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Orbit spaces of low-dimensional representations of classical and exceptional Lie groups are
constructed and tabulated. We observe that the orbit spaces of some single irreducible
representations (adjoints, second-rank symmetric and antisymmetric tensors of classical Lie
groups, and the defining representations of F, and E) are warped polyhedrons with (locally) more
protrudent boundaries corresponding to higher level little groups. The orbit spaces of two
irreducible representations have different shapes. We observe that dimension and concavity of
different strata are not sharply distinguished. We explain that the observed orbit space structure
implies that a physical system tends to retain as much symmetry as possible in a symmetry
breaking process. In Appendix A, we interpret our method of minimization in the orbit space in
terms of conventional language and show how to find all the extrema (in the representation space)
of a general group-invariant scalar potential monotonic in the orbit space. We also present the
criterion to tell whether an extremum is a local minimum or maximum or an inflection point. In
Appendix B, we show that the minimization problem can always be reduced to a two-dimensional
one in the case of the most general Higgs potential for a single irreducible representation and to a

three-dimensional one in the case of an even degree Higgs potential for two irreducible
representations. We explain that the absolute minimum condition prompts the boundary
conditions enough to determine the representation vector.

PACS numbers: 02.20.Qs, 11.15.Ex

1. INTRODUCTION

Since the discovery of the Higgs mechanism, ' it has
been employed almost exclusively in the gauge symmetry
breaking problem because it breaks a local gauge symmetry
without damaging the renormalizability.> Though it is not
the only known mechanism to do such a job,** certainly it is
the only tractable one. Partly due to its tractability it drew
considerable attention from theoretical physicists despite
some ugly features. There is a consensus that, though it may
not be a fundamental mechanism, it would describe the ef-
fective phenomena arising from some unknown fundamen-
tal interactions. It was applied to the unification of electro-
magnetic and weak interactions’ with great success and
subsequently to fancier grand unification theories.® Here
some major difficulties arose, namely, the gauge hierarchy
problem’ and proliferation of Higgs parameters, etc. The
spontaneous symmetry breaking problem in supersymme-
tric theories® is one of the most popular problems these days.
Since the spontaneous symmetry breaking mechanism was
devised by Landau® to explain continuous structural phase
transitions in crystals, the mechanism has been widely em-
ployed in condensed matter physics.'® Spontaneous symme-
try breaking is one of the most fundamental phenomena ob-
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served in nature. It is no wonder that there exist several
extensive review articles on this subject.’!"'?

The technical problem of minimizing the scalar poten-
tial or the thermodynamic potential and finding the symme-
try of the vacuum or the equilibrium state has been consid-
ered to be a formidable task among theoretical physicists.
Unification theorists could only check the list of possible
symmetry breaking directions without knowing whether
and when the symmetry is broken in certain directions. Con-
densed matter theorists had to use an abbreviated potential.
Our geometrical method provides the most appropriate lan-
guage for the problem. It gives accurate minimizing solu-
tions for a general Higgs potential of single irreducible repre-
sentations and for a general even-degree Higgs potential of
two irreducible representations. We leave to an interested
reader the analysis of a general even-degree Higgs potential
of three irreducible representations, which will give needed
solutions to some unification models, e.g., the E; model with
a Higgs assignment in 27, 78, and 351 representations."’

The geometrical method of minimizing the Landau-
Higgs potentials, devised by the author,'*!” reduces the
problem to one of finding “contours” of directional minima.
It is based on the observation'® that the orbits and the conju-
gacy classes of subgroups are the relevant quantities to de-
scribe the minimum of the Landau-Higgs potential which is
invariant under a linear transformation of a compact Lie
group on the scalar fields (or a finite group on the order
parameters). Hilbert'® proved that there is a basic set of in-
variants such that all other invariants are expressed as their
polynomials and provided a systematic method to find all
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the basic invariants. It has been known?® that invariants spe-
cify orbits, i.e., one can view an orbit as a point in an (/ + 1})-
dimensional vector space, (/ + 1) being the number of inde-
pendent basic invariants. How can we describe a direction in
such a space? Indeed there is a set of parameters?’ that can be
used for such purpose. “Orbit parameters” are defined to be
dimensionless ratios of invariant polynomials. These param-
eters can be considered as some set of generalized angles
specifying a direction in the representation space. Their
ranges being bounded, they occupy a localized region (called
the “orbit space”) in the orbit parameter space, which can be
regarded as an /-dimensional vector space.

