps the temperature, entropy, and
counterflow velocity w is based on the second sound speed
a,. For a given upstream thermodynamic state (specified by
Do and T,) and a given wave speed ¢ = Ma,, the three jump
conditions [Eqs. (12)-(14)], supplemented by state equations
for i1, 3, p, and p,, /p, specify the downstream state p, T, and
w.

Il. SOLUTIONS OF THE JUMP CONDITIONS

A. The Khalatnikov approximations

As mentioned previously, whether or not the experi-
mental shock wave data confirm the validity of Landau’s
equations requires comparison to solutions of the jump con-
ditions which follow from those equations. The solutions
against which authors have traditionally compared their re-
sults are actually approximations made by Khalatnikov* to
the exact solutions. These solutions are approximate in the
sense that weak shock waves (i.e., M = 1 + ¢; €€1) are con-
sidered, in which case the jumps in all quantities across the
shocks are small. Jumps in temperature AT = T — T, pres-
sure 4p = p — p,, and counterflow velocity w are chosen as
the independent variables and each one is considered O (€).
Then all quantities which appear in the jump conditions are
expanded as Taylor series in these variables, and only terms
through O (€?) are retained. As a further approximation, the
coefficient of thermal expansion is neglected. The results for
pressure shocks are

-1

Ap=2M — 1)(1 In (pa,)) , (15a)
dp )
AT=0, (15b)
w=0, (15¢)
while for temperature shocks Khalatnikov finds
3. (a¢\] "
AT=2M—1)|=1n , (16a)
aTr T 0
w= —(ps/p,az)o AT , (16b)
2.2
dp= — [fi _ P_azi(f’_n)] ? (160)
p 2 dp\p/lo

Here, as in Eqgs. (12) through (14), the coordinate system is
shock-fixed, and the zero subscript refers to the unshocked
fluid. The denominator on the right-hand side of Eq. (15a) is
always positive which means that only compression shocks
are to be expected in helium II. High-density regions in a
propagating pressure disturbance will therefore travel faster
than those of low density. However, the denominator on the
right-hand side of Eq. (16a) can be either positive or negative
depending on the location on the p-T diagram. On the satu-
rated vapor pressure curve it is positive for "< 0.5 K and for
0.95 K < T'< 1.88 K which means that temperature raising
shocks are formed within these regions. Outside of these re-
gions temperature lowering shocks occur.
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B. Numerical solutions

Although the Khalatnikov approximations provide
valuable insight into what types of shocks may be observed
in helium II, they are limited to weak shocks. Furthermore,
it is not clear, without examining thermodynamic data for
helium 11, that neglecting the coefficient of thermal expan-
sion is consistent with this second-order approximation.
Owing to the complexity of the jump conditions, for any
more exact solutions one must resort to numerical methods.
The numerical solutions are limited only by the quality of
available thermodynamic data. We have used the data of
Maynard' (0.3% precise), and have approximated the ther-
modynamic dependence on counterflow velocity to leading
order in w. As discussed earlier, for the range of experimen-
tally attainable counterflow velocities, we estimate an upper
bound of 1.2% on the error introduced into our solutions by
this approximation.

1. Solution method. Newton’s method in three variables
may be used to numerically solve the nonlinear jump condi-
tions as follows. For a fixed upstream pressure p, and tem-
perature T, (w, = 0 always) we seek solution vectors

x=(p,T,w) (17)
for the system

fx, M)=0, (18)
where

f=(f1fofy) (19)

is given by Eqgs. (12) through (14). The shock Mach number
M is taken as the independent parameter and is referenced to
either the first or second sound speed for pressure or tem-
perature shocks, respectively. For M slightly greater than
unity, the Khalatnikov approximations would be expected
to give a good first guess x,. A better solution is then found
by Newton’s method (see for example, Isaacson and Kel-
ler'®),

X, =%g—Jg 'f,. (20)

