
On the Average Power of Multiple Subcarrier
Intensity Modulated Optical Signals: Nehari’s

Problem and Coding Bounds
Masoud Sharif and Babak Hassibi

Department of Electrical Engineering
California Institute of Technology

Pasadena, CA 91125
Email: {masoud,hassibi}@systems.caltech.edu

Abstract— Multiple subcarrier modulation (MSM) is an attrac-
tive technique for optical wireless communication for high speed
applications. The main disadvantage of this scheme is its low
average power efficiency which is an analogous problem to the
high peak to mean envelope power ratio (PMEPR) of multicarrier
signals. In this paper, we consider the achievable average power
reduction of MSM signals by using optimized reserved carriers
and coding methods. Based on Nehari’s result we present a lower
bound for the maximum average power of the signal after adding
the reserved carriers. It is shown that the mean value of the
average required power behaves very close to

√
2n log log n for

a BPSK constellation where n is the number of subcarriers. We
then consider finding the optimum values for the carriers and the
effect of having finite bandwidth for reserved carriers. In the next
section, mainly based on recent coding results for the PMEPR
of multicarrier signals, we show the existence of very high rate
codes with average power of O(

√
n log n) for large values of n,

and furthermore the existence of codes with non-vanishing to
zero rate and average power of O(

√
n) asymptotically.

I. INTRODUCTION

Intensity modulation (IM) with direct detection (DD) is
an attractive technique for high speed wireless optical com-
munications [1]. Multiple subcarrier modulation (MSM) has
been proposed in IM/DD systems due to its immunity to
intersymbol interference in multipath channels. In this scheme,
the multiple subcarrier signal is modulated onto the optical
carrier by intensity modulation.

The main disadvantage of MSM with IM/DD is its low
optical average power efficiency which is essentially the same
problem as the high peak to mean envelope power ratio
(PMEPR) of multicarrier signals in RF communications: high
amplitude variations. Since the optical intensity or instanta-
neous power should be always positive, the signal should have
a dc component to guarantee that the minimum of the signal
is greater than zero. Since this dc component is proportional
to the average optical power, as the number of carriers n,
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increases and the signal exhibits smaller minimum values, the
required average power of the system will be increased.

Previously, in [2] and [3], the clipping method has been
considered to increase the average power efficiency. Recently,
You and Kahn [4] proposed block coding and tone reservation
to maximize the minimum value of the multiple subcarrier
signal. In the coding method, coding is used to decrease the
dc component that guarantees the positivity of the signal. On
the other hand, tone reservation, is a method in which we use
dummy carriers with optimized amplitude just to increase the
average power efficiency of the system. It is worth noting that
the tone reservation problem here is a bit different from that
of OFDM (Orthogonal Frequency Division Multiplexing) in
the sense that we are just interested in the maximization of
the minimum value of the signal unlike OFDM in which we
are interested in the ratio of the maximum of the signal to the
average power [5].

In this paper, we address the achievable average power
reduction by using optimum reserved tones appended at the
end of the signal and also using coding methods. We initially
relate Nehari’s result on the estimation of a causal function
by an anti-causal function to the average power reduction
of the multicarrier signals, and we propose a bound on the
maximum reduction of the dc component. We then discuss
how to optimize the dummy tones in order to reduce the
average power.

In the next part of the paper, we use some recent coding
results for the PMEPR of OFDM signals, to present asymp-
totic bounds on the average power reduction of the optical
MSM signals [6], [7]. We first show that in an uncoded
system, restricting the transmit codewords to codewords with
average power requirement of O(

√
n log n) does not reduce

the number of codeowords substantially for large number of
subcarriers where log(·) is the natural logarithm. Furthermore,
we show the existence of codes with average required power
of O(

√
n) and nonzero rate, asymptotically [7].