Since the scalar potential is a group invariant function,
it can be expressed in terms of the basic invariants. But a
classical Higgs potential is restricted to be a fourth-degree
polynomial of the scalar fields due to renormalizability. Be-
cause of this restriction it is normal that only a subset of all
the basic invariants appear in the Higgs potential, and that
the orbit parameters formed from this subset appear linear-
ly.?* The potential can be written in terms of the norm of the
field and a few orbit parameters. For a given set of orbit
parameters we can survey the behavior, particularly ex-
trema, of the potential along the corresponding direction in
the field component space. By varying the orbit parameters,
we can survey the whole space in search of the absolute mini-
mum. Because of the linearity, the absolute minimum of the
potential occurs on the most protrudent portions of the
boundary of the orbit space formed from the fourth-degree
Higgs potential, which is a projection of the complete orbit
space.

The potential can be minimized abstractly for a general
representation of a general compact group. The difficult part
of extremizing the potential in the conventional methods****
has as its counterpart in our method the problem of finding
the orbit space boundary, which is unique for each different
representation. In our original works our method for con-
structing the projected orbit space was empirical and we
used the Michel-Radicati conjecture? for one irreducible
representation (irrep)®® and the Gell-Mann-Slansky conjec-
ture?’ for two irreps as a guide for finding the orbit space
boundary. Then our results were tested with the boundary
conditions. It was realized that we need not solve high degree
algebraic equations to find orbit space boundaries. The pro-
cedure is facilitated by some general mathematical re-
sults.?#?%1¢ Using these results, we look for branching
rules?’*? and singlet forms of the given representation under
various subgroups, starting from the highest level to succes-
sively lower levels. In any case we need to know at least this
much information to specify the absolute minimum. “Us-
able boundaries” (where the potential may have a minimum)
correspond to higher symmetry groups. In practice one finds
the whole boundary before he reaches the lowest level.

Much work has been done by mathematicians®'*>2° on
the structure of the complete orbit space. Their results were
originally derived from the properties of linear actions of
compact transformation groups. However, Ref. 32 deals
with the relationship between orbits and invariants. Recent-
ly a comprehensive review article®® has been published for
physicists. Our formalism is entirely based on the invariant
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polynomials and requires less mathematical background,
presenting a concrete and intuitive picture without losing
generality. The main result is that the orbit space consists of
some /-dimensional volume occupied by the generic stratum
of the lowest level symmetry group with all the other strata
of higher symmetries forming the singular boundaries.
Equivalently, the generic stratum occupies an open, dense,
topologically connected region and thus the boundaries
must belong to the lower dimensional strata. It was explicitly
shown'??° that a lower dimensional stratum of a higher sym-
metry is a subspace which is spanned by the gradients of
basic invariant polynomials. (This is equivalent to our
boundary conditions.'9)

In this paper we present concrete examples, showing
that lower dimensional strata of higher symmetry groups
always form the boundaries of higher dimensional strata of
lower symmetry groups. We also observe that high symme-
try strata are normally®* more protrudent than lower sym-
metry ones, which was conjectured in our earlier works.*1¢
This protrusiveness of orbit spaces (defined in terms of ratios
of invariant polynomials) is important physically because it
indicates that a physical system tries to retain the highest
symmetries possible when the spontaneous symmetry break-
ing takes place, which is the spirit of the Michel-Radicati
and the Gell-Mann-Slansky conjectures. It also makes our
method powerful. The hierarchy of protrusiveness on the
boundaries is essential to predict how small the little groups
can be in the presence of nonmonotonic orbit parameters.!’

