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vanish, thus violating the local validity of special
relativity.

35This is a classical version of Schiff’s original
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We show that the Belinfante-Swihart (BS) theory can be reformulated in a representation in which
uncharged matter responds to gravity in the same way as in metric theories. The BS gravitationally
modified Maxwell equations can also be put into metric form to first order in the deviations of the
physical metric from flat space, but not to second order; consequently, the theory is nonmetric except
in first order. We also show that the theory violates the high-precision Eotvos-Dicke experiment, but
cannot be ruled out by the gravitational precession of gyroscopes.

L. INTRODUCTION AND SUMMARY

This paper analyzes the most complete and ex-
tensively developed nonmetric theory that exists:
the 1957 theory of Belinfante and Swihart.*™®
Belinfante and Swihart (BS) constructed their the-
ory as a Lorentz —symmetric® linear field theory
which would be easily quantized. However, as we
shall show, in terms of measurable quantities the
theory has all the nonlinearities of typical “curved—
spacetime” theories. Moreover, it is nearly a
metric* theory: We construct a new mathematical
representation which has metric form to first

order in deviations of the physical metric from
flatness, but does not have metric form to higher
orders.

Section II gives a brief summary of the original
BS representation. Included are discussions of
nonlinearities and the behavior of rods and clocks.
Section III presents our new mathematical repre-
sentation of the theory. Section IV gives a pre-
scription for obtaining the post-Newtonian limit® ®
of the theory, and Sec. V considers various exper-
imental tests. Contrary to previous calculations’
it is found that both the geodetic and the Lens-
Thirring precessions of gyroscopes® cannot dis-
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tinguish the BS theory from general relativity

(for a particular choice of adjustable parameters).
However, using results of another paper,® we show
that the failure of the theory to be metric at second
order causes a violation of the E6tvds -Dicke!'® !
experimental results. Our calculations confirm the
the Belinfante-Swihart conclusion that their theory
agrees with the three classical tests of gravitation
theories (perihelion shift of Mercury, bending of
light by the sun, and red shift of light), and also
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II. THE BELINFANTE-SWIHART REPRESENTATION
OF THEIR THEORY

A. Lagrangian and Equations of Motion

The original representation of the BS theory is
Lagrangian-based,* but is not in generally covari-
ant form.* In this section we generalize, in a
trivial manner, the original representation so that
it is generally covariant. The dynamical equations

are obtained by extremization of the following
action:

agrees with the weak equivalence principle* (WEP) f " f . _/ )
= 1
to first order. 1= | Led®x+ | £,d°x+ | £d°x (1)
where
L=~ (16m)7 0B 0™ 0P (@hxp)a Myt g + Ry altpol ) (=12, 2)

dx¥ -
£u=X [ [ -mabas (1, +end,) Fomllar | 6 G 2aO0n) dha + (40) T GEPHy, = HPA,1,) (<022, (3)
A

£ =3 hy, +3 [ Kmpbain® 8% (x-2,0,)) dy (4)
A
TV =(4m™ (HMHY" = 30" H*® Hyg) (-n)'2+ 3 [ @l 6°(x-24(14)) dry (5a)
A
bAEaA“ a‘;‘ . (Sb)

Equations (1)—(5) describe the interactions of a
collection of charged particles (labeled by A)
with the electromagnetic and gravitational fields.
Conventions and definitions for the above are the
following:

(i) We use units such that c= G=1.

(ii) Mg is a Riemann flat background metric
(absolute gravitational field*). In some coordinate
system, it therefore takes on Minkowski values,
N«p = diag(-1,1,1,1). All tensorial indices
occurring in Egs. (1)-(5) are raised and lowered
with NaB-

(iii) Greek and Latin indices run through 0-3
and 1-3, respectively.

(iv) a,f,K are adjustable parameters.

(v) hyy =h,, is a symmetric second-rank dy-
namical gravitational field.*

(vi) The world line of particle A is paramet-
rized by an arbitrary, monotonic parameter A,
which varies from -« to +«. Particle A is de-
scribed by its coordinate z4 and its “velocity and
momentum variables” af and II4, which are all
functions of A,.

(vii) The electromagnetic field is described by
the tensor fields A, and H,,=-H,,.

(viii) T*¥is a “stress-energy tensor” for par-
ticles and electromagnetic fields. (The bar above

is used to distinguish it from a different “stress-
energy tensor” defined in Sec. IV.)

(ix) Slashes denote covariant derivatives with
respect to the flat background metric 745.