J o ' represents the inverse of the Jacobian at the zeroth val-
ue,

af
Jy= (—) ) 21
o={3 ). (21)
Iterations continue,
xv+1 =xv_JV_lf‘V ’ (22)

until each f; approaches zero to within a specified tolerance.
At higher mach numbers, the Khalatnikov solution may be
such a poor guess that at best a large number of iterations are
required for convergence or at worst no convergence at all is
obtained. In such cases, the previous solution x* at Mach
number M* may be extrapolated in M and used as the initial
guess x2+! for the current Mach number M® *'. This is
effected by letting

c?x)“
a+ 1l __ ga Radeinll Ma+1_Ma’ 23
xg X + (aM ( ) (23)
where
a al —1 a a
(ix_) = [(if_) ] (_‘_?.f_) = [J?] —l(i) . (24)
M. Ix oM oM
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If the solution vector x changes rapidly with M, the Mach
number increment on the right side of Eq. (23) may be made
very small to improve the quality of x *'.

Although it has long been known that linear “mode
coupling” between first and second sound is very weak, the
finite-amplitude results also show surprisingly weak nonlin-
ear ““‘mode coupling.”” The two solutions remain very distinct
to high Mach numbers.

2. Implementation. Certainly one of the most crucial
requirements for obtaining convergent solutions by the
above method proves to be internally consistent thermody-
namic data. We have used that reported by Maynard.' Since
interpolation and numerical differentiation of the published
tables provided insufficient precision to produce reliable
weak wave solutions, the actual code which generated the
tables (excepting chemical potential) was incorporated into
the program.'® Construction of the chemical potential by
integrations with respect to pressure and temperature of Eq.
(4) required the use of a lookup table of 442 reference points
in order to avoid using large amounts of time required by
integration from a single reference point at each iteration.
Within the thermodynamic code, Maynard calculates all
pressure and temperature partial derivatives using a single
increment of 10~ bar and 10~° K, respectively. With de-
rivatives taken on this grain, the computer-generated values
for sound speeds match the experimental data points. For
this reason, pressure and temperature partial derivatives
within the present shock program were taken in the same
way. However, since there are no corresponding natural in-
crement sizes for counterflow velocity w or Mach number
M, the analytical expressions for those partial derivatives
were used.

lll. RESULTS

Calculations for shock waves of both the pressure and
temperature type were made for 19 different upstream states
(pos T,) covering the helium I p-T diagram. For each of these
38 cases, shock-induced flow states were calculated using
upstream Mach number as the independent parameter. We
now present a sample of the results.

A. Representative pressure shock results

Figures 3 through 9 show the results for pressure
shocks with upstream state set at 7, = 1.80 K and p, = sa-
turated vapor pressure.

Figure 3 shows the pressure changes, 4p/p, versus
Mach number, M for this case. The numerical solution (solid
line) and Khalatnikov approximation {(dashed line) coincide
as they should as M—1, but for higher Mach numbers the
Khalatnikov approximation underestimates the numerical-
ly calculated pressure jump. These same qualitative features
in Ap/p,vs M are seen in the 18 other pressure shock cases as
well.

Figure 4 shows the changes in temperature (47 /7, vs
M ) for this case. While Khalatnikov approximates pressure
shocks in helium II as isothermal processes, the full numeri-
cal solution (solid line) indicates a temperature decrease, the
magnitude of which increases as the wave strength increases.
For the strongest shock, T decreases by 0.10 K.
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FIG. 3. Pressure jump versus upstream Mach number.
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FIG. 4. Temperature jump versus upstream Mach number.
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FIG. 8. Normalized downstream counterflow velocity versus upstream
Mach number.
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FIG. 9. Entropy flux jump versus upstream Mach number.

Trajectories (final states on the p-T diagram) for this
case are shown in Fig. 5. The open circles are the numerical
results and the dots are the Khalatnikov approximations.
The highest pressure final state for the numerical solution
corresponds to M = 1.38. Above this value, the numerical
solution for downstream pressure is above 25 bar, which is
very close to the melting line and outside the range of the
thermodynamic data used here. Shock waves which convert
liquid into solid helium are, of course, of great interest, but
they are not considered here. It is also of interest to note that
shock Mach numbers, which are very modest by gasdynamic
standards, produce very large pressure jumps in the liquid.