In Sec. 2, we briefly review the minimization problem in
orbit space. In Sec. 3, we construct orbit spaces of adjoint
representations. We observe that they form polyhedrons as
conjectured in Ref. 16. In Sec. 4, second-rank symmetric and
antisymmetric tensors of all the classical Lie groups and oth-
er low-dimensional single irreps are analyzed. We observe
that the tensors have the same orbit spaces as adjoint repre-
sentations of other groups and that there is an interesting
relationship between the number of maximal little groups
and the degrees of basic invariants. We discuss the implica-
tions of the observed properties in the minimization prob-
lem. In Sec. 5, orbit spaces of two irreps are shown. We find
that the generic stratum is semiclosed. It is shown that di-
mension and concavity of different strata are not sharply
distinguished. In Appendix A, we compare our method to
the conventional one to help the reader to understand the
workings of our method. We also show how to find all the
extrema (in the representation space) of a general Higgs po-
tential. If a Higgs potential contains more than four indepen-
dent invariant polynomials it seems difficult to locate the
absolute minimum visually. In Appendix B, we show that
the minimization problem can always be reduced to a two-
dimensional one in the case of the most general Higgs poten-
tial for a single irrep and to a three-dimensional one in the
case of an even-degree Higgs potential for two irreps. Thus
we can visually minimize the Higgs potentials of these two
types using the contours of directional minima we derived
previously.

Once the orbit space is constructed, the absolute mini-
mum of the Landau-Higgs potential for a given representa-
tion can be read off the list right away using the results de-
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rived in Refs. 14-16.
2. HIGGS PROBLEM AND ORBIT PARAMETERS

In anonabelian gauge theory, where the scalar potential
has a symmetry G X reflection and the scalars transform as
an n-dimensional irreducible representation R of a semi-sim-
ple compact Lie group G, the Higgs potential can be written
as

1 n 1 n 2
Vip)= —7m2 Y ete +TA(Z ¢§"¢4)
4 i=1

i=1
1
+ 'Z‘Alfijk1¢ Top ke

+ %Azgwfp T (1)
V(@) is invariant under a group transformation,
@, =2]_ T(3),@;. T(J)is an n X n matrix representing a
group element.? It can be written in general,
T(¢)=exp(—i2ZY_, 3, X,). X, are n X n matrices repre-
senting the generators of the group, and ¢, are real or com-
plex parameters specifying an element of the group. Our ob-
jective is to find the field configuration and the
corresponding symmetry that yield the minimum energy.
We set the scalar fields constant in space-time and minimize
the resulting potential.

We introduce some useful group theoretical concepts,
nicely explained by O’Raifeartaigh.'’ The orbit of ¢, is de-
fined to be the set of vectors @ ¥ that can be expressed as
@ = T (¢ o, with T (¥ ) an element of G. The little group of
@, is defined to be the subgroup G ; of G that leaves @,
invariant: T (¢ ), = @, for T(#)eG ; CG. The vectors on
an orbit are in one-to-one correspondence with the coset
G /G . It can easily be shown that the little group G ; of any
vector g, ontheorbitof @, is conjugateto G ;. If the T'(1} ) are
unitary, then all the vectors ¢'* have the same norm @¥*g, .
In general, there is a continuum of distinct orbits respecting
the same little group up to conjugation. The set of all such
orbits is called the stratum of the little group. Note that if the
little groups of two orbits are distinct, then the orbits are
distinct. However, the converse is not true, i.e., if two orbits
are distinct, their little groups are not necessarily different.

By definition an invariant polynomial is constant on an
orbit and thus is a function of orbits. A classical Higgs poten-
tial is a polynomial of some algebraically independent invar-
iant polynomials. When we seek a solution to the Higgs
problem, we are actually seeking the orbit that minimizes the
potential, and its little group.

