
Nonlinear optical phenomena in silicon
waveguides: Modeling and applications

Q. Lin,1,∗ Oskar J. Painter,1 and Govind P. Agrawal2

1Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125
2Institute of Optics, University of Rochester, Rochester, NY 14627

linq@caltech.edu

Abstract: Several kinds of nonlinear optical effects have been observed
in recent years using silicon waveguides, and their device applications
are attracting considerable attention. In this review, we provide a unified
theoretical platform that not only can be used for understanding the
underlying physics but should also provide guidance toward new and useful
applications. We begin with a description of the third-order nonlinearity
of silicon and consider the tensorial nature of both the electronic and
Raman contributions. The generation of free carriers through two-photon
absorption and their impact on various nonlinear phenomena is included
fully within the theory presented here. We derive a general propagation
equation in the frequency domain and show how it leads to a generalized
nonlinear Schrödinger equation when it is converted to the time domain.
We use this equation to study propagation of ultrashort optical pulses in
the presence of self-phase modulation and show the possibility of soliton
formation and supercontinuum generation. The nonlinear phenomena of
cross-phase modulation and stimulated Raman scattering are discussed
next with emphasis on the impact of free carriers on Raman amplification
and lasing. We also consider the four-wave mixing process for both
continuous-wave and pulsed pumping and discuss the conditions under
which parametric amplification and wavelength conversion can be realized
with net gain in the telecommunication band.
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1. Introduction

Silicon photonics has attracted much attention recently because of its potential applications in
the spectral region extending from near- to mid-infrared [1–3]. Silicon crystals, with a band
gap near 1.12 eV, become nearly transparent in the spectral region beyond 1.1 μm and exhibit
optical properties that are useful for a variety of applications [4]. The high refractive index of
silicon allows for a tight confinement of optical waves to a sub-micron region using the silicon-
on-insulator (SOI) technology [1]. Moreover, silicon exhibits a large third-order nonlinearity,
with a Kerr coefficient more than 100 times larger [5] and a Raman gain coefficient more than
1000 times larger [6] than those of silica glass in the telecommunication band. These features
enable efficient nonlinear interaction of optical waves at relatively low power levels inside
a short SOI waveguide (<5 cm long). For this reason, considerable effort has been directed
in recent years toward investigating the nonlinear phenomena such as self-phase modulation
(SPM) [7–23], cross-phase modulation (XPM) [14,24–26], stimulated Raman scattering (SRS)
[27–60], and four-wave mixing (FWM) [61–79]. All of these nonlinear effects are currently
being explored to realize a variety of optical functions on the chip scale.

Although the third-order nonlinear effects have been studied extensively for silica fibers
[80], and these studies can be used as a guidance for SOI waveguides, it is important to
remember that silicon is a semiconductor crystal exhibiting unique features such as two-
photon absorption (TPA) [5, 7], free-carrier dispersion [81], and anisotropic and disper-
sive third-order nonlinearity [5, 82–87]. The interplay among various dispersive and non-
linear effects leads to many interesting features [8–25, 88, 89] that provide new function-
alities on the one hand [90–100], but may become obstacles in some cases on the other
[25,32,33,35–37,39,65–68,89]. Therefore, it is important to have a unified theoretical platform
that not only can be used for understanding the underlying physics but also provides guidance
toward new and useful applications. Indeed, considerable efforts have been made in the past
few years to develop a theoretical approach for understanding a specific nonlinear phenom-
enon [13–16, 20–22, 26, 28, 46–48, 50, 55, 58, 59, 62, 66, 68, 70, 73, 74, 76, 88, 96]. In this paper,
we review recent progress realized in modeling nonlinear phenomena inside SOI waveguides
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and develop a unified theoretical platform. We then apply it to investigate various nonlinear
effects occurring inside silicon waveguides with a keen eye toward their applications.

The paper is organized as follows. We begin in Section 2 with a description of the third-order
nonlinearity of silicon and consider the tensorial nature of both the electronic and Raman con-
tributions. The generation of free carriers through two-photon absorption and their impact on
various nonlinear phenomena is included fully within the theory presented here. We derive a
general propagation equation in the frequency domain and show how it leads to a generalized
nonlinear Schrödinger equation when it is converted to the time domain. We use this equa-
tion in Section 3 to study propagation of ultrashort optical pulses in the presence of self-phase
modulation and show the possibility of soliton formation and supercontinuum generation. The
nonlinear phenomena of cross-phase modulation and stimulated Raman scattering are discussed
in Section 4 with emphasis on the impact of free carriers on Raman amplification and lasing.
Section 5 focuses on the FWM process and its applications. We consider first the impact of free
carriers and show that, although index changes induced by them have a negligible impact on
FWM, free-carrier absorption limits the FWM efficiency so much that a net positive gain is dif-
ficult to be realized with CW pumping in the telecommunication band. However, this problem
can be solved by pumping at wavelengths beyond 2.2 μm because TPA-induced free carriers
are then absent. We also show that FWM can occur over a wide bandwidth (>300 nm), with a
proper choice of the pump wavelength, because of much smaller waveguide lengths employed
compared with those required for silica fibers. We discuss briefly the use of FWM in silicon
waveguides for generating correlated photon pairs that are useful for quantum applications.

2. General formalism

The nonlinear interactions of optical waves inside silica fibers are well understood owing to
extensive investigations over the past few decades [80]. The so-called generalized nonlinear
Schrödinger (NLS) equation provides a fairly accurate description, even for ultrashort pulses
creating an octave-spanning supercontinuum [101]. As the origin of third-order nonlinearity in
silicon waveguides is quite similar to that for silica fibers, a similar theoretical formalism can
be used for silicon waveguides, with suitable modifications to account for the features unique
to silicon. In this section, we develop a general formalism that can be used to describe various
nonlinear effects inside silicon waveguides.

2.1. Third-order susceptibility of silicon

As silicon crystals exhibit an inversion symmetry, the lowest-order nonlinear effects stem from
the third-order susceptibility χ (3). When an optical field EEE(rrr,t) propagates inside a silicon
crystal or waveguide, the induced nonlinear polarization can be written in the frequency domain
in the general form [102, 103]

˜P(3)
i (rrr,ωi) =

3ε0

4(2π)2

∫∫

χ (3)
i jkl(−ωi;ω j,−ωk,ωl)˜Ej(rrr,ω j)˜E∗

k (rrr,ωk)˜El(rrr,ωl)dω jdωk, (1)

where ωl ≡ ωi + ωk −ω j, and we have adopted the notation of Ref. [102]. Here, i, j, k, and
l take values x, y, and z and ˜Ei(rrr,ω) is the Fourier transform of the ith component Ei(rrr,t) of
the electric field defined as ˜B(rrr,ω) =

∫ ∞
−∞ B(rrr,t)exp(iωt)dt. In Eq. (1), we have excluded the

sum-frequency generation assuming that this process is not phase-matched.
The third-order susceptibility of silicon has two dominant contributions, one from bound

electrons and the other from optical phonons, and it is useful to write it as χ (3)
i jkl = χe

i jkl + χR
i jkl ,

where the second term represents the Raman contribution involving optical phonons. These two
terms have quite different dispersion and polarization characteristics.
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Consider the Raman contribution first. Raman scattering in silicon is dominated by optical
phonons near the Brillouin-zone center. As these phonons have three degenerate normal modes
(with the same phonon energy), the Raman susceptibility is given by [104–106]

χR
i jkl(−ωi;ω j,−ωk,ωl) = g′ ˜HR(ωl −ωk) ∑

v=x,y,z
Rv

i jR
v
kl +g′ ˜HR(ω j −ωk) ∑

v=x,y,z
Rv

ilR
v
jk, (2)

where the spectral response of Raman scattering, ˜HR(Ω), is the same for three normal modes.
Unlike silica glass which has a very broad Raman spectrum [107], optical phonons at the
Brillouin-zone center of silicon have a well-defined frequency of Ω R/2π = 15.6 THz at
room temperature [108–110], resulting in a relatively narrow Raman-gain spectrum, with a
Lorentzian shape of the form [104–106]

˜HR(Ω) =
Ω2

R

Ω2
R −Ω2−2iΓRΩ

. (3)

Here ΓR is related inversely to the phonon lifetime (about 3 ps), resulting in a full width at half-
maximum (FWHM) of the Raman-gain spectrum of ΓR/π ≈ 105 GHz at room temperature
[108]. In general, both ΩR and ΓR are sensitive to temperature [37, 108, 109]. As an example,
ΩR/2π decreases by ∼40 GHz, while ΓR/π increases by ∼ 10 GHz, if temperature increases
by 50◦C. The parameter g′ in Eq. (2) is related to the Raman polarizability associated with the
Brillouin-zone-center phonons and is nearly independent of optical frequency [102, 104, 106].
It determines the peak value of the Raman gain coefficient that is discussed later in Section 2.4.

In Eq. (2), the Raman tensor R v
i j describes polarization dependence of Raman scattering. As

the three phonon modes belong to the Γ25′ symmetry group and are polarized along a crystal-
lographic axis (indicated by the superscript of R), they interact resonantly only with optical
waves polarized orthogonal to their own axes. For this reason, the three Raman tensors have the
form [111]

Rx
i j = δiyδ jz + δizδ jy, Ry

i j = δixδ jz + δizδ jx, Rz
i j = δixδ jy + δiyδ jx, (4)

where we have assumed that x, y, and z axes are oriented along the crystallographic axes. Sub-
stituting Eq. (4) in Eq. (2), we obtain the following compact form for the Raman susceptibility:

χR
i jkl(−ωi;ω j,−ωk,ωl) = g′ ˜HR(ωl −ωk)(δikδ jl + δilδ jk −2δi jkl)

+ g′ ˜HR(ω j −ωk)(δikδ jl + δi jδkl −2δi jkl), (5)

where δi jkl equals 1 only when i = j = k = l and is 0 otherwise.
The Raman susceptibility in Eq. (5) describes Raman scattering involving a single phonon.

Apart from this dominant contribution, Raman scattering can also involve multiple phonons
simultaneously, a process known as higher-order Raman scattering [106, 108, 110]. In the case
of silicon, the second-order Raman scattering exhibits a broadband peak at a frequency near
29 THz resulting from two transverse optical phonons and another peak around 9 THz associ-
ated with two transverse acoustic phonons. However, as their amplitudes are more than 50 and
200 times smaller, respectively, compared with the dominant first-order Raman peak [108,110],
higher-order Raman effects are negligible in most practical situations.

Optical waves can also interact with a single acoustic phonon and experience Brillouin scat-
tering. However, the relative strength of this process in silicon is nearly two orders of magnitude
smaller than that of first-order Raman scattering [112]. As a result, Brillouin scattering is negli-
gible in most cases. This is in strong contrast to silica glass, where Brillouin scattering is three
orders of magnitude stronger than Raman scattering [80]. In this paper, we neglect the effects
of Brillouin scattering.
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We next focus on the electronic contribution stemming from oscillations of bound electrons
and leading to the optical Kerr effect through intensity-dependent changes in the refractive in-
dex. It also leads to two-photon absorption (TPA) whenever the energy of photons exceeds the
half band gap Eg/2, where Eg ≈ 1.12 eV for silicon corresponds to a wavelength of 1.1 μm.
Bound electrons in the valence band can be excited to the conduction band through TPA by ab-
sorbing two photons with total energy exceeding E g. This process has to be assisted by phonons
to conserve momentum because of the indirect nature of the band gap in silicon [113,114]. The
response time of both the Kerr effect and the TPA process are extremely short. As an esti-
mate, the uncertainty principle implies that non-resonant electronic transition occurs on a time
scale of |ω −Eg/h̄|−1. For frequencies well below the band gap, the response time is below
10 fs [102, 115]. Such a nearly instantaneous nature of electronic nonlinear response leads to
many potential applications related to high-speed optical signal processing [116].

Equation (1) shows that a complete description of third-order nonlinear effects requires
knowledge of the tensorial and dispersive properties of χ e

i jkl(−ωi;ω j,−ωk,ωl). Fortunately,
as a silicon crystal belongs to the m3m point-group symmetry, its electronic nonlinear response
has only four independent components [103, 117, 118]:

χe
i jkl = χe

1122δi jδkl + χe
1212δikδ jl + χe

1221δilδ jk + χe
dδi jkl , (6)

where χ e
d ≡ χe

1111 − χe
1122 − χe

1212 − χe
1221 represents the nonlinearity anisotropy. In prac-

tice, the most relevant electronic nonlinearity is the one involving only one frequency, i.e.,
χe

i jkl(−ω ;ω ,−ω ,ω). In this case, Eq. (6) is simplified considerably owing to the intrinsic per-
mutation symmetry of χ e

1122(−ω ;ω ,−ω ,ω) = χe
1221(−ω ;ω ,−ω ,ω). Moreover, for photon

energies h̄ω well below Eg, χe
1212(−ω ;ω ,−ω ,ω) ≈ χe

1122(−ω ;ω ,−ω ,ω) [105, 118–121]. As
a result, Eq. (6) reduces to

χe
i jkl = χe

1111

[ρ
3

(

δi jδkl + δikδ jl + δilδ jk
)

+(1−ρ)δi jkl

]

, (7)

where ρ ≡ 3χ e
1122/χe

1111 characterizes the nonlinear anisotropy at the degenerate frequency ω .
Note that Eq. (7) remains valid for third harmonic generation [86,118,119,122–125]. Also note
that the value of ρ can be complex in general.