In summary, for large values of n, Theorem 2 implies
that with probability one the average power required is
O(

√
n log n) for a large class of QAM/PSK constellations.
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Based on Nehari’s Theorem, Corollary 1 states that by using
reserved carriers appended at the end of signal’s spectrum,
the mean value of the required average power can be reduced
to at most

√
2n log log n for BPSK constellations. Finally we

state the existence of codes with average power requirement
of O(

√
n) in Theorem 3.

The paper is organized as follows. In Section II, we describe
the formulation of the problem and multiple subcarrier modu-
lations. We then briefly discuss methods to reduce the average
power and the open problems raised in [4]. Section III presents
Nehari’s theorem and its implication on the average power
reduction using reserved carries at the end of the signal’s
spectrum. Section IV considers the coding method and its
achievable reduction on the average power. Finally, Section
V concludes the paper with some open problems.

II. MULTIPLE SUBCARRIER MODULATION

Similar to the OFDM signals, MSM signals consist of n
subcarriers where the i’th subcarrier is modulated by ci which
is chosen from a constellation like BPSK or more generally
QAM/PSK. Therefore, the MSM signal can be written as

s(τ) = Re

{
n∑

i=1

cie
jωiτ

}
g(τ) 0 ≤ τ < T, (1)

where g(t) is the transmit pulse shape, T is the symbol
duration, and ωi’s are carrier frequencies. Throughout this
paper as in [4], we will consider a rectangular pulse shape, i.e.
g(τ) = u(τ)−u(τ−T ), and dense packing for the subcarriers
which implies that,

ωi = i
2π
T

, i = 1, . . . , n. (2)

Without loss of generality, to simplify the mathematical for-
mulation, we normalize the time axis by T to get,

s(t) = Re

{
n∑

i=1

cie
j2πit

}
0 ≤ t ≤ 1. (3)

To make the transmitted signal positive, we have to add
a signal b(t) and guarantee that b(t) + s(t) is non-negative.
Generally, for each codeword (c1, . . . , cn), b(t) consists of a
dc part b0, and a time variant part b1(t). Clearly since the
transmitted signal after amplifications is A(s(t) + b(t)), the
average optical power will be,

P = A

∫ 2π

0
(s(t) + b(t))dt = A2πb0, (4)

since the average of s(t) and b1(t) are zero. In order to analyse
the minimum average power required, the minimum value
of s(t) + b1(t) should be maximized. In this paper, we will
consider a stronger condition and we minimize the maximum
value of |

∑n
i=1 cie

j2πt + b(t)| where b1(t) = Re{b(t)}. More
specifically, if we define

T (z) =
n∑

i=1

ciz
i, (5)

to guarantee the positiveness of the transmitted signal, we may
consider the minimization of the maximum of |T (ej2πt)+b(t)|
which limits the variations of the signal both in the negative
and positive sides. Therefore, the average power requirement
is proportional to the maximum of |T (ej2πt) + b(t)|. From a
practical point of view, this restriction on the envelope rather
than the real part of the signal will both reduce the average
power requirement and eliminate high instantaneous intensity
peaks from the transmitted signal.

A well-known method in OFDM systems is to use optimized
reserved carriers to minimize the ratio of the peak to average
power of the multicarrier signal [5]. However, here for MSM
optical signals, we just need to maximize the minimum of
the signal regardless of the amplitude of the dummy tones.
Therefore, since the average power does not play any role, we
can use Nehari’s theorem to investigate the maximum average
power reduction when we are allowed to use reserved carriers
with frequencies higher than n [8]. The achievable average
power reduction with reserved carriers is addressed in Section
III.

In [4], block coding is also proposed to reduce the average
transmitted power. The idea in this method is basically to
map k information symbols (ζ1, . . . , ζk) to the transmitted
codeword C = (c1, . . . , cn) where n > k, and all transmitted
codewords are chosen such that the minimum value of s(t)
is greater than some desired value. In Section IV, we propose
bounds on the achievable average power reduction by coding
mainly based on recent results on the PMEPR of OFDM
signals [6], [7], [9].