However we need to find a better way to specify an
orbit, because to an orbit there corresponds a trajectory of
vectors in the @-space. Aronhold® realized that invariant
polynomials specify orbits, which we adopt for our purposes.
One is naturally led to the fact that there are only a finite
number of independent invariants because there are only a
finite number of real parameters specifying a vector in the
representation space. Mathematicians have more tosay. Hil-
bert'® proved that there exists a set of invariant polynomials
I (p), called the integrity basis, such that every invariant
polynomial P (@ ) can be expressed as a polynomial of 7, :
Plp)= P [1.(¢)]- The invariants in the integrity basis are
not necessarily independent, and indeed, for some represen-
tations, called noncoregular representations, there are po-
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lynomial identities among them, called syzygies. We will call
the complete set of lowest degree independent invariants,
“basic invariants.” The number (/ + 1) of basic invariants is
different for each different representation. We can visualize
an orbit as a point in the (/. + 1)-dimensional space of /.

The dimensionless ratios of invariants to the magnitude
of the @ vector, for example,

n 2
A =@t Itpz/( > :"cp,-) , (2)

i=1

can be used to specify strata, and yield a powerful tool in the
minimization problem. We will call the dimensionless ratios
orbit parameters. They can be considered as a set of general-
ized angles containing all the directional information. From
the definition we can readily see that their ranges are bound-
ed, and thus they occupy a localized region (called the orbit
space)® in the orbit parameter space, which can be regarded
as an /-dimensional vector space.

Our method reduces the minimization problem to one
of finding “contours” of directional minima (the minimum
of the potential in the direction specified by a set of orbit
parameters). The “contour” for the most general Higgs po-
tential of one irrep has been analyzed in Ref. 16. It isa curve
somewhat similar to a parabola or a surface made by trans-
lating the curve. The absolute minimum of the potential oc-
curs at the most protrudent portions of the projected orbit
space boundary, corresponding to higher level little groups.
The “contour” for the most general even degree Higgs po-
tential of two irreps has been analyzed in Ref. 15. Itisa cone
and again the absolute minimum occurs at the most protru-
dent portions of the projected orbit space boundary. This
result yields a powerful method for locating the absolute
minimum.

When the orbit space dimension is less than four, one
can visually locate the absolute minimum. When the dimen-
sion is higher than three, one would compare the potential
values at different extremum points and pick the lowest one
to find the absolute minimum. In Appendix A, we show, by
derivation, that there are only a finite number of extrema (in
the representation space) of a general Higgs potential, in-
cluding the ones corresponding to lower level little groups.
The absolute minimum normally occurs at the stratum of
one of the maximal or maximaximal little groups because
they normally correspond to the most protrudent portions of
the orbit space boundary. However, we can still visually lo-
cate the potential minimum by projecting the orbit space
further. In Appendix B, we show that the minimization
problem can be reduced to a two-dimensional one in the case
of the most general Higgs potential for a singleirrepand to a
three-dimensional one in the case of an even-degree Higgs
potential for two irreps.

When the potential is not monotonic in orbit param-
eters, the situation is more complicated. We have shown'’
that, in a nontrivial case, each time an orbit parameter ap-
pears in the potential nonmonotonically the problem re-
duces to the same form on the constraint ‘““surface” intro-
duced by the nonmonotonicity. Thus the absolute minimum
is now most likely to occur.on the less (by one level) protru-
dent portions of the orbit space boundary. However, we can-
not totally exclude trivial cases where the maximal or
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maximaximal little groups are still favored.

Deeper knowledge of the orbit space structure is essen-
tial to understand the Michel-Radicati and the Gell-Mann-
Slansky conjectures on the minimal symmetry breaking
principle and to see how the principle (not the conjectures
themselves) works in the presence of nonmonotonic orbit
parameters. The above conjectures seem to hold most of the
time but counterexamples*®*’-!” have already been found re-
cently.

In the following we tabulate orbit spaces of all the core-
gular representations that admit less than (or equal to) five
independent basic invariants. Although the orbit space in its
original sense is a uniquely defined mathematical object,
there is some arbitrariness in defining it using invariant func-
tions. Mathematicians would say that any (/ + 1) indepen-
dent smooth invariants would do the job. Physicists would
try to be more specific and to make a definition useful for
their own needs, preferably a visual and compact one. Our
definition was formed in ignorance: dimensionless ratios of
lowest degree independent invariant polynomials in the in-
tegrity basis to the unique quadratic invariant. This set itself
is not uniquely defined because any linear combinations of
the same-degree invariant polynomials are equally qualified.
Since the concavity of a geometrical object does not change
upon linear transformations of the coordinates, our defini-
tion is safe.

