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The formalism of coupled-mode theory is adopted for describing nonlinear pulse propagation in optical fibers, the
coupling being induced by the nonlinear part of the refractive index. This approach describes in a natural way the
influence of the waveguide, and in principle allows of the possibility of investigating soliton propagation when more
than one mode is excited.

Propagation of nonlinear optical pulses in the form of
solitary waves in optical waveguides by exploiting the
quadratic nonlinearity of the index of refraction has
been a subject of growing interest since this possibility
was first pointed out by Hasegawa and Tappert.1 In
particular, the influence of the fiber structure through
the transverse inhomogeneity of the refractive index in
modifying the existing regions for bright and dark sol-
itons has been investigated by Jain and Tzoar,2 '3 and
Bendow and Gianino3' 4 have considered soliton prop-
agation for longitudinally inhomogeneous waveguides.
We have successively discussed the effect of the inten-
sity fluctuations and of the finite coherence time of the
field.5 Finally, Mollenauer et al. 6 recently presented
the first experimental evidence of soliton propagation
in optical fibers.

In the above-mentioned papers, the study of propa-
gation in an optical waveguide possessing a dispersive
and nonlinear refractive index of the form

n(r,co,,:) = n1 (r,w) + n2 I iE 1 2, (1)

where co is the angular frequency, fE is the analytic signal
of the electric field E(r,t), and n2 is the nonlinear
coefficient (approximately independent of frequency),
is accomplished by solving an approximate wave
equation for the envelope function A(r,t), which is
connected to E through the relation

E(r,t) = A(r,t)exp(iwot - iqz), (2)

q being the (a priori unknown) propagation constant.
In the frame of this formalism, the influence of the

transverse inhomogeneity (that is, of the presence of the
waveguide) on propagation is taken into account by
averaging the wave equation over the transverse direc-
tion of the fiber, thus providing an effective one-di-
mensional equation for the longitudinal wave motion
(see, for example, Ref. 3). We wish here to follow a
more straightforward approach, taking advantage of the
coupled-mode theory developed for investigating
propagation in optical fibers in the presence of mode

coupling that is due to irregularities in the refractive
index,7 the perturbation of the refractive index being
in our case that which is due to the presence of the
nonlinear term in Eq. (1). In this way, we are able to
derive a set of nonlinear coupled equations describing
*propagation in the fiber in the presence of a nonlinear
refractive index. This system, which in principle de-
scribes nonlinear propagation in a multimode fiber,
reduces to a single nonlinear equation when only one
mode is assumed to be present. This equation is
equivalent to the wave equation of the approach usually
considered, but the fiber parameters appear now in a
more natural way and in a different form. In particular,
the role of the so-called waveguide dispersion versus the
material dispersion in determining the regions of exis-
tence of bright and dark solitons is clearly empha-
sized.

The transverse part of the electric field E(p,z,t)
propagating in the positive z direction along the fiber
axis (the transverse coordinate is indicated by p) can be
written as8

E(p,z,t) = L Em(p) 3m f- X dWc(m(Zw)

X exp[iwt - ij.m(o)z], (3)

where the Em's are the modal transverse configurations,
3m (co) is their relative propagation constant, and the

cm's are suitable expansion coefficients whose z de-
pendence, arising from the fiber irregularities, is de-
scribed by the system of coupled equations7' 8

dz
Cm(z, C<)) = Ej Kmn (z,w)expti [Im(cA))

- 13n(w)Iz~cn(zC0)), m= 1,2 .... (4)

In general, the coupling coefficients Kmn can be ex-
pressed in terms of the refractive indices n(p,z) and
no(p), respectively, of the real (perturbed) and ideal
waveguides through the relation7
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Kmn(zco) = (wso/4iP)

x ff dp(n 2-no 2 )En(p) Em(p), (5)

where

P = 2 ('/)1/2 sr +dpnoEfl2(p). (6)

In our case, the only source of nonideality for the fiber
is the nonlinearity of the medium, so n is given by Eq.
(1) and no coincides with nj(p,w). One has, accord-
ingly,

Kmn(zw) = (E()on2 /2iP)

x ff+ dpn, (p, c)En(P) * E.m(p) E(rat)l (7)

which, if inserted into Eq. (4) after taking into account
Eq. (3), gives rise to a nonlinear system of integro-dif-
ferential equations for the cm's.