To characterize the electronic nonlinearity, one needs to measure χ e
1111(−ω ;ω ,−ω ,ω). The

real and imaginary parts are related to the Kerr coefficient n 2 and the TPA coefficient βT as
[80, 102]

ω
c

n2(ω)+
i
2

βT (ω) =
3ω

4ε0c2n2
0(ω)

χe
1111(−ω ;ω ,−ω ,ω), (8)

where n0(ω) is the linear refractive index of silicon at the frequency ω . Extensive measure-
ments have been carried out to characterize n2 and βT over a wide frequency range [5–7, 9, 11,
12,24,65,82–85,93,126]. The value of n 2 for silicon is found to be more than 100 times larger
in the 1.55-μm region than that of fused silica. However, TPA is also quite large in this spectral
region. The relative magnitudes of the Kerr and TPA coefficients are often characterized by a
nonlinear figure of merit (NFOM) [127] defined as Fn = n2/(λ βT ), where λ ≡ 2πc/ω is the
optical wavelength in vacuum. This NFOM is quite small for silicon (only about 0.3) in the
1.55-μm spectral region [5, 84]. Recent experiments [5, 82–85] show that n 2 and βT also vary
considerably with λ in the spectral region extending from 1.1 μm to 2.2 μm (close to half
band gap), with n2 peaking around 1.8-1.9 μm. Since TPA decreases quickly to zero when the
wavelength exceeds 1.7 μm, the NFOM increases considerably for λ near or beyond 2 μm [84].
Unlike a direct band-gap semiconductor for which n 2 changes its sign at photon energies around
0.7Eg [128], n2 for silicon is always positive for all photon energies below Eg [83, 84]. This is
a consequence of the phonon-assisted nature of electronic nonlinearity [113, 114].
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The magnitude of nonlinear anisotropy is related to the band structure of a silicon crystal. It
has been measured in the past four decades through third-harmonic generation [86, 122–125],
degenerate FWM [120, 121], and the z-scan technique [87]. The magnitude of ρ is quite dis-
persive in the opaque region ( h̄ω > Eg) [86], but it becomes nearly constant for h̄ω < Eg

[86, 87, 120]. The measured value of ρ is close to 1.27 in the telecom band, with a negligible
imaginary part [87]. The absence of an imaginary part indicates that anisotropy is the same for
both the Kerr and TPA coefficients. From the standpoint of applications, nonlinear anisotropy
affects the polarization dependence of nonlinear phenomena inside silicon waveguides. Re-
cently, photocurrent induced by TPA inside a silicon avalanche photodiode (APD) was used to
characterize the anisotropy of TPA [129, 130]. In contrast to the optical characterization, TPA-
induced photocurrents indicated that the TPA process was isotropic inside a silicon APD. This
discrepancy between the optical and electrical measurements remains an open issue at this time.
One possible reason may be related to the nonlinear Franz–Keldysh effect [114] introduced by
the high dc field inside an APD.

2.2. Free-carrier effects

The TPA process may generate a considerable number of free electrons and holes, depending
on the peak power associated with the incident optical field. These excessive carriers not only
absorb light but also affect the nature of wave propagation by changing the refractive index. As
the electron and hole mobilities, μe and μh, in silicon are in the range of 100–1000 cm2/(V · s)
for densities of up to 1018 cm−3 [131], the momentum relaxation times [τv = μvm∗

v/q (v =
e,h), where m∗

v is the effective mass and q is electron’s charge] lies in subpicosecond regime,
much longer than the duration of an optical cycle [102]. As a result, free carriers can follow
oscillations of an optical wave almost instantaneously and affect its propagation right after their
creation. The dynamics of free carriers are well described by the Drude model [81, 102, 132–
134], and the induced polarization varies linearly with the carrier densities as

Pf
i (rrr,t) = Ne(rrr,t)〈pe

i (rrr,t)〉+Nh(rrr,t)〈ph
i (rrr,t)〉, (9)

where Ne and Nh are densities of free electrons and holes, respectively. In this equation, 〈p v
i 〉

with v = e,h is the statistically averaged response of a single electron or hole to the electric field.
According to the Drude model, it takes a simple form in the frequency domain, 〈p̃ v

i (rrr,ω)〉 =
ε0ϒv(ω)˜Ei(rrr,ω), where the carrier polarizability ϒv is given by [102]

ϒv(ω) =
q2τv

ε0m∗
v

( −1
ω(ωτv + i)

)

. (10)

The carrier-induced polarization in the frequency domain is thus given by

˜Pf
i (rrr,ω) = ε0

∫

˜χ f(ω ,ω ′, ˜Ne, ˜Nh)˜Ei(rrr,ω ′)dω ′, (11)

where the spectral response ˜χ f is defined as

˜χ f(ω ,ω ′, ˜Ne, ˜Nh) ≡ ϒe(ω ′)˜Ne(rrr,ω −ω ′)+ ϒh(ω ′)˜Nh(rrr,ω −ω ′). (12)

Here ˜Nv (v = e,h) is the Fourier transform of the carrier density Nv. Equation (11) shows that the
free-carrier response has a linear and isotropic nature, because of the cubic rotational symmetry
of a silicon crystal [102].

Equation (10) indicates how the spectral response of free carriers varies with optical fre-
quency. However, in most cases of nonlinear interactions, the optical field consists of only a
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few waves at specific carrier frequencies ωu, each of which has a limited bandwidth. On the
other hand, carrier densities vary on a time scale longer than that associated with an optical
pulse, i.e., they vary much slower than the carrier dipole moment oscillating at optical frequen-
cies. As a result, the time-domain induced polarization consists of a few terms, each of which
adiabatically follows variations of carrier densities, while oscillating around a specific carrier
frequency ωu. More specifically,

Pf
i (rrr,t) = ε0 ∑

u
χ f(ωu,Ne,Nh)Ei(rrr,ωu,t), (13)

where Ei(rrr,ωu,t) is the optical field at the carrier frequency ωu and the induced susceptibility
is given by

χ f(ωu,Ne,Nh) = ϒe(ωu)Ne(rrr,t)+ ϒh(ωu)Nh(rrr,t). (14)

As the susceptibility χ f is complex in general [see Eq. (10)], we can relate its real and imaginary
parts to changes in the refractive index and the absorption coefficient induced by free carriers
using the relation,

χ f = 2n0[nf + icαf/(2ω)], (15)

where nf is the free-carrier index (FCI) change and α f governs free-carrier absorption (FCA).
Ideally, according to the Drude model of Eq. (10), they vary with optical frequency as (ωτ v 

1) [81, 102, 134]

nf(ω ,Ne,Nh) = − q2

2ε0n0ω2

(

Ne

m∗
e

+
Nh

m∗
h

)

, (16)

αf(ω ,Ne,Nh) =
q3

ε0cn0ω2

(

Ne

μem∗
e
2 +

Nh

μhm∗
h

2

)

. (17)

In practice, their magnitudes for silicon are larger than those predicted by Eqs. (16) and (17).
At a specific wavelength of λr = 2πc/ωr = 1550 nm, it is common to employ the following
empirical formulas [81, 135]

nf(ωr,Ne,Nh) = −(8.8×10−4Ne +8.5N0.8
h )×10−18, (18)

αf(ωr,Ne,Nh) = (8.5Ne +6.0Nh)×10−18, (19)

where Ne and Nh have units of cm−3 and αf is expressed in units of cm−1.
In the case of nonlinear optical interactions, free carriers are created through TPA with equal

densities, i.e., Ne = Nh ≡ N. In this case, it is more convenient to write nf and αf as

nf = σn(ω)N, αf = σa(ω)N, (20)

where σa = 1.45×10−17(ωr/ω)2 (in units of cm2) and σn = ς(ωr/ω)2. The value of ς depends
on the density region because of the (Nh)0.8 dependence for holes in Eq. (18). For example, Eq.
(18) shows that the contribution of holes is about 3.8 and 6.1 times larger than that of electrons
for a density of 1017 and 1016 cm−3, respectively. As the carrier density created by TPA is
typically in this range, we assume that the hole contribution to FCI is 5 times that of electrons,
and use ς ≈−5.3×10−21 (in units of cm3) in this paper.

Equations (16), (17), and (20) show that FCI and FCA changes with time reflect precisely
temporal variations of free carriers. This feature has been widely used to investigate the carrier
dynamics in semiconductors by probing the transient FCI and FCA excited by an ultrashort
pump pulse [132, 133]. Note that the model presented in this section for free-carrier effects is
valid only when free carriers reach a certain thermal quasi-equilibrium. This is the case for
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time scales >50 fs because optically excited free carriers can be thermalized over such time
intervals by various scattering processes [132, 133, 136]. In the context of nonlinear silicon
photonics, almost all practical applications fall in this regime. However, a quantum-mechanical
description is necessary for accurate modeling of free-carrier dynamics for ultrashort pulses
containing only of a few optical cycles [136].

Apart from density changes, optical excitation of free carriers between nonparabolic conduc-
tion and valence bands may also modify the effective masses of electrons and holes and thus
introduce additional nonlinear effects associated with free carriers [134]. However, this effect
is minor compared with the changes in the carrier density and is neglected in this paper.

2.3. General frequency-domain wave equation

In this subsection we derive a general equation describing propagation of an optical field inside
a silicon waveguide. As usual, the starting point is the Maxwell wave equation. After including
the induced polarizations associated with the third-order nonlinearity and free carriers, the wave
equation in the frequency domain takes the form

∇2
˜Ei(rrr,ω)+

ω2

c2 n2
0(ω)˜Ei(rrr,ω) = −μ0ω2

[

˜Pf
i (rrr,ω)+ ˜P(3)

i (rrr,ω)
]

. (21)

In general, the induced polarizations are only small perturbations to the linear wave equation.
To the first order, we can assume that the waveguide modes are not affected by them and write
the electric field in the form

˜Ei(rrr,ω) ≈ ˜Fi(x,y,ω)˜Ai(z,ω), (22)

where ˜Fi(x,y,ω) governs the mode profile in the plane transverse to the propagation direction
z. Substituting Eq. (22) into Eq. (21), multiplying by ˜F∗

i , and integrating over the transverse
plane, we obtain

∂ 2
˜Ai

∂ z2 + β 2
i (ω)˜Ai = −μ0ω2

∫∫

˜F∗
i [˜Pf

i + ˜P(3)
i ]dxdy

∫∫ |˜Fi|2dxdy
, (23)

where βi(ω) is the propagation constant given by

β 2
i (ω) =

ω2

c2

∫∫

n2
0(ω)|˜Fi|2dxdy
∫∫ |˜Fi|2dxdy

+
∫∫

˜F∗
i ∇2

T
˜Fi dxdy

∫∫ |˜Fi|2dxdy
, (24)

and the subscript T denotes the transverse part of the Laplacian operator. The linear dispersion
curve of a silicon waveguide is obtained from Eq. (24) after finding the transverse mode pro-
file under specific boundary conditions set by the waveguide geometry. Note that the material
refractive index n0 is generally different for the core and cladding layers.

The general solution of Eq. (23), in the absence of the free-carrier and nonlinear effects, con-
sists of the forward and backward propagating waves with the phase factors e±iβi(ω)z. This phase
factor varies in a length scale of optical wavelength, much shorter than the length scale in which
the small free-carrier and third-order nonlinear effects evolve. As a result, ∂ ˜Ai/∂ z ≈ iβi(ω)˜Ai

even when the free-carrier and nonlinear effects are included, where we have assumed that
the incident optical field propagates along the +z direction. Assuming that small perturbations
do not reflect light and the backward wave can thus be ignored, we make the slowly varying
envelope approximation and use

∂ 2

∂ z2 + β 2
i =

(

∂
∂ z

+ iβi

)(

∂
∂ z

− iβi

)

≈ 2iβi

(

∂
∂ z

− iβi

)

. (25)
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As a result, Eq. (23) reduces to

∂ ˜Ai

∂ z
= iβi(ω)˜Ai +

iμ0ω2

2βi(ω)

∫∫

˜F∗
i [˜Pf

i + ˜P(3)
i ]dxdy

∫∫ |˜Fi|2 dxdy
. (26)

By substituting Eq. (22) into Eqs. (1) and (11) and using them in Eq. (26), we obtain the
following equation for the field amplitude:

∂ ˜Ai

∂ z
= iβi(ω)˜Ai + i

∫

˜β f
i (ω ,ω ′, ˜Ne, ˜Nh)˜Ai(z,ω ′)dω ′

+
i

4π2

∫∫

γi jkl(−ω ;ω j,−ωk,ωl)Aj(z,ω j)A∗
k(z,ωk)Al(z,ωl)dω jdωk, (27)

where we have normalized the field amplitude such that the corresponding temporal profile
|A(z,t)|2 has units of power. The nonlinear parameter γ i jkl in Eq. (27) is defined as

γi jkl(−ωi;ω j,−ωk,ωl) =
3ωiηi jkl

4ε0c2ā(nin jnknl)1/2
χ (3)

i jkl(−ωi;ω j,−ωk,ωl), (28)

where nv(ωv) = cβv(ωv)/ωv (v = i, j,k, l) is the modal refractive index at ωv, ā is the average
effective mode area related to that at individual frequencies as

ā ≡ (aia jakal)
1/4 , av =

[
∫∫ |˜Fv|2dxdy]2
∫∫ |˜Fv|4dxdy

, (29)

and ηi jkl is the mode-overlap factor defined as

ηi jkl ≡
∫∫

˜F∗
i
˜Fj ˜F∗

k
˜Fl dxdy

[

∏v=i, j,k,l
∫∫ |˜Fv|4 dxdy

]1/4
. (30)

The integral in the numerator of av is over the whole transverse plane, but the dominant contri-
bution to other integrals in Eqs. (29) and (30) comes from the silicon core layer if the third-order
susceptibility is negligible for cladding layers.

Similar to χ (3)
i jkl , the nonlinear parameter γ i jkl = γe

i jkl + γR
i jkl is also composed of the electronic

and Raman parts. Its expression in Eq. (28) includes wavelength dependence of the nonlinear
parameters, effective mode area, mode overlap, and modal refractive index. If only one wave at
the frequency ωi is involved, ηiiii = 1, ā = ai, and Eq. (28) reduces to the conventional nonlinear
parameter [80]. A detailed analysis shows that the fundamental modes of a straight waveguide
overlap well with each other, leading to η i jkl ≈ 1. But this is not so for a microdisk or microring
resonator because of the curved nature of device geometry [137].