3. COMPLETE ORBIT SPACES OF ADJOINT
REPRESENTATIONS

As we shall see, the orbit spaces of adjoint representa-
tions are prototypes for many other representations. We de-
scribe them in detail. Let us briefly review some group theo-
retical results®® to set up our notation. For the algebra of
order NV and rank {/ + 1) we choose a Cartan—Weyl basis, so
that the commutation relations assume the standard form:

[HH]1=0, ij=12..,0+1), (3a)

[HE,.]= +r@E, . a=12.,N—1-1)/2,3b)
1+1

[E..E_.]= 2 rila)H, , (3¢)
i=1

[EoEgl =NgpE, 5, (3d)

where N,; #0 only if r(a) + r{ B} is also a root. The Killing
scalar products are

(HnHi) =1, (Ea’E—a) =1, (4)

with all other scalar products being zero. Furthermore, the
roots r(a) satisfy the condition

zri(a)rj(a)=5lj . (5)

Using the generalized Casimir operators derived by Ra-
cah,*® Gruber and O’Raifeartaigh*® have derived forms for
the Casimir invariants that are more useful in practice. [The
field components can be reduced by a group transformation
to (/ + 1) (number of rank) irreducible components which
correspond to H;’s in the Cartan—Weyl basis. Utilizing these
results, we can readily write down the tractable form of each
invariant.] The complete set of invariant polynomials for ad-
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joint representations can be obtained by using the matrix
form for the representation vector,

N
¢= z X, (6)

i=1
where @; is the ith component of @ in vector notation and X;
is the matrix corresponding to the ith generator. Note that
X, can be based on any representation. Using the notation

I, =Tro™, (7)
we list the complete set of invariant polynomials in Table I
along with other useful properties for each classical and ex-
ceptional Lie group. The I |, of SO,,, is of a form similar to 4
in Eq. (39) of Ref. 17.

Using the convention

I +1

=Y gH=la,a,], (8)

i=1
where we have defined the square bracket as the diagonal
elements of the matrix, we can directly write down the orbit
parameters in the following generic form:

Tr o™
o q)‘f)m/z : (%)
, _2"aay-a,
a"' = (TI' ¢2)»1/2 : (9b)
A. Groups of rank two

There is only one orbit parameter for the adjoint repre-
sentation of a group of rank 2, and thus the orbit space is a
line.

SUG)

We choose the vector representation for the basis of the
matrices. Then the generic stratum and the orbit parameter
are represented as follows:

UXxU;:
p=[ab —a—-0b],

(10)
a;=(@+b>—(@a+bP)@®+b*+(a+b)P2.

TABLEL List of Casimir invariants, order and rank of classical and excep-
tional Lie groups.

Group Invariants Order Rank
SU, ., L, LI, nin +2) n
S0, , | L,1,..1,, r2n + 1) n
Span I, I, ....1 5, n(2n + 1) n
SO,, LIy .0, 5.1 n2n — 1) n
G, I, I 14 2
F, LI, I, I, 52 4
E, LI, I, 1,1, I, 78 6
E, L, I, Ig, 1o, 1o, 1y, Ing 133 7
ES 12! IS’ 112’ 1147 IIB! ]20’ 124! 130 248 8
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The stratum of each little group is represented as fol-
lows:
SU,x Uy
3=1[-21+2[1],
(11)
¢=laa —2], a,= +1/\6.
The orbit space consists of two end points correspond-

ing to [SU, X U,] and the interior corresponding to
[U,x U]

SO(5) and Sp(4)

We choose the five-dimensional vector representation
for the basis. The generic stratum and the orbit parameter
are represented as follows:

U, xU;:

¢ = [a9 - a,by - b’o] ’

(12)
a, = (2a* + 2b%)/(2a* + 2b%)?.
The stratum of each little group is represented as fol-

lows:
SO, % U,;:

5=1{11+1[ —1] +3[0],

(13)
@ = [a’ —0,0,0,0] y Q4= %;
SU,xU,;:
5=1[0] +2[11 +2[ - 1],

(14)

¢=[a,—aa —a0], a,=}.
The orbit space consists of two end points correspond-
ing to [SO, X U,], [SU, X U,] and the interior corresponding

to [U, X U,).