The Hugoniot {locus of final states on the pressure-vol-
ume diagram) is shown in Fig. 6 and is similar to the Hugon-
iots seen frequently in gasdynamics. The slope is negative, as
is required by the conservation laws for classical materials,
while the curvature is positive, indicating occurrence of
compression shocks.

Figures 7 and 8 show, respectively, the flow and coun-
terflow velocities behind the shock normalized by the down-
stream first sound speed. Compression of the flow through
the shock causes subsonic downstream values of . For the
counterflow velocity w produced by the pressure shock, we
see an interesting behavior. Within Khalatnikov’s approxi-
mations, a pressure shock induces no counterflow, but the
full numerical solution (solid line) shows that in this repre-
sentative case, w is initially positive (away from the shock),
goes through zero at M = 1.16 and becomes increasingly
negative (toward the shock) for higher Mach numbers. The
largest magnitude of w produced is 1.3 m/sec.
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In discussing entropy change across a superfluid shock
wave, account must be taken of the transport of heat by con-
vection with the normal fluid velocity. For any general fluid
flow through some fixed control volume ¥, the second law of
thermodynamics can be expressed in the form

d fq
— dV>—|—=-+dA. 25
dtJ;/ps aT ( )

Here A is used for the closed surface bounding ¥, and the
surface element normal vector is taken positive outward as is
customary. The heat flux vector at the boundary is denoted
by q and hence q/T represents the entropy flux. Since all
entropy in helium I1 resides in the normal fluid fraction, heat
flux in this liquid is given by (see Landau and Lifshitz?)

q=p5Tu,. (26)

Equation (25), applied to the steady, one-dimensional flow
through a fixed superfluid shock, requires the downstream
entropy flux to exceed that upstream. That is,

§ — S = pitt, — ooy, > 0. (27)

In a classical fluid, #,, = u (since w = 0) and the continuity
equation (8) substituted into Eq. (27) assures that the entropy
itself increases across the shock. However, for superfluid
shocks, the second law requires only that the entropy flux
increases. Positive w corresponds to the reversible extraction
of heat from the fluid behind the shock, with the conse-
quence that the entropy itself might decrease.

The normalized change in entropy flux 4s/5, is shown
for the representative pressure shock case in Fig. 9. Since, for
pressure shocks, the counterflow velocity w is much smaller
than the upstream velocity u,, there is insignificant differ-
ence between entropy flux jump and entropy jump, and the
latter is therefore not shown. Such will not be the case for
temperature shocks, when p, w/pyu, is large. As is deduced
from very general thermodynamic reasoning, the curve for
entropy flux jump has zero slope and curvature as M—1. In
particular, the entropy flux change is of order (M — 1)®
across very weak waves.

B. Representative temperature raising shock results

As discussed previously, temperature shocks may ei-
ther be temperature raising or temperature lowering pro-
cesses depending on the sign of the denominator on the right
side of Eq. {16a). Figures 10-15 show the calculated results
for temperature shocks with upstream state set at 7, = 1.60
K and p, = 1.00 bar. At this point on the p-T diagram, the
above-mentioned denominator is positive, which means that
temperature shocks should process this upstream state to a
higher downstream temperature, at least for weak shocks.

Figure 10 shows the temperature changes, AT /T, ver-
sus Mach number M for this case. As with the previously
discussed pressure shock case, the numerical solution (solid
line) and Khalatnikov approximation (broken line) coincide
as M—1. However, for higher Mach numbers, the Khalatni-
kov approximation overestimates the numerically calculat-
ed temperature jump. In fact, the numerical solution for4 7 /
T, is seen to pass through a maximum of (AT /T,),,.. ~0.07
at M=1.50. At Mach numbers higher than 1.50, 4T /T,
continuously decreases. These same qualitative features for
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the numerically calculated temperature jumps are seen in
the 13 other temperature raising shock cases as well.