In Eq. (27), the second term on the right side represents the effect of free carriers with ˜β f
i

given by

˜β f
i (ω ,ω ′, ˜Ne, ˜Nh) =

ω
2cni(ω)

∫∫

˜χ f(ω ,ω ′, ˜Ne, ˜Nh)|˜Fi|2 dxdy
∫∫ |˜Fi|2 dxdy

, (31)

where ˜χ f is given in Eq. (12). In general, free carriers have specific transverse density distribu-
tions inside the waveguide, and ˜β f

i includes the effect of a partial overlap between the charge
distribution and the mode profile [138]. If we assume that ˜χ f is linearly proportional to the
carrier densities [see Eqs. (9) through (20)], Eq. (31) is simplified, resulting in the following
expression:

˜β f
i =

ω
2cni(ω)

˜χ f(ω ,ω ′, ˜N̄e,
˜N̄h), ˜N̄v =

∫∫

˜Nv|˜Fi|2dxdy
∫∫ |˜Fi|2dxdy

. (32)
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The physical meaning of free-carrier effects can be seen more clearly in the time domain. The
general form of the free-carrier term in Eq. (27) can be simplified considerably if we notice that
nonlinear interactions typically involve only a few optical waves, each with a limited bandwidth
around a carrier frequency ωu. By using Eqs. (13) and (14), it is easily to show that the free-
carrier effects on each wave manifest in the time domain as a perturbation to the propagation
constant through FCI and FCA. From Eqs. (13), (15), and (32), this perturbation is given by

β f
i (ωu, N̄e, N̄h) =

n0(ωu)
ni(ωu)

[

ωu

c
nf(ωu, N̄e, N̄h)+

i
2

αf(ωu, N̄e, N̄h)
]

, (33)

where nf and αf are given by Eqs. (16) and (17) [or Eqs. (18)–(20)] after replacing N e and Nh

with their averaged values defined in Eq. (32). Equation (33) shows that, for the same distribu-
tion of carrier densities, free-carrier effects are enhanced in a waveguide compared with bulk
material as the modal refractive index is smaller because of mode confinement. The free carri-
ers may also introduce extra birefringence or polarization-dependent losses because n i can be
quite different for different polarization modes. Such effects are negligible for waveguides with
a relatively large mode area, but they can become significant inside a nano-size waveguide. As
an example, for an air-clad SOI waveguide with a cross section of 600× 300 nm 2, ni is 2.76
and 2.32 at λ = 1.55 μm for the fundamental TE and TM modes, respectively. These values are
much smaller than the material index (n0 = 3.48) and indicate that free-carrier effects would be
enhanced by 26 and 50% for the TE and TM modes, respectively.

Free electrons and holes can be generated either optically inside the waveguide or electrically
through current injection from outside. After being created, they can diffuse to a low-density
area through thermal motion, or drift away by an external dc electric field EEEdc. In general, the
dynamics of carrier density is governed by the continuity equation [131]

∂Nv

∂ t
= G− Nv

τ ′v
+Dv∇2Nv − svμv∇∇∇ · (NvEEEdc), (34)

where v = e for electrons, v = h for holes, sh = 1, se = −1, Dv is the diffusion coefficient, τ ′
v is

the carrier lifetime, and μv is the mobility. The generation rate G is a function of optical field,
if free carriers are generated through optical excitation like TPA.

What we are interested in is not a detailed density distribution across the waveguide but its
effect on the optical field. Thus, we can average Eq. (34) over the transverse coordinates to
obtain a dynamic equation for the average density N̄v. By noting that the diffusion and drift of
carriers away from the waveguide core reduces carrier density inside it, just as recombination
of carriers does, we write the spatially averaged terms in Eq. (34) as

∫∫ |˜Fi|2
[

Dv∇2Nv − svμv∇∇∇ · (NvEEEdc)
]

dxdy
∫∫ |˜Fi|2dxdy

= − N̄v

τ∗v
, (35)

where τ∗
v represents the effective lifetime associated with thermal diffusion and field-induced

drift of free carriers. As a result, the dynamics of averaged carrier densities are governed by a
simple equation of the form

∂ N̄v

∂ t
= Ḡ− N̄v

τ0
, Ḡ =

∫∫

G|˜Fi|2dxdy
∫∫ |˜Fi|2dxdy

, (36)

where Ḡ is the generation rate averaged over the optical mode profile and τ 0 ≡ τ ′vτ∗v /(τ ′v + τ∗v )
is an effective carrier lifetime that includes all the effects of recombination, diffusion, and drift;
we have assumed it to be the same for electrons and holes.
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Note from Eq. (35) that the effective lifetime in general depends on the waveguide geom-
etry. Indeed, it can be reduced considerably by increasing the surface-to-volume ratio of the
waveguide [139]. It can also be reduced by applying an external dc field [42, 67] or intro-
ducing non-radiative centers through ion implantation [140–143]. However, as nonlinear inter-
actions require relatively high intensity inside the waveguide, generated carriers may screen
the applied dc field and thus limit the reduction in effective carrier lifetime [144]. For SOI
waveguides commonly used for photonic applications, the effective lifetime varies from sub-
nanosecond [54, 90, 141] to tens of nanoseconds [41, 42].

Equation (27) is quite general as it includes all dispersive, nonlinear, and polarization effects
introduced by waveguide confinement, free carriers and third-order nonlinearity. The first term
on its right side governs the dispersive effects. It can also include linear absorptive and scatte-
ring losses, if β (ω) is treated as a complex quantity. This frequency-domain wave equation can
be used to investigate nonlinear interactions inside silicon waveguides for optical fields with
arbitrary spectra. It can be simplified considerably if we notice that both the free-carrier and the
third-order electronic nonlinear effects are only weakly dependent on optical frequency across
a pulse spectrum. Often, the dispersion induced by FCI is negligible compared with the mater-
ial and waveguide dispersion because |n f|< 10−3 even at carrier densities up to 1017cm−3 [81].
As αf ∝ 1/ω2 ∝ λ 2 [see Eqs. (16) and (17)], the magnitude of FCA changes by <14% even
when the wavelength changes over 100 nm in the 1.55-μm spectral band. For similar changes
in the wavelength, the electronic nonlinearity of silicon varies by ∼20% in this spectral region
[83–85]. Thus, if the incident and generated optical fields have a bandwidth much smaller than
100 nm, we can employ the approximation γ e

i jkl(−ωi;ω j,−ωk,ωl)≈ γe
i jkl(−ωi;ωi,−ωi,ωi) and

use Eq. (7). The use of this approximation simplifies the theory considerably.

2.4. Time-domain description

In many practical situations, the input field is either a continuous wave (CW) or is in the form
of a pulse train. If only one wave at the carrier frequency ω 0 propagates along the waveguide,
we can expand the propagation constant β (ω) in a Taylor series around ω 0. The time-domain
description of the nonlinear process is then realized by replacing ω −ω 0 with the derivative
i(∂/∂ t). Transferring Eq. (27) into time domain with this approach, we obtain the following
equation for the field amplitude Ai(z,t):

∂Ai

∂ z
=

∞

∑
m=0

im+1βim

m!
∂ mAi

∂ tm + iβ f
i (ω0, N̄e, N̄h)Ai + i

(

1+ iξ
∂
∂ t

)

PNL
i , (37)

where βim is the mth-order dispersion parameter defined as β im = (dmβi/dωm)|ω=ω0 . These
parameters also include the linear loss and its dispersion when β (ω) is a complex quantity.
In the following discussion, we assume that free carriers are generated only optically so that
N̄e = N̄h = N̄, and write the β f

i term as β f
i (ω0, N̄).

The nonlinear polarization PNL
i (z,t) has the following compact form in the time domain:

PNL
i (z,t) = Aj(z,t)

∫ ∞

−∞
R(3)

i jkl(t − τ)A∗
k(z,τ)Al(z,τ)dτ, (38)

where the third-order nonlinear response function is given by

R(3)
i jkl(τ) = γe(ω0)δ (τ)

[ρ
3

(

δi jδkl + δikδ jl + δilδ jk
)

+(1−ρ)δi jkl

]

+ γRhR(τ)
(

δikδ jl + δilδ jk −2δi jkl
)

, (39)

The electronic nonlinear parameter γe(ω0) is defined as

γe(ω0) ≡ γe
1111(−ω0;ω0,−ω0,ω0) ≡ γ0(ω0)+

i
2

β ′
T (ω0), (40)
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Fig. 1. Rotation of the coordinate system required for SOI waveguides fabricated along the
[0 1̄ 1] direction.

where γ0 = ω0n2/(cā) is the nonlinear Kerr parameter and β ′
T = βT /ā is the TPA coefficient

normalized by the effective mode area.
The Raman nonlinear parameter γR is related to the Raman gain coefficient gR as γR(ω0) =

gR(ω0)ΓR/(āΩR), where gR is obtained from Eqs. (3) and (28) and is given by g R(ω0) =
3ω0g′ΩR/(2ε0c2n2ΓR). Note that gR is linearly proportional to ω0. In the 1.55-μm spectral
band, its values are in the range of 4.3 to 76 cm/GW, based on the experimental measurements
of spontaneous and stimulated Raman scattering [6, 27, 29, 30, 32, 34, 41, 145, 146]. Thus, g R

is more than 1000 times larger than that found for silica [80]. It is also nearly 10 times larger
than the electronic nonlinear parameter of silicon. However, as γ R depends linearly on ΓR/ΩR,
the magnitude of γR is only a few percent of γ0 and is negligible unless the pulse spectrum
falls within the Raman gain bandwidth. The Raman response function h R(τ) in Eq. (39) is the
inverse Fourier transform of ˜HR(Ω). Using Eq. (3), it is found to be [hR(t) = 0 for t < 0]

hR(t) = Ω2
Rτ1e−t/τ2 sin(t/τ1), (41)

where τ2 = 1/ΓR and τ1 = 1/(Ω2
R −Γ2

R)1/2 ≈ 1/ΩR. The Raman-gain bandwidth of 105 GHz
in silicon corresponds to a response time of τ2 ≈ 3 ps. Similarly, the Raman shift of 15.6 THz
corresponds to τ1 ≈ 10 fs.

Although Eq. (39) shows that the third-order nonlinearity involves all three components of
the electric field, the longitudinal field component Ez in a silicon waveguide contains only
a relatively small fraction of incident power, particularly in the case of the fundamental TE
and TM modes. As a result, the nonlinear effects are dominated by the transverse polarization
components of the electric field. For this reason, most problems can be simplified by neglecting
the Ez component, as far as the nonlinear effects are concerned.

As discussed in Section 2.1, Eq. (39) is written in a coordinate basis aligned along the crys-
tallographic axes. For commonly used (1 0 0) silicon wafers, this amounts to assuming that the
waveguide is fabricated along the [0 1 0] or [0 0 1] direction. If that is not the case, the nonlinear
response in other Cartesian coordinate systems can be found by a suitable rotation of the basis,

resulting in R′(3)
i jkl = R(3)

qrstMqiMr jMskMtl , where Muv is a rotation matrix. By noting that all terms
in Eq. (39) except those involving δ i jkl are rotation invariant, the nonlinear response function
in the rotated coordinate system is found to be

R′(3)
i jkl(τ) = γeδ (τ)

[

ρ
3

(

δi jδkl + δikδ jl + δilδ jk
)

+(1−ρ)∑
s

MsiMs jMskMsl

]

+ hR(τ)
(

δikδ jl + δilδ jk −2∑
s

MsiMs jMskMsl

)

. (42)

As an example, consider an SOI waveguide fabricated along the [0 1̄ 1] direction because
of cleaving convenience. In this case, the new coordinate system is obtained by a 45 ◦ rotation
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along the x axis, as shown in Fig. 1, and the rotation matrix is given by

M =

⎛

⎝

1 0 0
0 1/

√
2 −1/

√
2

0 1/
√

2 1/
√

2

⎞

⎠ . (43)

In this case, it is easy to show that

R′(3)
xxxx(τ) = γeδ (τ), R′(3)

yyyy(τ) = γeδ (τ)(1+ ρ)/2+ γRhR(τ), (44)

R′(3)
yxxy(τ) = R′(3)

xyyx(τ), R′(3)
xyyx(τ) = γeρδ (τ)/3+ γRhR(τ). (45)

The two components in Eq. (44) represent the nonlinear response of an optical field polarized
linearly along the x′ and y′ axis, respectively, and those in Eq. (45) govern the nonlinear cou-
pling between these two orthogonal polarizations. Two important conclusions can be drawn
from Eq. (44) for SOI waveguides fabricated along the [0 1̄ 1] direction. First, the Raman con-
tribution is absent for the quasi-TM modes polarized along the x ′ axis. Second, the electronic
contribution is enhanced for the quasi-TE modes by a factor (about 14%) having its origin in
the nonlinear anisotropy [87]. Note that Raman scattering can occur for TE modes, but not for
TM modes. In contrast, Raman coupling between the pump and signal waves, polarized orthog-
onally along the TE and TM modes, occurs with the same magnitude, [28, 34, 52] but the Kerr
nonlinearity is reduced roughly by one third for such a polarization configuration [80].

In Eq. (37), ξ is related to the frequency dependence of the nonlinear parameter, and is given
by

ξ ≡ 1
ω0

+
1

χe(ω0)
dχe

dω

∣

∣

∣

∣

ω0

− 1
ā(ω0)

dā
dω

∣

∣

∣

∣

ω0

, (46)

where χe(ω0) ≡ χe
1111(−ω0;ω0,−ω0,ω0). In the 1.55-μm spectral region, the contribution of

the second term in Eq. (46), related to the dispersion of silicon electronic nonlinearity [5, 83,
84], dominates, in contrast with silica fibers for which the first term dominates because of a
negligible dispersion of n2. In practice, the ξ term becomes important only when the spectrum
of input pulses broadens by a large factor during their propagation inside a silicon waveguide;
for example, in the case of supercontinuum generation [16]. In many cases of practical interest,
ξ � 1, and its contribution can be neglected.

Equation (27) in the frequency domain and Eq. (37) in the time domain provide a general
theoretical basis for studying the nonlinear effects in silicon waveguides. We use them in the
following sections to discuss a variety of nonlinear phenomena that can be employed for a
multitude of practical application of silicon waveguides.