SO(4)

Although SO, can be considered to be a direct product
group SU, X SU,, we include it for completeness. We choose
the vector representation for the basis. The generic stratum
and the orbit parameter are represented as follows:

U, xU;:

¢= [ay_a’b,_b]9

(15)
aj =2%ab /(2a* + 2b7).

The stratum of each little group is represented as fol-
lows:

SU,X Uy

(2,2)=2[1] +2[ —1],

(16)
a,= +1.

The orbit space consists of two end points correspond-
ing to [SU, X U,] and the interior corresponding to
[U,xU,].

¢=la,—aa, —a],

G(2)
We choose the seven-dimensional representation for
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the basis. The generic stratum and the orbit parameter are
represented as follows:

U, xU;:

¢=[2a0,—2aa+ba—b—a+b—a—-">],

(17)
22a)° +2a+b)°+2a—b)
(2290 +2(a +bf +2a@—bP1

The stratum of each little group is represented as fol-

lows:

6

SO, X U;:

7=3[0]1+2[1] +2[ 1],

¢ = [a, — a,a, —a,0,0,0], (18)
Qs =1

SU, X U;:

7T=1[0] + 1[2] + [ —=2] +2[1] +2[ — 1],

@ =[2a,0, — 2a,a, — a,a, —a,] , (19)
ag =55 .

The orbit space consists of two end points correspond-
ing to [SO; X U], [SU, X U,] and the interior corresponding
to [U, X U}

B. Groups of rank three

There are two orbit parameters for the adjoint represen-
tation of a Lie group of rank 3. The orbit space turns out to be
a warped triangle.

SU4)

We choose the four-dimensional representation for the
basis of the matrices. The generic stratum and the orbit pa-
rameters are represented as follows:

U, X U, X Uy,:

¢J=[a,b,c,—-a—b—c],
@+b3+—a+b+c)

3T T3 2, .2 27372 ° (20)
[@*+b*+c*+(a+ b+ )]
aA+b*+ct+a+b+c)

@y =~ 2 2 272 °
[@+b*+c*+a+b+c))

The stratum of each little group is represented as fol-
lows:

SU, X Uy:

4=1[—3]+3[1],

@ = [a,a,a, — 3a] , 21}
ay= +1/V3, ay=4;

SU,xSU,x Uy:

4=02,H[11+(1,2)[ - 1],

¢ =[aa,—a —a], (22)

a; =0, a, =1}
SU,X U, X Uy:

4=1[1,1]+1[1,— 1] +2[ - 1,0],
(23)
¢=[d,a,b,—2ﬂ—b]'
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The orbit space is shown in Fig. 1. It is a warped trian-
gle. Two cusps + P1 of [SU, X U,] and cusp P2 of [SU,
X SU, X U,] are connected by the curve of [SU, XU, X U,}.
The cusps and the curve together form the boundary of the
generic stratum of [U, X U, X U,] which occupies the interi-
or.

S0(6)

Since SOy is isomorphic to SU,, the orbit spaces of their
adjoints are identical up to scale factors and locations. If we
choose the vector representation for the basis, the generic
stratum and the orbit parameters are represented as follows:

U1XU1XU‘:
¢= [a,—-a,b,—b,c,—c] ’
4 4 4
a,= 2¢* +2b° + 2c ’ (20)
(2% + 2b2 + 2¢*?
-, 2%abc
a; = .
(202 + 2b2 +2C2)3/2

The stratum of each little group is represented as fol-
lows:

SU, XUy

6=13[2] +3[ 2],

¢=la,—aa —aa,—a]l, (21
a,=1, &= +4/36;

SU,XSU, X U,:

6 =(1,1)[2] + (L,1)[ — 2] + (2,2)[0],

@ = [a, —a,0,0,0,0], (22')
a,=4, a;=0;

SU, XU, XUy

6 =1[2,0] + 1[ —2,0] + 2{[0,1] + 2[0, - 1],

(23')

¢ =la,—-aa, —ab —b].