(x) n=determinant of n,5.

Equations (5a) and (5b) are decomposition equa-
tions®* for T*" and b,. The dynamical variables
which one varies independently in the action are
huu(x); Z%O‘A)’ aﬁ(xA)’ H‘A()‘A)’ Ap(x), and Huu(x)-
Variation of the matter variables yields the follow-
ing dynamical laws*?:

ma*(1-Kh)=b(1* -3 h,*I1") [BS, I, (29)], (6)

dzy/dry=al —3h}'(z,)a% [BS, I, (30)] » (7)
Fuu EA”“ 'Aulu
=H,,(1-3h)+H,\h,* - H,\h,*

(BS, II, (11)], (8)

Az H
HY\ =473 e, f%‘: O}(x—2za)dAs (=)™
A

[Bs, 11, (10)], (9)
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dllap _, o dz}

W e, uum+%aﬁnghpo|“+KmAbAh|u

(BS, II, (5)], (10)

where h=h,°.
Variation of &,, yields

aOh s +filgsh

=—41T4 -BﬂKnaﬂEfmAbA o' (x—2za)dNa .
A

(11)
Here we have used the symbol O, En“ehu valg.

B. Nonlinearities in the Theory

Linear gravitational field equations do not pre-
clude a nonlinear form for the response of parti-
cles to gravity. The BS theory is an example:
Equations (6) and (7) endow the canonical vari-
ables a4 and I1§ with gravitational contributions.
Consequently, the equation of motion for a parti-
cle, Eq. (10), is nonlinear in the gravitational
field h,,. Indeed, although the BS theory is often
called a “linear” theory, its linear first-order
matter Lagrangian produces qualitatively many
of the nonlinear effects of general relativity (GRT),
for example (see Secs. III and IV). Hence one
should be cautious in the labeling of theories as
linear or nonlinear on the mere basis of the linear
forms of their gravitational equations.

C. Behavior of Rods and Clocks

In the third paper of their series,® Belinfante
and Swihart quantize the theory and obtain a
gravitationally modified Dirac theory. We remind
the reader that all nonmetric theories must ex-
hibit explicitly the manner in which all the laws of
physics are changed in the presence of gravity.
Belifante and Swihart find that, in the case of a
static spherically symmetric (SSS) gravitational
source, the standard solutions to the unmodified
Dirac equation are related to those in the pres-
ence of gravity in the following way:

‘Po(§o,to)=N<P(§,t), (12)

X,=Cx [BS, I, (78)], (13)

t,=(1-0)¢, (14)
-3/2_ 1-U -3/2

N=C™%/2= (1_—0/2';1) . (15)

Here the subscripted quantities are those in the

absence of gravity, ¢ is the electron wave function,
U is the Newtonian gravitational potential for an
SSS source, and a is the previously mentioned
adjustable parameter. The coordinate system is
one in which n,g=diag (-1,1,1,1). The energy
eigenvalues, i.e., E in ¢(X,t)=¢(X) exp(—iE t/F),
are shifted in the presence of gravity:

E,=(1+UV)E [BS, 01, (82)] (16)
—a result following essentially from Eq. (14). It
is Eq. (16) which produces qualitatively the correct
red shift. Equations (12) and (13) also indicate
the effect of gravity on the coordinate sizes of
atoms. Consider the expectation value of the
coordinate size of an atom:

<r>=f!<p(i, 2y d®x . a1m

Using Eqgs. (12) and (13) we obtain

() = fN-z "Po(ioy to)? C™l7,Cd%%,=C™r,)

1-U/2a
=T1-g 7

=[1-U(za™-1)]{r,) (18)

According to Eq. (16), the coordinate ticking
rate of an atomic clock decreases in a gravita-
tional field:

w=(1-V) w, .

According to Eq. (18) the coordinate size of a
rod made of atoms decreases in a gravitational
field:

I=[1-U(za™*-1)] ,.

Since a ~ § to agree with the light bending experi-
ment (see later sections), the above results are
the same, to first order in U, as one obtains in
GRT, using an “isotropic, post-Newtonian”
coordinate system.®

III. ATTEMPTS TO PUT THE THEORY
INTO METRIC FORM

The BS theory is a Lagrangian-based relativistic
theory of gravity.® Therefore, according to a
theorem proved in Ref. 4, it is a metric theory if
and only if the “nongravitational part” of its
Lagrangian,
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Enc=Ly+ Ly,

can be put into universally coupled form.* Let us
try to achieve universal coupling by a change of
variables, i.e., by introducing a new mathematical
representation of the theory.