3. SPM effects on short optical pulses

In this section, we apply the general theory to the simplest case in which short optical pulses at
a specific carrier wavelength are launched inside a silicon waveguide. The propagation of such
pulses is affected considerably by the nonlinear phenomenon of SPM, especially when the dis-
persive effects cannot be ignored. As Eq. (37) is quite similar to the generalized NLS equation
governing the nonlinear effects inside silica fibers [80], we would expect similar phenomena to
occur inside a silicon waveguide. In particular, the possibility of soliton formation and super-
continuum generation exists. Of course, the differences unique to silicon waveguides, such as
TPA and free-carrier effects, will have a significant impact on these nonlinear phenomena. This
section focuses on such differences.
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Fig. 2. Wavelength dependence of β2 for several waveguide widths simulated with the
finite-element method (FEMLAB, COMSOL). Solid and dashed curves correspond to the
TE and TM modes, respectively. The black curve shows for comparison the case of bulk
silicon, and the inset shows the waveguide geometry.

3.1. Dispersion engineering

Before we discuss the SPM effects, we should consider the nature of group-velocity dispersion
(GVD) inside SOI waveguides, as it has a profound impact on nonlinear pulse propagation [80].
Fused silica has a zero-dispersion wavelength (ZDWL) around 1.276 μm beyond which GVD
becomes anomalous. In contrast, silicon has significant normal dispersion over its transparent
spectral region beyond 1.2 μm, as seen in Fig. 2. However, it is well known that mode confine-
ment provided by waveguide geometry introduces significant dispersion, which can be used
to compensate for the material dispersion. This feature has been utilized in silica fibers to tai-
lor their dispersion over a broad near-infrared region by either changing the size of the fiber
core [147], or by introducing a photonic-crystal cladding [148]. Optical pulses exhibit rich
nonlinear dynamics inside such fibers with engineered dispersion [101]. The idea of disper-
sion engineering can be transferred directly to silicon waveguides. Moreover, as the refractive
index of silicon (around 3.48) is much larger than silica glass, mode confinement is naturally
stronger in silicon waveguides, particularly those with an air cladding. This feature enables
efficient dispersion engineering simply by changing the size and aspect ratio of a rectangular
waveguide [13, 149].

In general, the GVD for an optical mode is dominantly set by the boundaries where the
electric field is discontinuous. As a result, the quasi-TE modes tend to be more sensitive to the
two sidewalls and the waveguide width. In contrast, the quasi-TM modes are more sensitive
to the top and bottom interfaces and the waveguide height. This is illustrated clearly in Fig. 2,
which shows the wavelength dependence of the GVD parameter β 2, obtained with the finite-
element method, for some rectangular-shape waveguides (see the inset). In each case, the height
is fixed at 400 nm, but the width W varies from 0.6 to 1.75 μm. As seen there, the waveguide
dispersion changes dramatically the magnitude of GVD, and the ZDWL for the fundamental
TE mode can be engineered to lie anywhere from 1.2 to beyond 3 μm simply by changing the
waveguide width. More specifically, an SOI waveguide with a cross-section of 0.6× 0.4 μm 2

exhibits its ZDWL near 1328 nm for the fundamental TE mode, resulting in a deeply anomalous
GVD in the telecommunication band (about −1.52 ps2/m at 1550 nm). For the same mode,
ZDWL can be tailored to near 1577 nm simply by increasing the waveguide width to 1.0 μm.
The ZDWL shifts dramatically to 2322 nm in the mid-infrared region with a further increase
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of the width to 1.75 μm, resulting in a normal dispersion of 0.59 ps 2/m at λ = 1550 nm. In
contrast, the GVD curves are similar in shape for the fundamental TM mode (dashed curves)
of these three waveguide geometries, because of a fixed waveguide height used. Clearly, the
tight mode confinement inside an SOI waveguide provides a significant degree of freedom for
engineering GVD.

Further dispersion engineering can be realized by introducing a photonic-crystal cladding,
again similar to the case of silica fibers [148]. Such dispersion engineering enables observation
of nonlinear phenomena inside a short waveguide at moderate power levels to an extent that is
not possible for silica fibers. Moreover, an appropriate design of the waveguide also allows one
to obtain nearly identical GVD curves for the two polarizations [68]. The extent of dispersive
effects on pulse propagation is characterized by the dispersion length, defined as L d = T 2

0 /|β2|
[80], where T0 is a measure of the width of input pulses. Although the magnitude of GVD can
be engineered considerably in SOI waveguides, the dispersion length is still often larger than
the waveguide length (L ∼ 1 cm). For example, for a GVD of |β 2|= 2 ps2/m, Ld = 50 cm for a
pulse with T0 = 1 ps. Therefore, GVD-induced pulse broadening is relatively small until input
pulses become shorter than 100 fs.

3.2. Relative magnitudes of the nonlinear and free-carrier effects

As mentioned earlier, the free-carrier effects have a significant impact on pulse propagation.
Thus, our first task is to estimate the relative importance of FCA and FCI compared with the
nonlinear phenomena of SPM and TPA. The free-carrier effects depend, in general, on the
repetition rate of input pulses. In this section, we consider the simplest case and assume that
the repetition rate is low enough (<100 MHz) that free carriers produced by one pulse have
enough time to recombine before the next pulse arrives. This simplification allows us to focus
on a single pulse. Many experiments carried out in the past few years have employed a repetition
rate low enough that the single-pulse assumption holds for them [7–12, 14, 15, 17, 23, 25].

The importance of the nonlinear effects is governed by a parameter known as the nonlinear
length [80] and defined as LN = (γ0P0)−1, where P0 is the peak power of input pulses. Because
of a relatively large value of γ0 in silicon waveguides, LN can easily become 1 mm or less
at moderate peak power levels. As a result, the SPM-induced spectral broadening is frequently
observed in short silicon waveguides [7–12]. Such spectral broadening has already been used to
realize useful functions such as optical gating [10], regeneration [19] and multichannel spectral
carving [18]. In many cases, a shift of the broadened spectrum toward shorter wavelengths was
observed [8–10, 12, 14, 18, 19, 25]. Detailed numerical simulations show that this blue shift is
caused by a free-carrier-induced chirp (FCC) that affects pulse dynamics on a different time
scale [9, 14, 20–22, 25].

Equation (37) can be used to describe pulse propagation inside SOI waveguides under quite
general conditions. For simplifying the following discussion, we do not consider the polariza-
tion effects by assuming that the input pulse is polarized along the fundamental TE or TM
mode of the waveguide. In this case, the pulse maintains its initial state of polarization, and
a scalar approach can be employed in Eq. (37) by dropping the subscript i from A i. A further
simplification occurs if we note that the Raman scattering is not important in this case because
of a large Raman shift and a narrowband nature of the Raman-gain spectrum.

Even with these simplifications, the situation is more complicated than that encountered
inside silica fibers. Equation (37) shows that both the electronic nonlinearity and free carriers
would induce nonlinear phase shifts and extra losses on the pulse. Here we provide a simple
analytical approach to estimate their relative magnitudes. Assuming that the dispersion length
is so much longer than the waveguide length that dispersive effects are negligible, we neglect
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all dispersion terms in Eq. (37) and obtain the simple equation

∂A
∂ z

= iβ f(ω0, N̄)A+ iγe|A|2A, (47)

where we have also neglected linear scattering losses and changed the time reference frame to
τ = t −β1z so that τ = 0 corresponds to the pulse center.

Consider first the relative importance of the FCA and TPA effects. Noting that the TPA
originates from the imaginary part of γe in Eq. (40), the power-loss rate introduced by TPA is
given by ∂P/∂ z = −βT |A|4/ā. Accordingly, the carrier generation rate in Eq. (36) becomes

Ḡ = − 1
2h̄ω0ā

∂P
∂ z

=
βT |A|4
2h̄ω0ā2 . (48)

The use of this expression in Eq. (36) provides a formal solution for the carrier density as

N̄(z,τ) =
βT

2h̄ω0ā2

∫ τ

−∞
e−(τ−τ ′)/τ0 |A(z,τ ′)|4dτ ′. (49)

Equation (49) shows clearly that carriers accumulate over the pulse duration through TPA, but
they also disappear because of recombination. The upper limit of the carrier density is thus the
value accumulated over the whole pulse without recombination, and is given by

N̄m =
βT

2h̄ω0ā2

∫ ∞

−∞
|A(z,τ ′)|4dτ ′. (50)

To be specific, consider a Gaussian input pulse with the power profile |A(0,τ)| 2 =
P0 exp(−τ2/T 2

0 ). In this case, N̄m becomes

N̄m =
√

πβT P2
0 T0

2
√

2h̄ω0ā2
. (51)

If we substitute this expression into Eq. (20) and use Eq. (33), we obtain the upper limit α f m

of the FCA parameter α f . As the maximum TPA is governed by αTm = βT P0/ā (at the pulse
peak), the ratio of these two provides a criterion for testing the relative magnitudes of FCA and
TPA through the dimensionless parameter

ra ≡ α f m

αTm
=

n0σaEp

2
√

2h̄ω0nā
, (52)

where Ep =
√

πP0T0 is the input energy of a Gaussian pulse. Note that n0 and n are, respectively,
the material and modal refractive indices at the carrier frequency ω 0 of the pulse.

It follows from Eq. (52) that the FCA effects are relatively small when r a � 1. Us-
ing typical parameter values at wavelengths near 1550 nm, Eq. (52) leads to a condition,
Ep/ā � 25 mJ/cm2. For example, pulse energy should satisfy E p � 125 pJ for a waveguide
with ā = 0.5 μm2. This condition is often satisfied in practice for pulses shorter than 0.1 ns. As
a result, TPA dominates for ultrashort pulses propagating inside a silicon waveguide. Moreover,
α f m is related to ra as α f m = raβT P0/ā. With ra � 1 and βT ≈ 0.5 cm/GW, α f m � 0.4 dB/cm
at a peak intensity of 0.2 GW/cm2. Clearly, FCA is negligible for ultrashort pulses of modest
energies. However, it can become significant when pulse widths become longer than the carrier
lifetime and the peak powers become relatively high. In this case, free carriers created by the
leading edge of a pulse would absorb light in the pulse tail. As a result, FCA will dampen the
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pulse tail but leave intact the leading part of a pulse. This feature has been recently used to
generate short pulses by removing their trailing part through FCA [97].

We next focus on the role played by index changes induced by free carriers (FCI). Both the
Kerr nonlinearity and free carriers change the refractive index and impose SPM on the pulse.
From Eqs. (20), (33), and (47), these phase changes evolve as

∂ΦK

∂ z
= γ0|A|2, ∂Φ f

∂ z
=

n0ω0σn

cn
N̄, (53)

where ΦK and Φ f are the phase shifts induced by Kerr nonlinearity and free carriers, respec-
tively. Both of them depend on pulse’s temporal profile and thus chirp the pulse. Such frequency
chirps are more relevant in practice than the phase shifts themselves since they indicate the ex-
tent of spectral broadening [80]. Noting that the frequency shift varies as δω = −∂Φ/∂τ , the
two frequency chirps satisfy

∂ (δωK)
∂ z

= −γ0
∂ |A|2

∂τ
,

∂ (δω f )
∂ z

= −n0ω0σn

cn
∂ N̄
∂τ

. (54)

¿From Eqs. (36), (48) and (49), we find that changes in the carrier density evolve as

∂ N̄
∂τ

=
βT

2h̄ω0ā2

[

|A|4 − 1
τ0

∫ τ

−∞
e−(τ−τ ′)/τ0 |A(z,τ ′)|4dτ ′

]

. (55)

Optical pulses used for investigating SPM generally have widths shorter than the carrier lifetime
to prevent severe FCA. For such pulses, the second term in Eq. (55) is of the order of T0/τ0,
and is thus negligible compared with the first term when T0 � τ0. As a result, the growth rate
of FCC from Eq. (54) is approximately given by

∂ (δω f )
∂ z

≈−n0σnβT |A|4
2cnh̄ā2 . (56)

Noting that σn is negative [see Eqs. (18) and (20)], it follows that FCC always causes the pulse
spectrum to be blue-shifted. The maximum chirp occurs at the pulse center and is given by

∂ (δω f m)
∂ z

≈−n0σnβT P2
0

2cnh̄ā2 . (57)

On the other hand, the Kerr-induced chirp (KIC) has a maximum growth rate of
|∂ (δωKm)/∂ z| ≈ γ0P0/T0 at two temporal locations around the pulse center [80]. Therefore,
the ratio of the FCC and KIC for Gaussian pulses is given by

rc ≡ |∂ (δω f m)/∂ z|
|∂ (δωKm)/∂ z| ≈

n0|σn|Ep

4π3/2Fncnh̄ā
. (58)

Similar to the case of ra, this ratio depends only on the pulse energy (rather than on pulse
width or peak power alone). The FCC and KIC become comparable (r c = 1) for Ep/ā ≈
4 mJ/cm2, or at a pulse energy of E p ≈ 20 pJ for a waveguide with ā = 0.5 μm2. For pulse
energies larger than this value, FCC becomes significant. This condition is easy to meet in prac-
tice. For example, the experiments in Refs. [8–10,12,14,18,19] fall in this regime and result in
a blue spectral shift. However, the experiments of Refs. [15, 17] fall outside of this regime and
thus do not show such a blue shift. Clearly, compared with FCA, FCC has a more significant
effect on pulse propagation, especially when the pulse width is much shorter than the carrier
lifetime. Moreover, such FCC can be significantly enhanced inside a high-quality microcavity
through cavity resonance, leading to much less requirement of input pulse energy [91, 96].
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Fig. 3. (a) SPM-broadened spectra and (b) nonlinear phase shifts showing the impact of
FCC. Red curves neglect both FCA and FCC, black curves include FCA but neglect FCC,
and green curves include both. (After Ref. [21].)

Figure 3 shows numerical examples of SPM-induced spectral broadening and phase shifts
for Gaussian pulses with T0 = 10 ps. The device length L and peak power P0 of pulses are
chosen such that φK = γ0P0L = 15.5π in the absence of TPA and the resulting free-carrier
effects. Red curves neglect both FCA and FCC, assuming negligible density of free carriers.
black curves include FCA but neglect FCC, while the green curves include both effects. The
blue shift induced by FCC is seen clearly. The free carriers also introduce considerable spectral
asymmetry because they are created by the leading edge of the pulse and affect mainly its
trailing portion. Notice how the nonlinear phase shift changes from positive to negative values
in the tail part of the pulses because of the free-carrier effects.