Figure 11 shows the pressure jumps versus Mach num-
ber for the representative case. All strong temperature
shocks in helium II, whether temperature raising or tem-
perature lowering, are pressure-lowering processes. This is a
significant effect for experiments producing strong tempera-
ture shocks in saturated liquid helium, for boiling may oc-
cur. Corresponding to the smaller magnitude of temperature
increase for the numerical solution, the magnitude of the
numerical pressure decrease across temperature raising
shocks is also seen to be smaller than that predicted by the
Khalatnikov approximation. For M = 1.75, the exact solu-
tion shows a pressure decrease of 0.17 bar.

Figure 12 shows the Hugoniot for this case. Remarka-
bly, the Hugoniots for temperature raising shocks have posi-
tive slope, which for classical fluids is impossible. The reason
can be seen by combining the conservation equations of mass
(8) and momentum (9) to give

Ap/Av = —J* — (vy + Av) p,p,w*/Av, (28)
where j is the mass flux and v = 1/p is the specific volume.
For classical fluids, w = 0, and the Hugoniot slope given by
Eq. (28) is therefore always negative. For pressure shocks in
helium I1, w=0, and as seen previously, Ap/Av is negative
for these cases also. However, for temperature shocks, the
mass flux is small, as are the jumps in pressure and density
across the shock. Thus, from Eq. (28) we have

Ap/Av = —vyp,p,w*/Av. (29)

TEMPERATURE RAISING SHOCK
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FIG. 10. Temperature jump versus upstream Mach number.
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FIG. 12. Hugoniot. FIG. 14. Entropy jump versus upstream Mach number.
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FIG. 15. Entropy flux jump versus upstream Mach number.

Since 4p < 0 for all temperature shocks, the sign of the Hu-
goniot slope is determined by the sign of Av (change in specif-
ic volume). Since pressure changes are small, the density (i.e.,
inverse specific volume) change across temperature shocks is
dominated by the temperature change. The negative coeffi-
cient of thermal expansion for helium II implies a specific
volume decrease upon a temperature increase and vice versa.
Equation (29) thus correctly predicts a positive sloping Hu-
goniot for temperature raising shocks and negative slopes for
temperature lowering shocks.

The downstream counterflow velocity, normalized by
the downstream second sound speed, is shown in Fig. 13.
The sign is negative (directed toward the shock) which is an
indication of heat addition from the downstream region. The
counterflow velocity for a M = 1.75 shock wave is — 25.5
m/sec. Although not shown, the jump in flow velocity, 4u, is
only — 0.08 m/sec for M = 1.75.

Plots of jumps in entropy and entropy flux for this case
are shown in Figs. 14 and 15, respectively. Since the relative
velocity w is large for temperature shocks, the two plots are
seen to differ substantially.

C. Representative temperature lowering shock results

Figures 16 through 21 show the calculated results for
temperature shocks with upstream state set at 7, = 2.10 K
and p, = 1.00 bar. At this point on the p-T diagram, tem-
perature shocks are of the temperature lowering variety. It
should be emphasized that all of the calculations of this pa-
per are carried out for upstream state at rest; w, = 0. That is,
only one member of the family of solutions for different up-
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FIG. 16. Temperature jump versus upstream Mach number.
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FIG. 17. Pressure jump versus upstream Mach number.
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TABLE I. Pressure jumps across pressure shocks.

Experiment T4K) Po (8P/Polgas (4p/py). {Ap/po)x M
a 1.522 SVP 1381. 1332. 1129. 1.145
b 1.665 » 602.7 558.2 489.2 1.119
c 1.751 » 642.9 583.8 479.1 1.164
d 1.832 » 446.0 4983 400.4 1.184
e 1.989 » 293.9 244.2 208.5 1.161
f 2.031 » 2989 202.0 176.7 1.155
g 2.095 ” 3157 283.0 226.0 1.241

stream w is presented here. On the other hand, in typical
experimental setups in which temperature lowering shocks
are observed, the shocks are generated by turning off a heat-
er, in which case w,7#0.