A. Particle Part of Lagrangian

Begin with the terms in £yg that refer only to
particles and define the following tensors:

m,* (19)

[N

Zyﬂgéyu -

AL =(R5)Y, ie., A.PAgT=0,". (20)

Iy s[fs,,m“f.n,du]pm

Then, from Eq. (7), obtain the relation
a’ =A,"dz"/dx . (21)
Equation (21), which is obtained after variation of

the Lagrangian, suggests that one define a new
variable v* to replace a* in the Lagrangian:

a’=a," 0" . (22)

Then, the relation v* =dz*/dx will presumably
turn out to be an Euler-Lagrange equation. Using
Egs. (19)-(21), bring the particle portion of the
Lagrangian into the form

(23)

dz} dzly B,oly B gv)id
S [—(I—Kh)mAbA+eAAud—Ax +1 (5 —ak +h,* a%) |d
A A A

A

dzh dzh
\ dT:*“Au(arﬁ‘ vﬂ)} . (24)

In obtaining Eq. (24) from Eq. (23) we have performed the integrations over d*x and, thus, all of the space -
time functions should be evaluated at the particle position z}.

If we now define an “effective metric,”

8ap=(1=Kh¥ A Ay g=nop(1-2Kh)+hyg+O(K?)

(25)

Eq. (24) takes the universally coupled form, with g, being the only gravitational field occurring in Ipay.

Variation of IT, then yields the desired relation

dz*
o=

ar -’

(26)

To make our results look simpler, we explicitly introduce Eq. (26) into Eq. (24), thus eliminating I,

completely and obtaining

a B\1/2 u
- dzy diA) dz? ]
IP-’H'I "ZA J‘ [_mA <_ga8 dXA d)\A +eAAM dxA dAA . (27)

Variation of Eq. (27) yields equations of motion which, by the use of Egs. (6), and (19)~(21), can be shown
to be identical to the BS equations of motion, Egs. (10). Equation (27) is the familiar “metric theory”
action principle describing the interaction of charged particles with the gravitational field g,, and the

electromagnetic field A .

B. Electromagnetic Part of Lagrangian

It will now be shown that, to first order in h,,, the electromagnetic Lagrangian can also be put into
metric form. Change variables from H,, to an antisymmetric tensor F,, by

Hyy =Fyy (14+5h+5h) +2Fy ) (1 +h) =2F by ) h%, - 2F) oh% by M + O(FRY) . (28)

Equation (28) is simply the result of an inversion of Eq. (8). Square brackets around indices denote anti -
symmetrization of indices (with the usual normalization of a factor of ). Variation of F,, in the new La-

grangian presumably will yield the relation
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Fuy=4,, -4y - (29)
Substitution of Eq. (28) into the electromagnetic portion of the action yields
LemE(41r)"f{%HaeHuu (50%(1-30) +R®*] 0 A, |, Hag 1™ 0"} (-m)*/2d*x
= (41r)"f{§[FaB(1 +3h) +2F) (ohgy M) [Fy u(1+3R)+2Fy kM n® T8
=A% nPH[Foap(l +3h) +2F ohpy M} (- 1) /2 d%x (30)
=(4n)"f(A[u|u] +%F,,u> Fop[n®*n® (1+3h) k0™ —h®n] (=)' /2 d%x +0(R?) (31)

where
I8 =3B (1-3h) +n® |
If one now uses the inverse of Eq. (25), i.e.,
g°% =% —h°® +2Knn%® + O(n?)
and
(=% =(=m"?[1+h(z -4K)] +O(r*) ,
one finds Eq. (31) can be written as

Lem=(4n)‘1f Ay +5F)

X Fo(BgaugBU(_g)l/zd4x+Lcun ’
(32)
where

Lw"5(4")-lfFuv( $Fap~Aga1p))TH P ad%

= O(K?) (33a)

and
T pavB — % hznu anvﬂ - hnpahue
+ 30" R R B + 3RMRVB, (33b)

Thus L., has universally coupled form at O(k); at
O(k?) deviations occur, arising from the L, term
in Eq. (32). Variation of F,, in Eq. (32) yields the
desired relation between F,, and A, i.e., Eq.
(29). Completely equivalent equations are obtained
if Eq. (29) is now substituted into Eq. (32), yield-
ing

Lem=- (16")-1fFaﬂ Fuu gaugev (_g)l/qux*‘Lwn
(34a)

= —(161r)"‘fFae FB (=gl 2d%% + L, .
(34b)

r

The relation given in Eq. (29) is now understood to
hold in Eqgs. (34). Since we now have constructed
a second metric g, (the “physical metric”),
indices on all quantities except the constituents of
8as Mas, s, p) henceforth will be raised and
lowered with g,5. Equation (34), aside from the
O(h®) correction term, is recognized as the elec-
tromagnetic Lagrangian for metric theories. Thus
the BS theory is a metric theory at first order,
but nonmetric at all higher orders (in k).