For relatively low-energy pulses such that rc � 1 in Eq. (58), free-carrier effects become
negligible. In this case, we can set β f = 0 in Eq. (47), resulting in

∂A
∂ z

= −αl

2
A+ iγe|A|2A, (59)

where we have added in the term representing linear losses. This equation can be easily solved
to obtain the following solution of pulse power:

P(z,τ) =
P(0,τ)exp(−αl z)

1+ βT P(0,τ)
αl ā

[1− exp(−αlz)]
. (60)

Accordingly, the Kerr-induced nonlinear phase shift, Φ K = γ0
∫ L

0 P(z,t)dz, is given by [21]

ΦK(L,τ) =
γ0ā
βT

ln

[

1+
βT P(0,τ)

ā
Leff

]

, (61)

where Leff =
(

1− e−αlL
)

/αl is the effective length. TPA converts linear dependence of Φ K on
the peak power to a logarithmic one. As a result, it reduces the value of Φ K by a factor that
increases with increasing peak power and sets the fundamental limit on the extent of SPM-
induced spectral broadening in silicon waveguides.

3.3. Ultrashort pulse propagation and soliton formation

The preceding analysis neglected the dispersive effects. However, if the dispersion length be-
comes smaller or comparable to the waveguide length, GVD effects must be considered. If we
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Fig. 4. Simulated shape (a) and spectrum (b) of input (blue curves) and output (red curves)
pulses in the soliton regime. The green curve in (a) shows the output pulse in the absence
nonlinear effects. The dashed curve in (b) corresponds to a sech pulse. (After Ref. [17].)

keep the GVD term, neglect the high-order dispersive and nonlinear effects, and ignore the
impact of free carriers, Eq. (37) reduces to the following simpler NLS equation:

∂A
∂ z

+
αl

2
A+

iβ2

2
∂ 2A
∂τ2 = iγe|A|2A. (62)

The main difference compared with optical fibers is that γ e is a complex parameter in view of the
TPA effects that cannot be ignored for silicon waveguides. Since linear losses and TPA reduce
the peak power continuously along the waveguide length, an ideal soliton cannot form inside
silicon waveguides. However, a soliton-like behavior can still be observed if the SPM effects
are made strong enough initially that the dispersion-induced pulse broadening is negligible at
the output. Indeed, we have found that if the input pulse is launched with an appropriate peak
power, a solitary wave can form with a relatively small pulse broadening [13]. Such a solitary
wave corresponds to a path-averaged soliton [80] for which SPM and GVD do not balance
each other locally. Rather, they are balanced on average along the whole device length such
that γ0P̄0Ld = 1, where P̄0 = L−1 ∫ L

0 P0(z)dz is the average peak power along the waveguide.
Under such conditions, an input pulse preserves its temporal and spectral shape reasonably
well at the output end [13].

More interestingly, if we launch a Gaussian pulse with an appropriate power in the anomalous
GVD regime of an SOI waveguide, the pulse becomes quite resistant to the dispersion-induced
broadening [17]. It evolves itself into a sech-like shape, as shown clearly in the numerical
example of Fig. 4. In this case, the pulse spectrum narrows down since the Gaussian-shape
input spectrum is too broad to hold a solitary wave. This feature is in strong contrast to the case
of nondispersive SPM (discussed earlier) that resulted in spectral broadening.

Spectral narrowing suggesting the formation of a path-averaged soliton was observed in a re-
cent experiment in which 120-fs Gaussian pulses were launched in the anomalous-GVD regime
of an SOI waveguide [17]. As shown in Fig. 5, the 27.8-nm-wide (FWHM) spectrum of input
pulses is narrowed by about 33% at the output end. The shape of the output spectrum is best
described by a sech shape, rather than a Gaussian. Numerically simulations performed with the
experimental parameters fit the experimental spectrum reasonably well, as seen in Fig. 5(b).
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Fig. 5. (a) Measured spectra (blue curves) at the input and output ends for Gaussian pulses.
The green and red curves show the Gaussian and ‘sech’ fits to the data. Part (b) shows a
numerical fit to the output spectrum. (After Ref. [17].)

3.4. Soliton fission and supercontinuum generation

Spectral broadening introduced by SPM can be used for applications such as multichannel spec-
tral carving [18]. This technique may find applications in the context of optical interconnects
based on the scheme of wavelength-division multiplexing. However, as discussed above, spec-
tral broadening introduced by the sole effect of SPM is quite limited because TPA imposes a
fundamental limit on the extent of such broadening. Current experiments only show spectral
broadening of tens of nanometers [7–10, 12, 14, 25].

To overcome the barrier set by TPA, an optical pulse needs to broaden its spectrum by a
large factor before TPA reduces its peak power. This can be done by employing the concept of
soliton fission and supercontinuum generation, two processes that have been extensively stud-
ied for silica fibers in the past few years [101]. Spectral broadening is enhanced dramatically
by forming a higher-order soliton at the input end of the waveguide that splits into multiple
fundamental solitons through a fission process. In general, Eq. (27), which includes all pos-
sible linear and nonlinear effects and wave-mixing processes, should be used to simulate the
dramatic spectral broadening during supercontinuum generation. In particular, the spectral de-
pendence of the propagation constant β i(ω) should be accurately accounted for across the entire
broadened spectral region because the soliton fission process is very sensitive to high-order dis-
persion [101]. In practice, the generalized time-domain NLS equation (37) provides a fairly
accurate description of such spectral broadening if correctly including in higher-order linear
dispersion terms together with the nonlinear dispersion of Eq. (46).

Numerical simulations typically make use of the split-step Fourier method [80] that deals
with dispersion in the frequency domain and treats SPM in the time domain. It is thus rela-
tively easy to include higher-order dispersive effects. The results show that the soliton fission
process can generate a supercontinuum that extends over 400 nm even for a 3-mm-long SOI
waveguide [16]. Figure 6 shows the supercontinuum created when a 50-fs pulse is launched to
excite a third-order soliton inside the waveguide. Although TPA and free carriers reduce the
total bandwidth, a 400-nm-wide spectrum could be generated in spite of them. Such wide spec-
tra have not yet been observed experimentally, but recent experiments have shown evidence of
the emission of dispersive waves from an optical pulse under the impact of third-order disper-
sion [15, 23]. This process enhances spectral broadening, and it also provides a simple way to
characterize the third-order dispersion.
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4. XPM and Raman interactions involving two waves

The situation becomes considerably more complicated when two optical waves with differ-
ent wavelengths, and possibly different states of polarization, copropagate inside a silicon
waveguide. For example, SRS may occur if the wavelength difference matches the Raman shift.
Even when the Raman effects are not important, XPM couples the two waves and results in a
variety of new effects [80]. To include the possibility of Raman scattering, we consider two
waves copolarized along the TE mode of a waveguide, fabricated along the [0 1̄ 1] direction.

The starting point in this case is the frequency-domain NLS equation (27). By writing the
total field in the form ˜Ai(z,ω) = ˜Ap(ω −ωp)+ ˜As(ω −ωs), where the subscripts p and s denote
the pump and signal waves, respectively, decomposing the equation into equations for individ-
ual waves, and converting the resulting equations to time domain, we obtain the following two
coupled NLS equations:

∂Ap

∂ z
− i

∞

∑
m=0

imβmp

m!
∂ mAp

∂ tm = −αlp

2
Ap + iβ f

pAp + i
{

γpp(0)|Ap|2 +
[

γe
ps + γps(0)

] |As|2
}

Ap

+ iγR
psAs

∫ t

−∞
hR(t − t ′)eiΩps(t−t′)A∗

s (z,t
′)Ap(z,t ′)dt ′, (63)

∂As

∂ z
− i

∞

∑
m=0

imβms

m!
∂ mAs

∂ tm = −αls

2
As + iβ f

s As + i
{

γss(0)|As|2 +
[

γe
sp + γsp(0)

] |Ap|2
}

As

+ iγR
spAp

∫ t

−∞
hR(t − t ′)eiΩsp(t−t′)A∗

p(z,t
′)As(z,t ′)dt ′, (64)

where αlv (v = p,s) is linear loss at the carrier frequency ωv, βmv = βm(ωv) accounts for var-
ious orders of dispersion, β f

v ≡ β f(ωv, N̄) governs the free-carrier effects, and Ωuv ≡ ωu −ωv

represents the frequency detuning. We have assumed that the pulses are long enough that the
higher-order nonlinear terms can be neglected. In Eqs. (63) and (64), the nonlinear parameter
γuv includes both electronic and Raman contributions as γuv(Ω) ≡ γe

uv + γR
uv
˜HR(Ω). Similar to

the case of single-pulse propagation, the Raman nonlinear parameter is related to the Raman
gain coefficient as γR

uv = gR(ωu)ΓR/(āuvΩR), where the effective mode area āuv =
√

auav is
obtained from Eq. (29). The Raman gain coefficient is obtained from Eqs. (2) and (28) and is
given by

gR(ωu) =
3ωug′ΩRηuv

2ε0c2nunvΓR
, (65)

where the mode overlap factor ηuv ≡ ηuvvu is given by Eq. (30). Note that gR scales linearly
with optical frequency. When ωu = ωv, γR

uv and gR(ωu) reduce to the single-wave case discussed
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in Section 3. For the TE mode polarized along the [0 1̄ 1] direction, the electronic nonlinear
parameter is given by

γe
uv = γe

1111(−ωu;ωv,−ωv,ωu)(1+ ρ)/2. (66)

As discussed previously, since γ R
uv scales with ΓR/ΩR, its value is only a few percent of the

electronic part γ e
uv. As a result, γuv(0) ≈ γe

uv.

4.1. XPM and cross two-photon absorption

If the frequency detuning between the two waves is far from the Raman frequency shift, the
terms involving the Raman response function hR(t) in Eqs. (63) and (64) are irrelevant. For
picosecond optical pulses, dispersion length is typically much longer than the waveguide length,
and the dispersion terms (m > 1) are also negligible in these equations, resulting in

∂Ap

∂ z
+ β1p

∂Ap

∂ t
= iβ f

pAp + i
(

γe
pp|Ap|2 +2γe

ps|As|2
)

Ap, (67)

∂As

∂ z
+ β1s

∂As

∂ t
= iβ f

s As + i
(

γe
ss|As|2 +2γe

sp|Ap|2
)

As, (68)

where we neglected the terms associated with γ R
uv because of its small magnitude and used

γuv(0)≈ γe
uv. We also neglected linear losses and removed the trivial constant phase factor e iβ0vz

(v = p,s). These two equations are similar to those describing the XPM effects in silica fibers,
except for the TPA and free-carrier terms [80]. As a result, we may expect that XPM inside
a silicon waveguide should exhibit similar spectral characteristics. This indeed was observed
recently by using femtosecond pulses [14, 26]. In particular, the XPM-induced spectral asym-
metry because of a pump-probe delay was seen clearly, and its features agreed with theory.
Similar to the case of silica fibers [116], the XPM-induced phase shift and its associated chirp
can be used for optical switching and wavelength conversion [14, 25].

The TPA effects can be deduced from Eqs. (67) and (68) by studying how the powers, P p =
|Ap|2 and Ps = |As|2, change along the waveguide length. These powers satisfy the following
set of two coupled equations:

∂Pp

∂ z
+ β1p

∂Pp

∂ t
= −β ′

TppP2
p −2β ′

TpsPsPp, (69)

∂Ps

∂ z
+ β1s

∂Ps

∂ t
= −β ′

TssP
2
s −2β ′

TspPsPp, (70)

where the TPA coefficient is defined as β ′
Tuv ≡ 2Im(γe

uv) ≡ βTuv/āuv. These equations show
that TPA can occur in three ways: by absorbing two pump photons, two signal photons, or
one pump and one signal photon (cross-TPA). The factor of 2 for the last process arises from
the interference effects and the instantaneous nature of the TPA process [150]. Noting that
χe

1111(−ωp;ωs,−ωs,ωp) = χe
1111(−ωs;ωp,−ωp,ωs), from Eqs. (28) and (66), we find that

β ′
Tps

ωp
=

β ′
Tsp

ωs
, (71)

irrespective of the pump and signal frequencies. Physically, this equality indicates that cross-
TPA annihilates one pump and one signal photon simultaneously. Taking into account the three
TPA processes, the free-carrier generation rate in Eq. (36) is given by

Ḡ =
βTpp|Ap|4
2h̄ωpā2

pp
+

βTss|As|4
2h̄ωsā2

ss
+

2βTps|Ap|2|As|2
h̄ωpā2

ps
, (72)
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where the self-TPA coefficient βTpp and βTss are given in Eq. (8) for degenerate frequency ω p

and ωs, respectively. The cross-TPA coefficient βTps is measurable in principle but it has not
yet been measured for silicon. A good approximation is to estimate it at the mean frequency
ω̄ = (ωp +ωs)/2 as βTps ≈ βT(ω̄), because the TPA process is most sensitive to the total energy
of the two absorbed photons [128]. As self-TPA coefficient does not show sharp dependence
on photon energy below Eg [83, 84], βTpp ≈ βTss ≈ βTps when frequencies ωp and ωs are close
to each other.

Equation (72) shows that cross-TPA-induced carriers and the associated photocurrent are
generated only when both pulses are present simultaneously. This feature enables the use of
cross-TPA for measuring the temporal characteristics of ultrashort optical pulses [151–156]
and employing it for ultrafast optical switching [98–100]. However, as the cross-TPA genera-
tion rate is only four times larger than that of self-TPA, each pulse by itself also generates a
considerable number of carriers [the first two terms in Eq. (72)]. As a result, the autocorrelation
based on cross-TPA is generally not background free, unless a specific technique is used to
remove the background [157].