From Fig. 16, it can be seen that the Khalatnikov ap-
proximation underestimates the magnitude of the tempera-
ture decrease across stronger shocks and, correspondingly
from Fig. 17 the magnitude of the pressure decrease as given
by Khalatnikov is also too small when compared to the exact
solution. The pressure jump at M = 1.75is — 0.165 bar. The
Hugoniot shown in Fig. 18 has a negative slope since the
superfluid volume increases with decreasing temperature.

Although not shown, at M = 1.75, the jump in flow
velocity, Au, is approximately + 0.10 m/sec. The counter-
flow velocity for a M = 1.75 shock wave is 24.2 m/sec, and
as shown in Fig. 19, the sign of w is always positive (away
from the shock) which indicates an extraction of heat from
the downstream region. As a consequence of this heat ex-
traction, the entropy change across the shock is negative as
can be seen in Fig. 20. However, the entropy flux increases
(see Fig. 21) as it must by the second law of thermodynamics.

D. Comparison of numerical and experimental results

Data from the experiments of Wise'? may be compared
to the numerical results for pressure shocks. In these experi-
ments, a first sound shock in the liquid was produced by
allowing a gasdynamic shock to reflect from the liquid sur-
face. Starting at seven different temperatures 7, on the SVP
curve, Wise measured velocities of the incident and reflected
gasdynamic shocks plus the velocity of the transmitted pres-
sure shock in the liquid.

Using the ideal gas shock jump conditions, with the two
measured wave speeds in the helium vapor, one may calcu-
late the pressure jump on the vapor side of the interface (4p/
Do)gas - Similarly, the wave speed of the pressure shock in the
liquid may be used to calculate the pressure jump on the
liquid side of the interface, both numerically (4p/p,), and by

TABLE 11. Temperature jumps across pressure shocks.

Khalatnikov’s approximation (Ap/p,),. The pressures
across the interface should match. Table I shows these calcu-
lations with Mach number for the pressure shock in the lig-
uid given in the right-most column.

In all seven cases, the numerical result agrees more clo-
sely than the Khalatnikov approximation to the pressure
jump in the gas. For the first four cases (lower temperatures),
the numerically calculated pressure jump in the liquid varies
from that in the gas by 7% on the average. This represents
acceptable agreement since the uncertainty in (4p/py)g,, is
about 10%. For these same four cases, the Khalatnikov re-
sults in the liquid differ by an average of 19% from the pres-
sure jumps in the vapor. The discrepancies for the three
higher temperature cases are more serious, with the numeri-
cal and Khalatnikov results differing on average from the
gas jumps by 20% and 33%, respectively.

The poorer agreement between experiment and theory
for the higher temperature cases may be the result of greater
evaporation rates at the liquid-vapor interface for these
cases than for the lower temperature cases. As can be seen
from Table II, the counterflow velocity w induced by the
liquid pressure shock in the three higher temperature cases is
positive, which here means toward the surface of the liquid.
This also means that the initial heat flux produced is toward
the surface in these cases. As a result, the tendency of the
temperature raising wave [which in these cases is a fan and
not a shock, since the denominator of Eq. (16a)} is negative
above 1.88 K] following the pressure shock into the liquid to
convect heat away from the hot surface is counteracted. The
evaporation rates should therefore be higher for these cases.
This will tend to strengthen the reflected gasdynamic shock.

Table II compares the experimentally measured and
the numerically calculated temperature jump across the
transmitted pressure shocks in the liquid helium. The tem-
perature measurements'? were obtained with superconduct-
ing sensors in conjunction with their static calibration
curves. Also shown in the right-most column are the calcu-

Experiment To(K) Do AT/ To)exp (AT /T,), (w/a, ), x 10

a 1.522 SVP 1.145 - .0079 —.0117 —11.3

b 1.665 ” 1.119 —.0126 —.0118 —.522
c 1.751 » 1.164 —.0200 —.0180 —2.90

d 1.832 ” 1.184 —.0180 —.0212 —1.99

e 1.989 ” 1.161 —.0241 —.0191 4.86

f 2.031 ” 1.155 —.0291 —.0186 6.07

g 2.095 » 1.241 — 0263 -—.0377 8.22
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lated counterflow velocities normalized by the upstream
first sound speed.