C. Summary of Our New Representation

Our new representation of the BS theory is
summarized succinctly in Table I. In particular,
one sees that for uncharged particles the theory
is metric to all orders in k&, with g, playing
the role of the “physical” metric.* When electro-
magnetic phenomena are included, and when one
goes beyond first order in %z, the theory is non-
metric (cf £ in Table I).

IV. THE POST-NEWTONIAN LIMIT
OF THE THEORY

We now proceed to calculate the post-Newtonian
(PN) limit of the theory. The PN limit is a per-
turbation solution of the gravitational field equa-
tions - expanding in the small quantities occurring
in the solar system, e.g.,

v® = (macroscopic velocities of bodies)? = O(e?),

U=Newtonian gravitational potential = O(e?),

- pressure (2
b/p proper density of rest mass 0(€),
M= internal energy density = 0(e?)

rest-mass density

We refer the reader to Ref. 5 for further details
of the expansion scheme.



7 ANALYSIS OF THE BELINFANTE-SWIHART THEORY OF GRAVITY* 3583

A. The Metric-Theory Approximation

Using Table I, we write the field equations as

5L _ 0o

oh,,, Ohyy
_ <6£ metric + 6£60ﬂ'>
- ohy,, ohy,

_ <6£meuic 3gu v, 5£wrr)
og,, dhy, Ony,

_ (_g)l/z /18] aguy 6£c0u>
“< 2 T 8hy,  Ohy,)’ (35)
where we have used the usual definition (as in
metric theories)
2 6L metric
THY = —_ 36
a7 o8, (36)

To PN order, the first term on the right-hand
side of Eq. (35) is of order

first term~ (total energy density)Xe? ,

while the second term is of order (see Table I)
second term ~ (electromagnetic energy density)Xe?.

Since the electromagnetic energy of a substance

is typically smaller than the total mass-energy by
a factor < 1073, the second source term in Eq. (35)
can be neglected at PN order, by comparison with
the first. Similarly, one can make a metric-the-
ory approximation for the response of matter to
gravity. For metric-theory (i.e., universally
coupled*) Lagrangians, one always has

", , =0 37

when the matter field equations are satisfied,
where the semicolon denotes covariant differen-
tiation with respect to the physical metric g45.
In the BS case

6£COH’
187 .
T :u_'o(&w h'.,>, (38)

TABLE I. A new mathematical representation of the Belinfante-Swihart theory.

1. Gravitational fields:

a. Absolute field.................. ...t

b. Dynamical symmetric second-rank tensor

c. “Physical”’metric.........oovvvunnen....

2. Nongravitational variables:

a, Particle coordinates............covvueunn.
b. Electromagnetic vector potential...........
c. Affine parameter of particle world lines.....

3. Gravitational field equations:

a. Flatness of n: Riemann (9)=0

b. Field equations for & obtained by variation of h,g in Lagrangian below
c. Decomposition equation for g: gag =(1- Kh)ZAq“Apa where we have defined A 86 g —3hgT)=6,",
h

K is an arbitrary constant, 2 =n%

4. Influence of gravity on matter:

«5, and indices are raised and lowered on k,g,A 45 With 7,4.

Equations for 4,z 4, obtained by variation of those quantities in Lagrangian

5. Lagrangian density:
a. £=£G +£NG

b. Lo=—(16m)~ @ht O hy o % +f b ') (=m)V?

. ,. B
dzg dz, \I2
c. £NG=Z f[—mA<—gaﬂ—d)\—A' dA—A> +ey A
A

=L

metric™ £con ’

dz)y

B dar, ]dAA 64<£“_ZA)—(IGW)-iFaBFaB(“g)Uz+£corr

N

where £corr, the “correction term” in the Lagrangian, which represents the amount by which the
purely electromagnetic portion of the Lagrangian fails to have metric form, satisfies

£corx=O(F2h2) [see Eqgs. (33)] .
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so again one can conclude that effects resulting
from the deviation in the matter response equa-
tion from Eq. (37) will be < 1072 of PN effects.
Thus for all PN phenomena we can neglect £corr
and treat the BS theory as a metric theory.