The orbit space of the SO adjoint is obtained from that
of SU, by the following substitutions: @, = — a, +  and
a; = — a,(4/3v2).

-Pl 4] +PI
Cl
£ P1:SUyxU,
P2:SU,xSU,xU,
Cl:SUxy xU, P2
r r T T T 5 Gy
-0.75 0.0 0.75

FIG. 1. The orbit space of the SU, (SO adjoint representation.
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S0(7)

We choose the vector representation for the basis. The
generic stratum and the orbit parameters are represented as
follows:

UIXUIXUI:

¢p=[a,—a,b,—b,c,—-c,0],
2a* +2b* + 2¢°

T s : 21;2:r 277 (24
2a% + 2b° + 2¢°

Qg = .
(2a% + 2672 + 26

The stratum of each little group is represented as fol-
lows:

SOs X Uy:

7=1[1] +1[ — 1] + 5[0],

¢ = [a, — a,0,0,0,0,0], (25)

a, =14, ag=1};

SU, XS0, x U,:

7=(13)[0] + (2,1)[1] + (2, )] — 1],

¢ = la,—a,a, —a,0,0,0], (26)

a,=1, ag=4¢4;

SU, X U;:

7=1[0] +3[1] +3[ —1],

¢=I[a,—aa, —aa, —a0], (27)

a, =4, ag=+%;

SU, XU, X Uy:

7=1[0,0] + 1[0,1] + 1[0, — 11 4+ 2[1,0]
+2[ - 1,0],

¢=la,—aa,—ab,—b0]; (28)

SO, XU, XUy

T=1L11+1[1, - 114+ 1[ - 1,1]
+1[-1,—-1]+3[00], 29)

@ = [a, —a,b, — 5,0,0,0] .

The orbit space is shown in Fig. 2. It is again a warped
triangle. Cusp P1 of [SO5 X U,] and cusp P2 of [SU,
X 80, X U,] are connected by straight line L1 of
[SO; XU, xU,]. All three cusps including cusp P3 of

0.37
P1:SOgXU,

a P2:SU,XS04x U,
6 § P3:SUyxU,

L1: SO5xUxU,

C2:SU, XU XU,

aq

FIG. 2. The orbit space of the SO, adjoint representation.
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[SU, xU,] are connected by curve C2 of [SU, X U, X U,].
All the cusps and L1 and C2 together form the boundary of
the generic stratum [U, X U, X U,] which occupies the inte-
rior.

Sp(6)

We choose the vector representation for the basis. The
generic stratum and the orbit parameters are represented as
follows:

U xU XU,

¢=[ai—a’b1_bacr'—c])
2a* +2b* 4+ 2¢°

mzﬁmtjnzikw’ L)
2a% 4+ 2b° + 2c®

ag = .
(20% + 262 + 2%

The stratum of each little group is represented as fol-
lows:
SpaX Uy

6=1[1] +1[ — 1] +4[0],

@ = [a, — a,0,0,0,0], (31)
a, =3, Qs=4};

SU,xXSU, X Uy;:

6=02,1)[0] +(1,2)[1] + (L,2)[ — 1],

¢ = la,—a,a,—a,0,0], {32)
a, =14,
SU, XUy
6=3[11+3[—1],

@ = [a’ —a,a, —a,a, — a] ’ (33)

_ 1 .
a6_1_69

As =15
SU, XU, xXU,A):
6=1[0,1]+ 1[0, — 1] +2[1,0] + 2[ — 1,0],
¢=I[a,—-aa, —ab —b]. (34)
SU, XU, X U\B):
6=1[1,1]+1[1,— 1]+ 1[ — 1,1]

+1[—1,—1] +2[0,0], (35)
@ = [a, — a,b, — 5,0,0] .

a, =1,

The orbit space is shown in Fig. 3. As we can see from
Figs. 2 and 3 the orbit space of the Sp, adjoint is identical to

0.3
P1:Sp,x U, Pi
P2: SU,xSU,xU,
ag :
1 P3:8UaxYy,

L 12 SUxUyx U, (B)
C2: SU,axU;xU, (A)

FIG. 3. The orbit space of the Sp, adjoint representation.