III. NEHARI’S PROBLEM AND ITS IMPLICATIONS ON THE

RESERVED CARRIER METHOD

As explained in the previous section, one method to increase
the average power efficiency of MSM signals is to add
dummy carriers with optimum values at the end of the signal.
Therefore we can formulate this problem as the following:

Problem Statement: Let ci’s be given, T (z) as in (5) and
B(z) =

∑M
i=n+1 biz

i, find the optimum values of bi’s and the
best γ such that for all ci’s, we have

‖T (z) − B(z)‖∞ ≤ γ (6)

A slightly different problem in functional analysis, known
as Nehari’s problem, states the following result:

Theorem 1: (Nehari’s Theorem [8]) Let T1(z) =∑n
i=1 cn−i+1z

−i be an anticausal function. Then,

inf
causalK1(z)

‖T1(z) − K1(z)‖∞ = σ(HT ) (7)

where K1(z) =
∑∞

i=0 diz
i and HT is the Hankel operator,

HT =





cn cn−1 . . . c1
cn−1 . . . c1 0

...
c1 0 . . .



 (8)

and σ(·) denotes the maximum singular value of its argument.
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Remark 1: It is worth mentioning that Nehari also showed
that the optimum values of the di’s satisfy the following:

γz
n−1∏

i=1

βi + z

1 + β∗
i z

=
n∑

i=1

cn−iz
i +

∞∑

i=0

diz
n+i+1 (9)

where |βi| < 1 for all i’s. Therefore, the sequence di is an
exponentially decreasing function of i, and practically, we will
be able to truncate the infinite series K1(z) to its first M −n
coefficients.

Remark 2: To find the solution to Nehrai’s problem, we can
use Theorem 12.8.2 of [10] to find K1(z) numerically. We
describe the detail of this computation in the appendix.

Comparing the statement of the problem and Nehari’s
theorem, we can easily state the following corollary to find a
lower bound for maximum average power reduction by using
reserved carriers at the end of the signal.

Corollary 1: Let T (z) be as in (5) and B(z) =∑M
i=n+1 biz

i. Then for all z over the unit circle and for any
B(z), we have

max
(c1,...,cn)

σ(HT ) ≤ ‖T (z) − B(z)‖∞. (10)

The bound can be achieved by choosing B(z) with infinite
length according to Nehari’s Theorem.
Proof: This is a straightforward consequence of Nehari’s result
by simply considering T (z) = zn+1T1(z) where T (z) is as
defined in (5). For all z on the unit circle, Theorem 1 implies
that,

σ(HT ) = ‖z−n−1T (z) −
∞∑

i=0

diz
i‖∞

= ‖T (z) −
∞∑

i=n+1

di−n−1z
i‖∞

≤ ‖T (z) −
M∑

i=n+1

biz
i‖∞ (11)

where the inequality follows from the fact that the optimum
sequence di can obviously have a smaller norm than the
special case where coefficients of zM+1 and higher are zero.
The result follows immediately by maximizing both sides of
(11) over all the codewords (c1, . . . , cn).

For simplicity, from now on in this section, we consider
ci’s chosen from a BPSK constellation. The numerical results
here are easily extendible to other constellations as well. To
find a better insight to the result of Corollary 1, we can easily
bound the maximum singular value of HT by using the fact
that the sum square of the eigenvalues of a matrix is equal to
the Frobenius norm of the matrix. This implies that

maxσ(HT ) ≤

{
n∑

i=1

i

}1/2

=

√
n(n + 1)

2
. (12)

A lower bound on σ(HT ) can be obtained by considering
the codeword C ′ = (1, 1, . . . , 1). The lower and upper bounds
are shown in Fig. 1. Numerically it can be verified that for
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Fig. 1. Lower and Upper bounds on the maximum singular value of the
random BPSK Hankel matrix.

n ≤ 24 the maximum of σ(HT ) is indeed achieved by C ′.