B. From Point Particles to Perfect Fluid

In one of their original papers® Belinfante and
Swihart, when solving their gravitational field
equations with the sun as the external source, use
an ad hoc perfect-fluid stress-energy tensor for
TH?, rather than the expression given in Eq. (5).
Their T, is precise enough to yield an adequate
treatment of the “three classical gravitation tests”
but is not precise enough to adequately handle
such effects as the effective gravitational mass of
gravitational energy (cf. “Nordtvedt effect” in Ref.
5). To avoid such problems, and to ensure self-
consistency of the theory when dealing with gravi-
tating sources in the solar system, we will build
up the fluid BS stress-energy tensor T*” as an
average over charged point particles and their
electromagnetic fields [cf. Eq. (27) and Table I].

The kinetic -theory procedure for constructing
a perfect fluid out of interacting particles is the
same in any metric theory as in general relativity,
and the same in general relativity as in special
relativity (“equivalence principle”).'® By following
that standard procedure and by neglecting the
resulting nonperfect fluid terms, we obtain the
standard stress-energy tensor:

THFY= (e +p) u*u’ +pg"? . (39)

Here «* is a suitable macroscopic average of the
microscopic particle 4-velocities, € is the density
of total mass-energy (rest mass plus kinetic ener-
gy of particles plus electromagnetic energy) as
measured in the macroscopic rest frame, and p

is the similarly measured averaged pressure.

C. The Parametrized Post-Newtonian (PPN) Formalism

References 5 and 6 present a “parametrized
post-Newtonian formalism” in which the PN limit
of every metric theory is summarized by the
coefficients of various integral functions in its
metric. These coefficients, the so-called PPN
parameters, are obtained by the previously men-
tioned perturbation solution (PN limit) of the
gravitational field equations. We have constructed
such a solution for our new mathematical repre-
sentation of the BS theory, using Egs. (35) and (39)
and Table I. The details are spelled out in Ref.
14. (Actually Ref. 14 is the presentation of an
exact gravitation theory closely related to the met-

ric-theory approximation of the BS theory.) We
refer the reader to Ref. 14 and here quote only
the PPN parameters of the BS theory:

y=y+0Ww), &£=0, a,=0w),

B=B+O(w)’ §3=0, a2=0(w) i) (40)

¢, =0, £,=0, a3=0

Here ¥ and B are given implicitly in terms of a
and f by

a=1/(27 +2), (41)

10B+67F-17%-87 6
R TSN ER Y ) (42)

and to obtain the correct Newtonian limit one must
require

16K%a —4aK+ a+3f _
al@+47) =2 . (43)

By O(w), we denote terms involving the cosmo-
logical boundary values of k,, (see Ref. 14 for
further details). Imposing Eq. (43) reduces the
number of arbitrary parameters to two (a and f,
for example); so we may regard 7 and B as being
arbitrary. For comparison, general relativity
has no arbitrary parameters and its only nonzero
parameters are y=8=1.

V. EXPERIMENTAL CONSEQUENCES
AND TESTS OF THE THEORY

In his 1972 Varenna Lectures, Will® summarizes,
within the PPN framework, the constraints which
may be placed on a metric theory’s parameters by
current solar system gravitation experiments. As
has been indicated in Sec. IV, the difference
between the BS theory and a metric theory for
PPN-type experiments is less than one part in 108,
For most experiments the microscopic internal
energies play a minor role; e.g., it is the macro-
scopic rotation of the earth which produces the
macroscopic Lens-Thirring precession of gyro-
scopes. For such experiments ‘the BS theory
is effectively a metric theory to a much higher
accuracy than indicated above. In summary, so
far as PN experiments are concerned, to the
precision of the technology of the 1970’s the BS
theory is accurately summarized by the values of
its PPN parameters, Eqgs. (40). We refer the
reader to Ref. 8 for the experimental consequences
of those values. Here we merely point out a few
salient features.
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Perhaps the most important feature is this: If
the O(w) terms in the parameters are sufficiently
small, and if the arbitrary parameters are chosen
so that 7=pB=1, then the PN predictions of the
metric-theory approximation to BS are the same
as the PN predictions of general relativity. In
particular, the predictions for the “three classical
tests” are the same as Belinfante and Swihart!
themselves deduced by complicated calculations.