Apart from the XPM induced by the Kerr nonlinearity, TPA-generated free carriers induce
additional phase modulation through index changes produced by free carriers. From Eqs. (20),
(33), and (68), these phase shifts for a pump-probe configuration (Ps � Pp) satisfy

∂ΦK

∂ z
= 2Re(γe

sp)|Ap|2, ∂Φ f

∂ z
=

n0sωs

cns
σnsN̄. (73)

The Kerr-induced XPM has a maximum growth rate of ∂Φ Km/∂ z = 2Re(γe
sp)P0 at the pulse

center. For a Gaussian pump pulse much shorter than the carrier lifetime, the maximum rate of
carrier-induced XPM can be estimated by using Eq. (51) in Eq. (73) and is given by

∂Φ f m

∂ z
=

√
πn0sωsσnsβTppP2

0 T0

2
√

2cnsh̄ωpā2
pp

. (74)

The relative ratio of the growth rates of these two phase modulations is given by

rx ≡ |∂Φ f m/∂ z|
|∂ΦKm/∂ z| =

n0sωs|σns|βTppEp

4
√

2cnsRe(γe
sp)h̄ωpā2

pp

≈
√

πrc

2
√

2
, (75)

where rc is given in Eq. (58) and the last approximation is valid when the pump and signal
frequencies are not too far from each other. Clearly, the discussion about r c in the preceding
section applies to rx as well. As this ratio is typically much larger than 1 for moderate pump-
pulse energies, free-carrier-induced XPM provides a more efficient way for optical switching,
particularly when an interferometric resonance inside a micro-resonator is used to enhance
such effects [90, 92]. However, this carrier-injection scheme has a speed limited by the carrier
lifetime (typically ∼1 ns) [94], and it responds much slower compared with a scheme based on
Kerr-induced XPM or TPA. The modulation speed can be increased considerably by reducing
the effective carrier lifetime. This is often realized by applying an external field to swipe away
the free carriers [92].

4.2. Raman amplification and lasing

When the frequency detuning between the pump and signal becomes close to the Raman shift,
SRS begins to affect the pulse propagation. As the Raman response time is about 3 ps, SRS
is only effective for pulses longer than this. Through a pump-probe scheme, 6-dB and 6.8-dB
gains were observed in experiments employing 3.5-ps and 6.6-ps-wide pump pulses, respec-
tively [31, 34]. Numerical simulations show that a signal pulse can grow even from noise [47].
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However, for such short pump pulses, SRS process is affected by the walk-off between the pump
and signal pulses [47, 48] because the group-velocity mismatch is not negligible for a Raman
shift of 15.6 THz. This walk-off problem can be solved by launching a CW signal [32, 40, 44].
Indeed, a net Raman gain of 2 [32], 3.1 [40] and 13 dB [44] was observed in three such experi-
ments. Raman lasing has also been realized through pulsed pumping [38, 43].

However, practical applications generally require CW pumping. In this case, both the TPA
and FCA affect the SRS process considerably. To study their impact, we employ Eqs. (63) and
(64). The time integral in these equations is readily performed for CW fields, resulting in

∂Ap

∂ z
= iβpAp − αlp

2
Ap + iβ f

pAp + i
{

γpp(0)|Ap|2 +[γps(0)+ γps(Ωps)]|As|2
}

Ap, (76)

∂As

∂ z
= iβsAs − αls

2
As + iβ f

s As + i
{

γss(0)|As|2 +[γsp(0)+ γsp(Ωsp)]|Ap|2
}

As. (77)

We are mainly interested in studying how the pump and signal powers, Pp and Ps, evolve along
the waveguide length. These powers satisfy the following coupled equations:

∂Pp

∂ z
= −(αlp + αfp)Pp−β ′

TppP2
p −2β ′

TpsPsPp−2γR
psIm[ ˜HR(Ωps)]PsPp, (78)

∂Ps

∂ z
= −(αls + αfs)Ps −β ′

TssP
2
s −2β ′

TspPpPs −2γR
spIm[ ˜HR(Ωsp)]PpPs, (79)

where ˜HR(Ω) is given in Eq. (3). When the signal is located at the Stokes side of the pump
with a frequency detuning of the Raman shift, Ω sp =−ΩR, Eq. (3) and Eq. (79) result in a peak
Raman gain of gR(ωs)/āsp where gR(ωs) is given in Eq. (65).

As expected, apart from the gain or loss provided by the SRS process, the two waves suffer
losses from the TPA and FCA processes. In the following analysis, we assume that the pump
is much more intense than the signal so that free carriers are dominantly generated from the
pump-induced TPA. In this case, Eqs. (20), (33), and (49) show that FCA coefficient is given
by

αfs =
n0sσasβTppτ0P2

p

2h̄ωpnsā2
pp

. (80)

In the CW pumping case, it turns out that FCA is the dominant loss mechanism rather than
TPA [32–36]. This can be seen from the loss ratio defined in Eq. (52). In the steady state with
CW pumping, Eq. (52) becomes

ra =
n0sσasβTppPpτ0āsp

4h̄ω0nsβTspā2
pp

. (81)

Using βTsp ≈ βTpp and āsp ≈ āpp, we find from Eq. (81) that ra > 1 at a moderate power level of
Pp/āsp > 35 MW/cm2 for an SOI waveguide with τ0 = 1 ns. To realize a Raman amplification,
we need gRPpL/āsp > 1, which leads to the requirement Pp/āsp > 50 MW/cm2. Clearly, FCA
is the major obstacle for Raman amplification.

As a rough estimate of the combined effects of SRS, FCA, and TPA, assume that the signal
is located at Raman gain peak, Eq. (79) together with Eq. (80) shows that net amplification of
the signal through SRS is possible only when

(gR −2βTsp)
Pp

āsp
− n0sσasβTppτ0P2

p

2h̄ωpnsā2
pp

−αls > 0. (82)
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This quadratic relation and the requirement that Pp is a real positive quantity lead to the follow-
ing condition on the carrier lifetime:

τ0 < τth ≡
h̄ωpnsā2

pp(gR −2βTsp)2

2αlsσasn0sβTppā2
sp

. (83)

This condition imposes a stringent limitation on the carrier lifetime for net Raman amplifica-
tion. For example, using typical parameter values with β Tsp ≈ βTpp, the carrier lifetime should
be <60 ns for a waveguide with a low linear loss of 0.2 dB/cm. Indeed, positive Raman ampli-
fication with CW pumping was observed inside a waveguide with a linear loss of 0.22 dB/cm
and a carrier lifetime of 25 ns [33]. However, as smaller values of τ 0 are required with increas-
ing linear losses, Eq. (83) is hard to satisfy for practical silicon waveguides because a low loss
available for large waveguides also leads to longer carrier lifetimes. Decreasing the waveguide
cross section helps reduce the carrier lifetime [139], but it also increases scattering losses. The
real situation is worse than the rough estimate in Eq. (83) because FCA and TPA also reduce
the pump power along the waveguide that was assumed to remain constant. In this case, Eq.
(82) should be replaced with

(gR −2βTsp)
āsp

∫ L

0
Ppdz− n0sσasβTppτ0

2h̄ωpnsā2
pp

∫ L

0
P2

pdz−αlsL > 0. (84)

As a relatively low effective lifetime of free carriers in SOI waveguides is critical for practical
application of Raman amplification, significant efforts have bee made to reduce its magnitude.
For example, the effective lifetime could be reduced in one experiment from 100 ns to 1.9 ns
through helium-ion implantation, thereby enabling positive Raman amplification [140]. In an-
other approach, free carriers are quickly swept away from the core area by applying an external
dc field [41, 42, 45, 54, 56]. Indeed, efficient Raman amplification realized with this approach
has been used to make CW silicon Raman lasers with a threshold as low as 20 mW [41,42,54].

The lasing threshold can be estimated from Eq. (84) by setting its left side equal to zero. In
this case, the linear loss factor αls should be replaced by total distributed cavity losses α ts that
include coupling losses and reflection from cavity mirrors. It turns out that there is an upper
limit on the carrier lifetime above which the Raman laser would not be able to operate, no
matter how large the pump power is [39]. This can be seen clearly from Eqs. (82) and (83) after
replacing αls with αts. Equation (82) cannot be satisfied for any pump power, if τ 0 is larger than
τth given in Eq. (83). If cavity losses are small (e.g., in the case of a microcavity), the lasing
threshold is found from Eq. (82) to be

Pth =
ωpωsngpngsVm

2c2(gR −2βTsp)
Qep

QtsQ2
tp

τth

τ0

[

1−
(

1− τ0

τth

)1/2
]

, (85)

where Vm = āspL is the effective mode volume, ngv is the group index at ωv (v = p,s), and Qev

and Qtv are the external and loaded quality factors for the cavity, respectively. They are related
to linear loss as Quv = ngvωv/(cαuv) (u = e,t), where αev is linear coupling loss at ωv.

Equation (85) shows clearly that lasing is possible only when τ0 < τth. If the carrier lifetime
is small enough that τ0 � τth, Eq. (85) leads to

Pth =
ωpωsngpngsVm

4c2(gR −2βTsp)
Qep

QtsQ2
tp

, (86)

This expression reduces to the case of microcavities when TPA is negligible [158]. However,
if the carrier lifetime approaches τth, Eq. (85) shows that the lasing threshold becomes twice
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of that given in Eq. (86). Of course, as the pump itself starts to experience significant losses,
the real threshold would more than double in practice [39]. Similar to the case of Raman las-
ing in microcavities [158], Eq. (85) shows that the lasing threshold is linearly proportional to
effective mode volume and inversely proportional to the square of the cavity Q factor. As a re-
sult, increasing the Q factor or reducing the mode volume would significantly lower the lasing
threshold in Raman lasers built using SOI waveguides.

It is important to note that the inequalities in Eqs. (82) and (84) can only be satisfied for a
certain range of pump powers. In practical terms, FCA would always cause the Raman ampli-
fication/lasing to saturate and thus limit the maximum available output power. The upper limit
of pump power for Raman lasers can be estimated from Eq. (82) and is given by:

Pm =
ωpωsngpngsVm

2c2(gR −2βTsp)
Qep

QtsQ2
tp

τth

τ0

[

1+
(

1− τ0

τth

)1/2
]

. (87)

This equation shows clearly that Pm → ∞ when τ0 � τth, and the lasing saturation is negligible.
However, as τ0 becomes close to τth, the maximum allowed pump power Pm approaches Pth.
Eventually, the power range to obtain positive intracavity gain becomes so small that Raman
lasing is quenched.

The preceding simple analytical theory explains qualitatively the observed features of Ra-
man silicon lasers [39, 41, 42, 54]. A similar discussion can be found in [58]. A quantitative
description of such lasers requires numerical simulations based on Eqs. (78) and (79). Note that
the lasing in general can occur in both the forward and backward directions. Thus, an accurate
quantitative description of silicon Raman lasers requires numerical simulations of three equa-
tions [39], or even four equations if the pump wave also propagates along both directions [59].
More technical details about Raman lasers can be found in two recent reviews [52, 53].

Apart from the power amplification, SRS is a resonant process that also changes the refractive
index of silicon itself. From Eqs. (3), (76) and (77), the Raman-induced perturbation to the
propagation constant is given by

βR =
gRPpΓRΩR

āsp

Ω2
R−Ω2

(Ω2
R −Ω2)2 +4Γ2

RΩ2
. (88)

This quantity is positive (negative) when the pump-signal detuning is smaller (larger) than the
Raman frequency shift. Physically, this stems from the fact of a standard resonant system that
stimulated lattice vibrations follow the pump-signal beating in phase (out of phase) when the
beating frequency is smaller (larger) than the resonant frequency. As the Raman gain spectrum
is relatively narrow, such changes of propagation constant within the Raman gain spectrum
lead to dramatic changes in the group velocity. In particular, the group delay at the center of the
Raman gain spectrum is given by

τg =
gR

2ΓRāsp

∫ L

0
Pp(z)dz. (89)

The magnitude of Raman-induced group delay is directly proportional to the pump power. This
feature provides tunable delays simply by changing the pump power [50,51]. Interestingly, such
Raman-induced group delays exist even when no net Raman amplification occurs (TPA and
FCA depend on frequency only weakly and introduce a negligible change in group velocity).
This scheme was recently used to demonstrate a tunable group delay of up to 4 ps [51].

5. FWM and its applications

The situation becomes more complicated in the case of FWM because three or four waves co-
propagate inside an SOI waveguide simultaneously. Only three waves are involved in the case of
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degenerate FWM. These are called the pump, signal, and idler waves, and their photon energies
satisfy the energy-conservation relation 2 h̄ωp = h̄ωs + h̄ωi. As this process is a four-photon,
elastic scattering process originating from the Kerr nonlinearity, its instantaneous nature makes
it useful for a variety of applications related to ultrafast optical signal processing using silica
fibers [159]. The possibility of using FWM in silicon waveguides for similar applications has
excited considerable interest recently [61–75, 77–79, 137].

5.1. Free-carrier effects on FWM

As seen in preceding sections, free carriers introduce considerable loss and phase modulation,
and thus impact any nonlinear interaction inside a silicon waveguide. Indeed, the density of
TPA-created free carriers becomes large enough in some cases that the reuse of their energy
was proposed recently [160, 161]. Clearly, free carriers would affect the FWM process as well.
Before discussing the details of FWM, we first look into the impact of free carriers.

It turns out that most free-carrier effects on FWM can be deduced from Eq. (37). For sim-
plicity, we first assume that all optical waves are polarized along the TM mode so that Raman
scattering is absent. By using Eqs. (20), (33) and (49) in Eq. (37), we obtain

∂A
∂ z

=
∞

∑
m=0

im+1βm

m!
∂ mA
∂ tm + iγe|A|2A+ iγ f A

∫ t

−∞
e−(t−t′)/τ0 |A(z,t ′)|4dt ′, (90)

where the parameter γ f is defined as

γ f =
βT

2h̄ω0ā2

n0(ω0)
n(ω0)

[

ω0

c
σn(ω0)+

i
2

σa(ω0)
]

. (91)

Equation (90) shows clearly that TPA-induced free carriers produce a fifth-order nonlinear ef-
fect that is accumulative in nature [115].