Therefore the worst case improvement is not that much
and it is just from n to

√
n(n + 1)/2. However we can also

evaluate the average of the maximum singular value of HT

over all possible codewords. Fig. 2 shows the average of
maxσ(HT ) for BPSK and when the number of subcarriers
varies from 10 to 500. It can be observed numerically that
the average behaves very close to

√
2n log log n that is much

better than
√
n log n which is the average of ‖T (z)‖∞ before

using dummy tones asymptotically [6](see also Section IV).

To further investigate the improvement by using reserved
carriers, Fig. 3 shows the complementary cumulative distribu-
tion function of the maximum, Pr{‖T (z) − K1(z)‖∞ > λ}
before and after using optimum dummy tones for n = 128.
We also consider the effect of truncating K1(z) to a finite
degree polynomial and its effect on the distribution function.
It is clear that we have quite a lot of improvement with 20
reserved carriers and further increasing the number of tones
does not improve the distribution as much as before.

It is worth mentioning that the problem of finding the
optimum values for a finite number of reserved carriers can
be exactly solved by invoking the Bounded Real Lemma
and using the LMI (Linear Matrix Inequality) optimization
[11], [10](Theorem 12.6.6). However, it can be shown that
the complexity of the LMI is O((n + L)6) where L is the
number of reserved tones. On the other hand, all that the
computation of K1(z) requires is a matrix inversion and
a maximum singular value computation which has O(n3)
complexity. Therefore truncating the Nehari solution to finite
length L seems to be a more practical way of finding good
values for reserved carriers.
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Fig. 2. Average of the maximum singular value of the random Hankel matrix
and

√
2n log log n.
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Fig. 3. Distribution function of the required dc component with and without
using reserved carriers and the effect of truncation of K1(z).

IV. AVERAGE POWER REDUCTION USING CODING

Another promising technique to reduce ‖T (z)‖∞ is to
use coding. To clarify the idea, let’s consider the following
example. Let the ci’s be chosen from QPSK. Then for an
uncoded system, we have a set C with 22n possible codewords
(c1, . . . , cn), and the average power required to make all the
signals positive is greater than n. Now instead of sending all
of the codewords, we consider a subset C′ of C in which all the
codewords have ‖T (z)‖∞ ≤ f(n) where f(n) is an arbitrary
function less than n, say log n or

√
n. Therefore, by adding a

dc component equal to ‖T (z)‖∞, we can reduce the average
power from n to f(n) at the price of reducing the rate from

2 to 1
n log2 |C′| where the rate of a code C is defined as,

R =
1
n

log2 |C| (13)

and |C| is the cardinality of the set C.
The goal of this section is to quantify the trade-off between

rate and average power reduction of the code for sufficiently
large values of n. The results are simple consequences of
analogous results for the PMEPR of OFDM.

Theorem 2: Let T (z) be as in (5) and C = (c1, . . . , cn) be a
random codeword where ci = ai+jbi is chosen independently
and identically from the following constellations: (i) QAM
where ai’s and bi’s are independent with even distributions,
(ii) PSK in which the distribution of ci is invariant under π/2
rotation. Then, with probability one

lim
n→∞

‖T (z)‖∞√
nEav log n

= 1 (14)

where Eav = E{|ci|2}.
Proof: The proof is based on the asymptotic analysis of
the distribution of the maximum of the random multicarrier
signals. Refer to [6] and [12] for a complete proof.

Theorem 2 implies that almost all the codewords in an un-
coded system have ‖T (z)‖∞ ≤

√
nEav log n, and restricting

the transmit codewords to the codewords with ‖T (z)‖∞ ≤√
nEav log n does not reduce the rate for large values of n

[6]. Now the question would be what will be happen to the
rate of the code if we want to further reduce the average power
from O(

√
n log n) to say O(

√
n)?

An analogous question for PMEPR reduction has been an-
swered recently by choosing an optimum sign for each subcar-
rier in order to reduce max|

∑n
i=1 cie

j2πit| [7], [9]. Given the
vector (c1, . . . , cn), it is in fact shown that by properly choos-
ing εi ∈ {−1,+1}, we can reduce max|

∑n
i=1 εicie

j2πit| and
achieve the dc component of O(

√
n). In the following theo-

rem, we state the existence of exponentially many codewords
with average power of O(

√
n) for large values of n.