Experimental data for temperature shocks'® may also
be compared to the results from the shock program. Figure
22 shows the measured and calculated temperature jumps,
AT /T, as afunction of temperature shock Mach number M
for an initial state of 7, = 1.609 K and p, = SVP. For each
data point (circle), 95% of the measured value (cross) is also
plotted, and it is apparent that up to M =~ 1.04, the numerical
solution lies a constant 5% below the data. This is most
likely the result of the calibration procedure used for tem-
perature sensor measurements of the second sound shock
amplitude. However, the experimental data for
1.04 < M < 1.05 start to show significant disagreements with
the numerical result. The data in this region, where the coun-
terflow velocity w is large, may be of use in improving the
thermodynamics for helium II. Specifically, the second-or-
der approximation (5a) for the chemical potential follows
from the exact differential relation {(4), on the assumption
that for small w, the normal fluid fraction p,, /p is approxi-
mately independent of w. Thus, with a closer analysis and
better experimental data it may be possible to derive an em-
pirical relation for the dependence of p,/p on w. As dis-
cussed earlier, the ideal Bose theory used by Khalatnikov*
predicts p, to vary with w by less than 1.2% from its static
value in these experiments, whereas Fig. 22 shows 11% dis-
agreement between experiment and numerical result at
M = 1.05. It might also turn out that the data from higher

1136 Phys. Fluids, Vol. 27, No. 5, May 1984

Mach number temperature shocks cannot be accounted for
by the thermodynamics alone, and that equivalent modifica-
tions of the fundamental conservation equations are also
necessary.

IV. SUMMARY

A computer program was developed to iteratively solve
the shock jump conditions which follow from the Landau
equations for superfluidity. The quality of thermodynamic
state information used to supplement these equations al-
lowed convergent shock solutions to be obtained for shock
Mach numbers as low as 1.001 for temperature shocks and
1.004 for pressure shocks. The results asymptote to the Kha-
latnikov approximations for weak waves.

Pressure shocks in helium I1, for the most part, exhibit
the types of jumps expected in classical fluids since they pro-
duce small counterflow velocities, although w=1.3 m/sec
can be generated by strong pressure shock waves.

Temperature raising shocks show a positive sloping
Hugoniot since the volume change is dominated by tempera-
ture change and not by compression.

In temperature lowering shock waves, the counterflow
velocity of the shocked liquid is directed away from the
shock, indicating a reversible heat extraction in the shocked
region. As a consequence, the entropy decreases across such
waves, but the entropy flux increases as it should according
to the second law of thermodynamics.

Temperature shock waves can generate pressure jumps
on the order of 0.2 bar and mean flow velocity jumps on the
order of 0.1 m/sec.

Comparisons of the calculations to Wise’s experimental
data for pressure shocks reveal agreement superior to the
Khalatnikov approximation in all cases. At lower tempera-
tures the numerical results differ from the data by 7% on
average. This represents acceptable agreement since the ex-
perimental precision is approximately 10%. At tempera-
tures closer to the lambda line, where w is direct toward the
liquid—vapor interface, the numerical results for 4p in the
liquid are on the average 20% lower than those calculated
from shock speed measurements in the vapor. This is most
likely the result of evaporative effects at the liquid surface.

Comparisons of these results to the temperature shock
data of Torczynski show good agreement for low Mach
numbers. The data for higher Mach numbers show signifi-
cant disagreement with the current two-fluid system of dy-
namic and thermodynamic equations. These data can possi-
bly be used, in conjunction with exact shock wave
calculations, to improve the two-fluid model.
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