To describe the FWM process, we assume that A(z,t) is composed of three waves such that
A(z,t) = Ap(z,t)e−iωpt +As(z,t)e−iωst +Ai(z,t)e−iωit , among which the pump field A p is much
more intense than the signal As and idler Ai. We substitute this expression into Eq. (90) and
obtain the following three equations at individual frequencies:

∂Ap

∂ z
− i

∞

∑
m=0

imβmp

m!
∂ mAp

∂ tm = iγe|Ap|2Ap + iγ f Ap

∫ t

−∞
e−(t−t′)/τ0 |Ap(z,t ′)|4dt ′, (92)

∂As

∂ z
− i

∞

∑
m=0

imβms

m!
∂ mAs

∂ tm = 2iγe|Ap|2As + iγeA
2
pA∗

i + iγ f As

∫ t

−∞
e−(t−t′)/τ0 |Ap|4dt ′

+ 2iγ f Ap

∫ t

−∞
e−(t−t′)/τ0eiΩsp(t−t′)|Ap|2(A∗

pAs +ApA∗
i )dt ′, (93)

∂Ai

∂ z
− i

∞

∑
m=0

imβmi

m!
∂ mAi

∂ tm = 2iγe|Ap|2Ai + iγeA
2
pA∗

s + iγ f Ai

∫ t

−∞
e−(t−t′)/τ0 |Ap|4dt ′

+ 2iγ f Ap

∫ t

−∞
e−(t−t′)/τ0eiΩip(t−t′)|Ap|2(A∗

pAi +ApA
∗
s )dt ′, (94)

where we have used Ωsp = Ωpi and kept only the first-order terms in As and Ai. Equations (92)–
(94) show clearly that the fifth-order nonlinear effect associated with free carriers also introduce
SPM, XPM, and FWM-like processes, some of which (SPM and XPM) have been discussed in
preceding sections.

We now focus on a CW or quasi-CW case and assume that the pulse widths associated with
the three fields are much longer than the carrier lifetime. In this case, the field amplitudes inside
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the integrals in Eqs. (92)–(94) can be treated as constant, and these equations reduce to

∂Ap

∂ z
= iβpAp + iγe|Ap|2Ap + iγ f τ0|Ap|4Ap, (95)

∂As

∂ z
= iβsAs +2iγe|Ap|2As + iγeA

2
pA∗

i

+ iγ f τ0|Ap|2
[

|Ap|2As +
2

1+ iΩpsτ0

(|Ap|2As +A2
pA∗

i

)

]

, (96)

∂Ai

∂ z
= iβiAi +2iγe|Ap|2Ai + iγeA

2
pA∗

s

+ iγ f τ0|Ap|2
[

|Ap|2Ai +
2

1+ iΩpiτ0

(|Ap|2Ai +A2
pA

∗
s

)

]

, (97)

where Ωuv = ωu −ωv (u,v = p,s, i) and βv = β0(ωv) is the propagation constant at the carrier
frequency ωv. Note that Ωps = Ωip for a FWM process. In Eqs. (95)–(97), we have neglected
linear losses and assumed pulse widths to be wide enough that all dispersive effects are negli-
gible for individual waves.

The physical origin of various nonlinear terms in Eqs. (95)–(97) is clear. All terms involving
γe stem from the Kerr nonlinearity, but the terms containing γ f result from the TPA-generated
free carriers. Comparing the nonlinear effects induced by these two mechanisms, we find that
the efficiency of Kerr-induced FWM scales as γeA2

p, but that of free-carrier-inducedFWM scales
as 2γ f τ0|Ap|4/(1+ iΩpsτ0). The relative importance of these two FWM processes is governed
by the ratio

rFWM =
2γ f τ0|Ap|2

γe(1+ iΩpsτ0)
. (98)

Noting that Re(γ f )
 Im(γ f ) from Eqs. (20) and (91), and using γ e = β ′
T (2πFn+ i/2)≈ 2πFnβ ′

T
for Fn > 0.2, where Fn is the NFOM introduced earlier, Eq. (98) can be approximated by

rFWM ≈ n0σnτ0|Ap|2
hcnāFn(1+ iΩpsτ0)

. (99)

As we know from nonlinear fiber optics [80], efficient Kerr-induced FWM requires
Re(γe)|Ap|2L ∼ π . In a typical silicon waveguide, this condition requires a pump intensity of
|Ap|2/ā≈ 0.4 GW/cm2 inside a 5-cm-long waveguide. At such power levels, |rFWM|� 1 when
the pump-signal detuning Ωsp/2π 
 60 GHz, since the NFOM is Fn ≈ 0.3 in the telecom band.
The magnitude of rFWM becomes even smaller at lower pump powers. As a result, FWM in-
duced by free carriers is negligible in most practical situations of parametric generation and
wavelength conversion. However, one should keep in mind that this process could become
quite efficient when pump-signal detuning becomes relatively small. For example, for a carrier
lifetime of 1 ns, |rFWM| can be larger than 250 when |Ωsp|τ0 < 1, a condition satisfied for a
pump-signal detuning of <160 MHz.

Free carriers can affect a FWM process in another way because FWM is a coherent process
and requires phase matching among the interacting waves. As free carriers introduce consider-
able phase modulations, they would affect the phase-matching condition of FWM. From Eqs.
(95)–(97), we find that the phase mismatch induced by free carriers is given by

Δκ f =
4Re(γ f )τ0|Ap|4
1+(Ωpsτ0)2 . (100)
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As the Kerr-induced phase mismatch is given by ΔκK = 2Re(γe)|Ap|2, the ratio between the
two is found to be

rκ =
2Re(γ f )τ0|Ap|2

Re(γe)[1+(Ωpsτ0)2]
. (101)

This expression is quite similar to Eq. (98). As a result, preceding discussion about the magni-
tude of rFWM applies to rκ as well. In other words, rκ is negligible in most practical situations of
parametric generation. Physically speaking, if the pump-signal detuning is not too small, free
carriers impose nearly identical phase modulations on the three waves, leading to negligible
phase mismatch among them, even though the absolute magnitude of such phase modulations
could be large. Note that Eqs. (95)–(97) neglect the wavelength dependence of γ f by assuming
that it has the same value for all three waves. A more detailed analysis shows that free carriers
do introduce some phase mismatch; this effect is discussed later. In practice, as long as the
pump-signal detuning is not too small, the effects of free carriers on both FWM efficiency and
phase-matching condition are negligible in the quasi-CW case, and their dominant effect comes
from FCA [68].

The situation becomes quite different in the pulsed regime in which pulse widths involved
become much smaller than the carrier lifetime. Although FCA is negligible in this case (as
discussed earlier), transient index changes produced by free carriers can have significant impact
on the FMW process. Mathematically, all the field amplitudes inside the integrals in Eqs. (92)–
(94) can be considered as an ultrashort impulse, resulting in

∂Ap

∂ z
+ β1p

∂Ap

∂ t
= iβpAp + iγe|Ap|2Ap + iγ f T0|Ap|4Ap, (102)

∂As

∂ z
+ β1s

∂As

∂ t
= iβsAs +2iγe|Ap|2As + iγeA

2
pA∗

i + iγ f T0|Ap|2
(

3|Ap|2As +2A2
pA

∗
i

)

, (103)

∂Ai

∂ z
+ β1i

∂Ai

∂ t
= iβiAi +2iγe|Ap|2Ai + iγeA

2
pA∗

s + iγ f T0|Ap|2
(

3|Ap|2Ai +2A2
pA

∗
s

)

, (104)

where the pulse width T0 is assumed to be the same for the three waves, and dispersive effects
are neglected assuming that the dispersion length is longer than the waveguide length.

Following a reasoning similar to the quasi-CW case, we can find the relative impact of free
carriers on the FWM efficiency and the phase mismatch through two ratios that now become

rFWM = 2γ f T0|Ap|2/γe, rκ = 2Re(γ f )T0|Ap|2/Re(γe). (105)

It turns out that the magnitude of these two ratios can become quite large in some cases. For ex-
ample, it is ∼4 for 10-ps pulses at a 0.4 GW/cm2 pumping level for a typical silicon waveguide.
Clearly, free-carrier effects will be quite significant in this case. Note that the real part of γ f is
negative because σn < 0 (free carriers reduce the refractive index). As a result, with increasing
pump power, free-carrier effects tends to cancel those induced by the Kerr nonlinearity, leading
to a net decrease in the FWM efficiency. Moreover, the parametric bandwidth also decreases
with increasing pump power. This may explain the gain saturation of parametric amplification
observed experimentally with 3.5-ps pump pulses [69]. However, free-carrier effects decrease
for shorter pump pulses, and may becomes negligible when the width of pump pulses is reduced
to below 1 ps.

In concluding this subsection, index changes produced by free carriers have a significant
impact on the FWM process for pump and signal pulses in the picosecond regime. Their impact
is negligible in the quasi-CW regime in which pulse widths are much longer than the carrier
lifetime. As CW pumping is required in most practical applications, we focus on this case in
the following section dealing with broadband parametric generation.
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5.2. Broadband parametric generation and wavelength conversion

One advantage of the FWM process is that its instantaneous nature supports parametric genera-
tion over a broad bandwidth. In silica fibers, parametric gain bandwidths of up to 100 nm have
been demonstrated [162, 163]. In this section, we focus on FWM inside a silicon waveguide
and show that, with an appropriate control of waveguide dispersion, parametric gain may be
realized over a bandwidth larger than that possible for silica fibers. For a complete description
of the broadband FWM process, we return to Eq. (27) rather than using Eq. (37) or (90). For
simplicity, we first assume that Raman scattering does not play a significant role.

As before, the optical field is composed of three CW waves at different frequencies. substi-
tuting this form in Eq. (27), we obtain the following three equations for the pump, signal, and
idler fields:

∂Ap

∂ z
=
[

i(βp + β f
p)−

αlp

2

]

Ap + i
(

γe
pPp +2γe

psPs +2γe
piPi

)

Ap +2iγe
pspiAsAiA

∗
p, (106)

∂As

∂ z
=
[

i(βs + β f
s)−

αls

2

]

As + i
(

γe
s Ps +2γe

spPp +2γe
siPi
)

As + iγe
spipA2

pA∗
i , (107)

∂Ai

∂ z
=
[

i(βi + β f
i )−

αli

2

]

Ai + i
(

γe
i Pi +2γe

ipPp +2γe
isPs

)

Ai + iγe
ipspA2

pA∗
s , (108)

where Pj = |Aj|2 for j = s, i, p and the nonlinear parameters appearing in the FWM terms are
obtained from Eq. (28). For example, γ e

pspi is given by

γe
pspi =

3ωpηpspiχe
1111(−ωp;ωs,−ωp,ωi)

4ε0c2āpspinp
√

nsni
, (109)

and γe
spip and γe

ipsp can be obtained from this equation by exchanging the subscripts. We have
neglected FWM induced by free carriers because of its negligible magnitude in the CW regime.

Because of the time-reversal symmetry, the third-order susceptibilities satisfy the relation

χe
1111(−ωs;ωp,−ωi,ωp) = χe

1111(−ωi;ωp,−ωs,ωp) = [χe
1111(−ωp;ωs,−ωp,ωi)]∗. (110)

As a result, we find from Eq. (109) that

γe
spip

ωs
=

γe
ipsp

ωi
=

γe∗
pspi

ωp
. (111)

Therefore, as far as the FWM process is concerned, the last terms in Eqs. (106)–(108) lead to

1
ωs

∂Ps

∂ z
=

1
ωi

∂Pi

∂ z
= − 1

2ωp

∂Pp

∂ z
. (112)

This is the well-known Manley–Rowe relation for the FWM process, indicating the conserva-
tion of photon numbers among the three interacting waves [102, 103].

Equations (106)–(108) are quite general and include all effects related to linear loss and
dispersion, nonlinear loss TPA and free carriers produced by it, various nonlinear effects (SPM,
XPM, and FWM), and pump depletion. The TPA processes now become more complicated
than the cases discussed earlier. The involvement of three waves leads to six possible types of
TPA processes. As a result, the carrier generation rate in Eq. (36) is given by

Ḡ = ∑
v=p,s,i

βTvv|Ap|4
2h̄ωvā2

vv
+

u�=v

∑
u,v=p,s,i

βTuv|Au|2|Av|2
h̄ωuā2

uv
, (113)
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where āuv ≡√
auav is obtained from Eq. (29).

In most practical situations, the pump is much more intense than the signal and idler fields.
In this case we can ignore pump depletion as well as the SPM and XPM effects produced by
the signal and idler, and Eqs. (106)–(108) reduce to

∂Ap

∂ z
=
[

i(βp + β f
p)−

αlp

2

]

Ap + iγe
pPpAp, (114)

∂As

∂ z
=
[

i(βs + β f
s)−

αls

2

]

As +2iγe
spPpAs + iγe

spipA2
pA∗

i , (115)

∂Ai

∂ z
=
[

i(βi + β f
i )−

αli

2

]

Ai +2iγe
ipPpAi + iγe

ipspA2
pA∗

s . (116)

As mentioned earlier, FWM requires phase matching among the interacting waves (related
to momentum conservation among the four photons involved in the FWM process). From Eqs.
(114)–(116), we find that the total phase mismatch is given by

κ = Δβ + Δβ f +2PpRe(γe
sp + γe∗

ip − γe
p), (117)

where the first term, Δβ = βs + βi − 2βp, represnts linear phase mismatch, the second term,
Δβ f = Re(β f

s + β f
i −2β f

p), is the phase mismatch induced by free carriers, and the last term is
the nonlinear phase mismatch induced by the Kerr nonlinearity. From Eqs. (20) and (33), we
find that β f(ω , N̄) is linearly proportional to n0(ω)/β (ω). As a result, the free-carrier-induced
phase mismatch is given by

Δβf =
N̄σnpω2

p

c2

(

n0s

βs
+

n0i

βi
−2

n0p

βp

)

=
2N̄σnpω2

p

c2

∞

∑
m=1

ζ2m

(2m)!
Ω2m

sp , (118)

where ζm = [∂ m(n0β−1)
/

ωm]ω=ωp . As σnp < 0, Eq. (118) shows that FCI-induced phase mis-
match acts like adding negative (anomalous) second- and higher-order dispersions. The magni-
tudes of such equivalent GVD and fourth-order dispersion (FOD) are given by

β2 = N̄σnpω2
pζ2/c2, β4 = N̄σnpω2

pζ4/(c2). (119)

However, these quantities are relatively small. For example, ζ2 ∼ 8 × 10−13 m ·ps2 and
ζ4 ∼ 2× 10−17 m ·ps4 for a typical silicon waveguide. As a result, at a pumping level of
0.4 GW/cm2 in the telecom band, the FCI-induced GVD and FOD are about β 2 ≈−0.02 ps2/m
and β4 ≈ −5× 10−7 ps4/m, respectively. Both are much smaller than the GVD and FOD re-
sulting from the waveguide confinement. Therefore, the phase-matching condition for FWM
inside a silicon waveguide is dominated by the linear phase mismatch Δβ and the nonlinear
contribution resulting from the Kerr effect.