A. Preferred-Frame Effects

For the coordinate system in which 7 is Min-
kowskian, it is natural to set the boundary values
of h to zero when treating the solar system, as
was done originally by Belinfante and Swihart.
However, the correct way to determine the bound-
ary values of & is through the solution of the
cosmological problem. If the solution produces
nonzero cosmological boundary values of &, then
those values will effect certain of the PPN param-
eters [cf. O(w) terms in Egs. (40)]. In the case of
the BS theory the presence of such terms is a
direct consequence of the presence of the “absolute
gravitational field” n* (cf. Table I), and leads to
various preferred -frame effects® such as anom-
alous solid earth tides and contributions to the
perihelion shift of mercury. We refer the reader
to Ref. 14 for a more complete discussion of the
derivation of such effects in the BS theory.

B. Precession of Gyroscopes

We specifically mention this experimental test
only because there seems to be some confusion!?
as to the prediction of the BS theory. Using for -
mulas from Ref. 8 and the BS PPN parameters,
Eq. (40), one obtains for the precession of the spin
Sofa gyroscope orbiting the earth

S _ =
I ox§ | (44)
where

-

Q= QLens-Thi[ring +Q geodetic (45a)

Qur =5[47+4+0w)] (0.05’" of arc/year) ,
(45b)

Qs=3[1+2Y+0w)] (7" of arc/year). (45¢)
Thus the results of the upcoming Everitt-Fairbank'®
gyroscope experiment (to be launched before 1977)
can only place upper limits on the cosmological
boundary values of &, [cf. O(w) terms in Egs.

(45)] for a given choice of 7.
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C. The Weak Equivalence Principle and
Eotvos-Dicke-Type Experiments

We conclude by considering the E6tvos-Dicke
(ED) type experiments, '°'** which test gravity
so precisely that they fall outside of the PN realm
of precision. Braginsky," in his recent version of
the ED experiment, reports that the difference in
accelerations of test bodies of aluminum and
platinum in the gravitational field of the sun is
smaller than one part in 10'2. Such a result rep-
resents a strong validation of the weak equivalence
principle* (WEP). Consider the contribution of
electromagnetic energy at order F2h? (see bottom
of Table I) to the gravitational mass and accelera-
tion a of a test body:

al. 1 of (electromagnetic energy hz]
gl |g total energy
_ electromagnetic energy
total mass v, (46)

where /2~ U? and §=VU. For platinum, the follow-
ing relation holds:

electromagnetic energy -3
~ 1073,

total mass

and the Newtonian potential due to the sun at the

earth is

U~ 1078,

Equation (46) and the above numerical estimates
indicate that the ED experiment can distinguish
between the BS theory and its metric-theory
approximation (cf. £cor in Table I). All metric
theories satisfy WEP identically. The BS theory,
however, as is shown in Ref. 9, predicts

(&) —(Tas
g

~6X1071

~ (electromagnetic energy> U (@)
total mass

in clear violation of the Dicke'® and Braginsky!!
versions of the experiment. The reader is re-
ferred to Ref. 9 for complete details as to the
derivation of Eq. (47) from considerations of par-
ticles interacting with gravity and electromagnet -
ism.
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The notion of the gravity-induced electric field has been applied to an entire self-gravi-
tating massive body. The resulting electric polarization of the otherwise neutral body, when
taken in conjunction with the latter’s rotation, is shown to generate an axial-magnetic field
of the right type and order of magnitude for certain astrophysical objects. In the present
treatment the electric polarization is calculated in the ion-continuum Thomas-Fermi approxi-
mation while tl.e electrodynamics of the continuous medium is treated in the nonrelativistic

approximation.

The gravity-induced electric field and the con-
comitant electric polarization of an earth-based
laboratory sample, arrested from free fall, have
been studied theoretically’™ and experimentally®
by several workers in the recent past. It has,
however, not been realized, to the authors’ knowl-
edge, that such an electric polarization, when
applied self-consistently to an entire massive
body in rotation, can give rise to a poloidal mag-
netic field of the right type and order of magnitude
for certain astrophysical objects. In this prelim-

inary communication we report the results of a
simple-minded calculation of this effect for the
rather unphysical case of an infinitely long, uni-
form cylindrical conductor spinning about its axis.
The electric polarization is calculated in the ion-
continuum Thomas-Fermi approximation, while
the electrodynamics of the continuous medium is
treated in the nonrelativistic approximation. The
essential points of the physics and the calculation
involved are sketched below.

The physical idea behind the gravity-induced