This system, which in principle describes nonlinear
propagation in a multimode fiber, assumes a simple
form if only one mode is assumed to be present. It
reads

dzc (z,) = 4Rc(z,w)

2
X J c(z,w)exp[iwt - i3(w)z]dcow, (8)

where

R = -i(wn 2/c) f _

ff +

ql(z,t) = exp(-iXz)0(zt) (14)

with 0(z,t) real, one can, for example, find the bright-
soliton solution of the form

0(z,t) = kasech[(t -zV)Ir],

r being the pulse width, provided that

1 + (n2/c)awoto0(2 = 0,

(15)

(16)

X = - 2AI2 = (n2 /2c)aWo0o2 . (17)

From Eqs. (16) and (17), one can immediately de-
rive

q = 0(woo) + X = /(wo) + (n2/2C)ct00062 (18)

and

ko2 = - (n2/C)-r2Woa
(19)

where /" (coo) = (d2/3/dw2) ", , which are valid for any
refractive-index profile. They can be compared with
the ones usually found in the literature [see, for exam-
ple, Eqs. (35a) and (35b) of Ref. 2], the main difference
appearing to be the form of the coefficient a [defined
through Eq. (9)], which depends on the mode structure.
Also, Eq. (19) defines the existence region for bright
solitons (a derivation completely analogous can be given
for dark solitons) in a direct way, involving only the
mode-propagation constant, through the relation

3 "(Wo) < 0.dpnj(p,co)E4(p)

dpnj(p,co)E2(p)

-- i(con2/c)a, (9)

a being independent of w because of the relation ni(p,co)
= n1(w)f(p).

After writing

iR(p,z,t) = E(p)exp[iwot - i1(wo)z](zt), (10)

where

i(z,t) = 2 c(z,w)expji(o - coo)t

- i[3(w) - 0(coo)]zjdw

2 JO c(z,o)expji(o - wo)(t - z/V)

- (i/2A)(o - Wo)2 z}dw

and

V= dOl , A= d20 -1
dc W=W,0 Wc =,,0

it is possible to derive from Eq. (8) the equation

8z V at 2A a +t2

(11)

(20)

Since /" consists of two contributions, pertaining,
respectively, to the material of which the fiber is made
and to the excited mode (material and waveguide dis-
persion), Eq. (20) actually expresses the possibility of
propagating bright solitons through the competition of
these two effects. As an example, one can write for the
mode of a weakly guiding step-index fiber far from
cutoff9

02(W) = k2 (Co) - u2/a 2 , (21)

with k(co) = (c/c)nl(w), a the core radius, and u- a
suitable constant relative to the mode, so one has

0 (W = k"oko3 - k"okou_2/a2 - k'o2 u_2/a 2

(ko2 - U-2/a2)3/2

(22)

with ko = k(coo), ko' = (dk/do),=, 0 , and k"o = (d2 k/
dW2),:,=(,. In this case, Eq. (20) is equivalent to

ko3k"o(l - u_ 2 /a2 ko2 ) < k'O2u21/a 2, (23)

which can be compared with Eq. (35b) of Ref. 2.
(12) In conclusion, we have shown that nonlinear pulse

propagation in an optical fiber can be described in terms
of coupled-mode theory, an approach that proves to be
simple and elegant in the single-mode case and lends

(13) itself naturally to investigation of propagation in mul-
timode fibers.

If one looks now, in the usual way,3 for a solution of
the type

* On leave of absence from Fondazione Ugo Bordoni,
Rome, Italy.
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