Theorem 3: Let the ci’s be chosen from a symmetric q-
ary constellation in which if A is in the constellation then −A
has to be in the constellation. Then for large values of n, there
exists a code C′, with rate greater than or equal to log2 q − 1
and

max
C∈C′

‖T (z)‖∞ < α
√
n (15)

where C = (c1, . . . , cn) is a codeword in the code set C′, and
α is a constant independent of n.
Proof: The proof is based on choosing the optimum sign vector
(ε1, . . . , εn) for any codeword C to minimize ‖T (z)‖∞ and
achieve O(

√
n). Refer to [7] for the proof.

So for large values of n, there exist exponentially many
codewords with average power of O(

√
n). In other words, the

rate hit to reduce the average power from O(n) to O(
√
n)

is at most 1 bit/sec. Meanwhile, Theorem 2 implies that the
ratio of the number of these codewords to the total number of
admissible codewords is zero.

It is also worth mentioning that in [9], an algorithm is
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proposed to design the signs and reduce ‖T (z)‖∞ from O(n)
to O(

√
n log n). The algorithm in fact suggests a deterministic

construction of a code with rate log2 q−1 to reduce the average
power from O(n) to O(

√
n log n).

V. CONCLUSIONS

In this paper we consider the achievable average power
reduction for multiple subcarrier IM/DD optical signals by
using dummy tones with optimum value at the end of the
signal and also using coding method. Based on Nehari’s
theorem, we present a bound on the maximum average power
reduction using optimum dummy tones. In the second section,
we used recent coding results for the PMEPR of OFDM
signals to introduce coding bounds for average power reduc-
tion. We showed the existence of codes with average power
of O(

√
n log n) that can be constructed with probabilistic

methods. We further presented the existence of codes with high
rate (not vanishing to zero) and average power of O(

√
n).

Several problems remain to be answered. We considered the
problem of reserved carriers when they are placed at frequen-
cies larger than n, it would be interesting to investigate the
effect of changing their place on the average power reduction.
As the numerical results in Fig. 2 suggest, it is intriguing
to show that the average of the maximum singular value of
random BPSK Hankel matrices is equal to

√
2n log log n. In

fact similar to Eq. (14), we suspect that for large values of
n with probability 1, the maximum singular value is equal to√

2n log log n.

APPENDIX

In this appendix, we outline the derivations of the solution
to the Nehari’s problem, K1(z). The procedure is based on
Section 12.8 of [10].

Let T (z) and HT be defined as in (5) and (8), then define
H = [cn, . . . , c1], Gt = [1, 0, . . . , 0],

F =





0 . . . 0
1 0 . . .
0 1 . . .
...

...
0 . . . 1 0




(A.1)

and P = H2
T (γ2 − H2

T )−1, where γ is a real number greater
than σ(HT ). Then the matrices Re and Kp can be defined as,

Re =
[
1 0
0 −γ2 + HH∗

]
+

[
−G∗

HF ∗

]
P

[
−G FH∗] (A.2)

Kp =
[
−F ∗PG F ∗PFH∗ + H∗]R−1

e (A.3)

Then K1(z) = −L21(z−1)L−1
11 (z−1) where,

L−1
11 (z) = a0[I − a2

0G
∗(zI − F ∗ + a2

0F
∗PGG∗)−1F ∗PG]

L21(z) = a−1
0

{[
0 1

]
+ HF ∗(zI − F ∗)−1Kp

} [
1

−HF ∗PG

]

where a0 = (1 + G∗PG)− 1
2 . By further using the identity

(I − z−1A)−1 =
∑∞

i=0 z
−iAi for any stable matrix A, we

get,

L−1
11 (z−1) =

∞∑

i=0

αiz
i

L21(z−1) =
n∑

i=0

βiz
i

where αi and βi’s can be numerically evaluated and K1(z)
will be derived.
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