The bandwidth of parametric gain is determined by the condition |κL| < π/2. As is known
from FWM in silica fibers [80, 159], it would be maximized when the pump wavelength falls
close to the ZDWL of a silicon waveguide. However, the parametric bandwidth is enhanced
dramatically for SOI waveguides because a typical waveguide length (L ∼ 1 cm) is much
shorter than that used for fibers. Figure 7 shows examples of the signal gain (a) and wavelength-
conversion efficiency (b) for three choices of pump wavelengths for a waveguide designed with
a ZDWL at 1551 nm [68]. With a proper choice of the pump wavelength, such parametric
amplifiers can cover the entire so-called S, C, L, and U telecommunications bands. Similarly,
if the idler is used for wavelength conversion, such wavelength converters can operate over a
300-nm bandwidth or more. Further extension of the parametric bandwidth can be realized by
engineering the waveguide to reduce the impact of fourth-order dispersion. This scheme was
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(a) (b)

Fig. 7. Signal gain (a) and wavelength-conversion efficiency (b) as a function of signal
wavelength for three pump wavelengths in the vicinity of the ZDWL (dashed line) of the
TM mode. Input pump intensity is 0.2 GW/cm2 in all cases. (After Ref. [68].)

used in a recent experiment to demonstrate wavelength conversion over a bandwidth of about
150 nm [79].

Unfortunately, although the bandwidth can be made very broad through dispersion engineer-
ing, the efficiency of the FWM process is severely limited by FCA, and it is difficult to realize
a net amplification with CW pumping [68]. Similar to the case of Raman amplification/lasing
in Section 4.2, we can estimate the required effective carrier lifetime for parametric amplifica-
tion to occur through FWM. Equations (114)–(116) show that net amplification is possible only
when [68]

2[Re(γe
spip)−β ′

Tsp]Pp−
n0sσasβTppτ0P2

p

2h̄ωpnsā2
pp

−αls > 0, (120)

where we have used Eq. (80) for the FCA coefficient. This inequality imposes the following
upper limit on the carrier lifetime [68] :

τ0 <
2h̄ωpnsā2

pp

αlsσasn0sβTpp
[Re(γe

spip)−β ′
Tsp]

2 ≈ 2h̄ωpnsβTpp

αlsσasn0s
(2πFn−1)2, (121)

where we used γ e
spip ≈ γe

p , βTsp ≈ βTpp, and āsp ≈ āpp in the last approximation, assuming that
these quantities do not change much with the signal frequency. Equation (121) is similar to
Eq. (83) obtained for Raman amplification. However, as the Kerr parameter is about 10 times
smaller than the Raman gain coefficient, Eq. (121) imposes a much more stringent limit on the
carrier lifetime. A detailed analysis shows that it is not possible to obtain positive parametric
gain unless the carrier lifetime is reduced to below 100 ps [68]. Such a stringent requirement on
carrier lifetime imposes a serious challenge to practical applications of FWM in the telecom-
munication band.

5.3. Coherent anti-Stokes Raman scattering

Although efficient FWM with CW pumping is difficult to realize through the Kerr nonlinearity,
it turns out that amplification of the signal can occur if we take advantage of SRS. We have seen
in Section 4.2 that the SRS process in silicon waveguides not only provides gain but it also in-
troduces significant changes in the refractive index, when the pump-signal detuning lies within
the Raman-gain bandwidth. Equation (88) shows that SRS introduces a maximum nonlinear
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(a) (b)

Fig. 8. Signal gain (a) and conversion efficiency (b) for the TE mode under the same con-
ditions as in Fig. 7. (After Ref. [68].)

index change of nR
2 ≈ cgR/(4ωs) ∼ 1.2× 10−4 cm2/GW, which is much larger than that pro-

duced by the Kerr nonlinearity. As a result, when SRS contributes to the FWM process, it makes
FWM much more efficient than that possible from the Kerr nonlinearity alone. This regime of
FWM is known as the coherent anti-Stokes Raman scattering (CARS) process [103,164] and is
used widely for molecular spectroscopy [165]. Of course, the phase-matching condition should
be maintained over the spectral region covering the Raman-gain spectrum [68].

As SRS needs to be present for this process, a specific polarization mode is required for the
CARS. In the case of silicon waveguides fabricated along the [0 1̄ 1] direction, the fundamen-
tal TE mode is employed. In this situation, Eqs. (114)–(116) are replaced with the following
equations to account for the Raman-induced coupling:

∂Ap

∂ z
=
[

i(βp + β f
p)−

αlp

2

]

Ap + iγp(0)PpAp, (122)

∂As

∂ z
=
[

i(βs + β f
s)−

αls

2

]

As + i[γsp(0)+ γsp(Ωsp)]PpAs + iγspip(Ωsp)A2
pA∗

i , (123)

∂Ai

∂ z
=
[

i(βi + β f
i )−

αli

2

]

Ai + i[γip(0)+ γip(Ωip)]PpAi + iγipsp(Ωip)A2
pA∗

s , (124)

where the nonlinear parameters now include the Raman contributions, i.e., γ sp(Ωsp) = γe
sp +

γR
sp(Ωsp) and γspip(Ωsp) = γe

spip + γR
spip(Ωsp).

The CARS process in silicon waveguides has been employed for wavelength conversion
[61–64,66], but its efficiency was relatively low. The reason turns out to be the phase-matching
condition [68]: CARS can become efficient only when phase matching is realized for a signal
separated from the pump by the Raman shift of 15.6 THz. This can be realized by choosing the
pump wavelength appropriately with respect to the ZDWL of an SOI waveguide [68]. Figure 8
shows the signal gain and wavelength-conversion efficiency as a function of signal wavelength
under conditions similar to those used for Figure 7, except that the Raman-induced enhance-
ment of the FWM process is included. As seen there, by choosing the pump wavelength in
the normal-dispersion region of the waveguide, the phase matching condition can be satisfied
for the Stokes and anti-Stokes waves, leading to a positive gain of about 9 dB, even with CW
pumping.
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Fig. 9. Parametric gain spectra at three pump wavelengths in the mid-infrared region for
the waveguide with a cross section of 1.8×0.4 μm2. (After Ref. [137].)

5.4. Highly tunable parametric generation from the telecom band to the mid-infrared

Although the CARS process enables positive parametric gain, its spectral location is fixed
within the Raman gain bandwidth. To take advantage of the instantaneous nature of FWM
outside this spectral region, we should go back to the Kerr nonlinearity and ask what limits the
FWM efficiency in the CW regime used for Figure 7. As we have seen, it is the presence of
losses induced by the free carriers (FCA). Recalling that free carriers are created through TPA,
it is immediately obvious that the FWM efficiency can be improved drastically by choosing the
pump wavelength beyond 2.2 μm. As the pump wavelength then falls below the half-band gap
of silicon, TPA vanishes [83, 84], and efficient parametric generation becomes possible. Note
that the signal wavelength can still be well above the half band gap, if the SOI waveguide is
designed properly to satisfy the phase-matching condition over a wide bandwidth [137].

Figure 9 shows an example of such a FWM configuration. By tailoring the ZDWL of the fun-
damental TE mode to 2349 nm using a waveguide cross section of 1.8× 0.4 μm 2, parametric
amplification becomes very efficient when pump wavelength is located in the vicinity of ZDWL
because no TPA can occur. For example, a broadband gain spectrum with positive gain is ob-
tained at a pump wavelength of 2.45 μm falling in the anomalous-GVD regime. Even when the
pump wavelength falls in the normal-GVD regime, higher-order dispersive effects can assist in
satisfying the phase-matching condition to provide gain in spectral regions far from the pump.
In this regime, phase matching becomes very sensitive to the pump wavelength. The main point
to note is that efficient parametric amplification is possible at signal wavelengths extending
from 1.5 μm to mid infrared by simply tuning the pump wavelength within 100 nm. Tunability
of the signal is more than 5 times larger than the pump itself. Although it was proposed recently
to use silicon Raman laser in mid infrared [166], its lasing frequency is fixed with respect to
the pump. In contrast, the FWM-based parametric amplification discussed here can provide a
much larger bandwidth and broader tunability, features comparable with those available in χ (2)

materials such as a periodically poled lithium-niobate waveguide.

5.5. Photon pair generation by FWM

So far, we have focused on the traditional regime in which a high-power pump is used to amplify
a signal and simultaneously generate an idler beam. However, as FWM is a four-photon elastic
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scattering process, it conserves physical quantities, such as energy and momentum, among the
four interacting photons. As a result, if no signal is initially present so that FWM is initiated
from vacuum noise, and the pump power is relatively low so that stimulated FWM does not
occur, it is possible to create only one pair of signal and idler photons at a time (within the
coherence time of the pump) that are correlated quantum mechanically in multiple dimensions.
Such correlated photon pairs are useful for applications in quantum information processing.
Indeed, spontaneous FWM in silica fibers have been used for this purpose successfully in the
past few years [167–170].

Unfortunately, pump photons also interact with thermal phonons and generate uncorrelated
signal/idler photons through spontaneous Raman scattering (SpRS). This process is found to
impose a severe limit on the degree of the quantum correlation between the signal and idler
photons [171–173]. Because of the broadband nature of SpRS in silica fibers, high-quality
correlated photon pairs can be generated only at frequencies far from the pump (>25 THz)
[169, 170]. They can also be generated within the Raman-gain bandwidth by cooling the fiber
with liquid nitrogen [174,175]. The SpRS problem can also be solved using silicon waveguides.
As we have seen earlier, Raman scattering in a silicon crystal occurs only for specific polariza-
tions within a very narrow (105-GHz wide) band and can easily be avoided. For this reason, if
spontaneous FWM inside a silicon waveguide is used to create correlated photon pairs, photon
pairs should have a very high quality [73].

In the low-power regime, pump depletion can be neglected completely, and the pump wave is
described classically by Eq. (122). However, the signal and idler waves must be treated quantum
mechanically. Equations (123) and (124) should thus be replaced by the corresponding operator
equations, as was done first in a 2006 study [73], resulting in the following signal equation:

∂ Âs

∂ z
= [i(βs + β f

s)−
1
2

αls]Âs + i[γsp(0)+ γsp(Ωsp)]PpÂs + iγspip(Ωsp)A2
pÂ†

i

+ m̂l(z,ωs)+ m̂ f (z,ωs)+ m̂T (z,ωs)Ap + im̂R(z,Ωsp)Ap. (125)

The idler equation can be obtained by exchanging the subscripts s and i. The four noise oper-
ators (last 4 terms) in Eq. (125) are associated with scattering losses, FCA, TPA, and Raman
gain/loss, respectively. They obey a commutation relation of the form

[m̂ j(z1,ωu),m̂†
j(z2,ωv)] = 2πDjδ (ωu −ωv)δ (z1 − z2), (126)

where D j ( j = l, f ,T,R) stands for αl(ωu), αf(z1,ωu), 2β ′
Tup, and gR(Ωup)/āup for the four noise

sources, respectively. In the case of SpRS, the photon frequency ω in Eq. (126) is replaced with
the phonon frequency Ω = ω −ω p.

Equation (125) together with Eqs. (122) and (126) can be used to find the photon genera-
tion rate and the quantum correlation between the signal and idler photons [73]. An example
is shown in Fig. 10. A detailed analysis shows that FCA and TPA play minor roles because
of the low pump power used. Thus, FWM in silicon waveguides is quite efficient for photon-
pair generation. Such a silicon-base scheme not only provides a pair correlation close to the
fundamental limit set by a pure FWM process but also exhibits a spectral brightness that is
comparable to other photon-pair sources. This scheme has recently been used to generate cor-
related photon pairs [75], and a maximum coincidence-to-accidental ratio of 25 was obtained at
a photon production rate of 0.05 per pulse. This value is still far below the predicted theoretical
value, indicating room for future improvement.

6. Summary

Several kinds of nonlinear optical effects have been observed in silicon waveguides in recent
years, and their device applications are attracting considerably attention. In this review, we have
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(a) (b)

Fig. 10. Normalized photon flux (a) and pair correlation and spectral brightness (b) for the
TM mode as a function of pump intensity. The inset shows the waveguide design. (After
Ref. [73].)

provided a unified theoretical platform that can be used not only for understanding the under-
lying physics but also to provide guidance toward new and useful applications. We began in
Section 2 with a description of the third-order nonlinearity of silicon and considered the ten-
sorial nature of both the electronic and Raman contributions. The generation of free carriers
through TPA and their impact on various nonlinear phenomena is included fully in the theory
presented here. We derived a general propagation equation in the frequency domain and showed
how it leads to a generalized nonlinear Schrödinger equation when it is converted to the time
domain. We used this equation to study propagation of ultrashort optical pulses in the presence
of SPM and showed the possibility of soliton formation and supercontinuum generation. The
nonlinear phenomena of XPM and SRS were discussed next in a separate section, with empha-
sis on the impact of free carriers on Raman amplification and lasing. Section 5 focused on the
FWM process and its applications. We considered first the impact of free carriers and showed
that, although index changes induced by them have a negligible impact on FWM, FCA limits
the FWM efficiency so much that a net positive gain cannot be realized in the telecommuni-
cation band in the case of CW pumping. However, this problem can be solved by pumping
at wavelengths beyond 2.2 μm because TPA-induced free carriers are then absent. We also
showed that FWM can occur over a wide bandwidth, with a proper choice of the pump wave-
length, because of much smaller waveguide lengths employed compared with those required
for silica fibers. We also discussed briefly the use of FWM in silicon waveguides for generating
correlated photon pairs that are useful for quantum applications.
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