1700 J. Math. Phys., Vol. 25, No. 6, June 1984

that of the SO, adjoint. This identity persists between the
Sp.,. adjoint and the SO,, , , adjoint for any n because the
orbit parameters are identically defined. Only the labeling of
the little groups is different.

C. Groups of rank four

There are three orbit parameters for the adjoint repre-
sentation of a Lie group of rank 4. The orbit space turns out
to be a warped tetrahedron.

SU(5)

We choose the vector representation for the basis of the
matrices. The generic stratum and the orbit parameters are
represented as follows:

UXUXU XU;:
¢=labecd, —a—b—c—d],
P+b +P+d>—(a+b+c+d)

ay — s
@b+t d @t btc+dPPR
_ a+b*+ct+d*+a+b+c+d)
@+ b i+ +d i+ (@a+b+c+dP)]
o @+b+c°+d°—(a+b+c+d)
5

T l@4b tctd AlatbtetdP?
The stratum of each little group is represented as fol-
lows:

SU,XU;:
5=1[—4] +4[1],
¢ = la,a,a,a, — 4a]}, (37)
a3 = i_B” a4=£, as = i—‘s'l—,

25 20 40,5
SU,xSU,X Uy:
5=03102] +(1,2)[ - 3],
¢ = [2a,2a,2a, — 3a, — 3a], (38)
a3=iL> a4=L: as= + 13 5

30 30 30,30
SU, XU, xXU;:
5=1[0,13 +1{ —3,— 1]+ 3[1,0], (39)
¢=laaab —3a—b];
SU,XSU, XU, XUy

5=(L,1)[ —2,—2]+(1,2)[1,0] +(2,1)[0,1], (40)
@ = [a,a,b,b, —2a —2b];

SU, X U, XU, X Uy:
5=1[0,1,0] + 1{0,0,1] +1[ —2,— 1, — 1]
+2[1,0,01, {41)

@ = laabec, —2a—b—c].

The orbit space is shown in Fig. 4. It is a thin warped
tetrahedron. Cusps + P1 of [SU,X U,] and cusps + P2 of
[SU, x SU, X< U,] are connected by both curves C1 of
[SU,x U, X U,] and curves C2 of [SU,xSU, XU, xU,].
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a,z)

/l\ aglt]

ag[ll

8=860°
$=30°

+P1: SUXU,
+P2: SUSSUXU,
C1: SUWXU,XU,

€2: SUXSULXU,XU,

0.6

+PI

The two curves lie on the warped surfaces of

[SU, XU, xU,;xU,]. All these cusps, curves, and surfaces
together form the boundary of the generic stratum

[U, XU, XU, X U,] which occupies the interior.

The curves are all concave. One of the principal curva-
tures of each surface is zero (the surface is flat in this direc-
tion) and the other is negative (the surface is concave in this
direction).

SO(9)

We choose the vector representation for the basis. The
generic stratum and the orbit parameters are represented as
follows:

U]XU]XU[XU]Z
¢7=[a’_a)by_byc,_cydy_dsoly
2a* +2b% + 2¢* + 2d°
a, = ’
(28> +2b2 4+ 2c¢* + 2d % 42)
2a°4+2b% + 2c5+ 248
Ay = )
(2a° +2b% + 2c* + 2d %P
_ 2a% + 2b% 4+ 2¢% + 248
2@+ 262 +22+2d7)

The stratum of each little group is represented as fol-
lows:
S07 X Ul :

9=1[1]+1[ - 1] +7([0],
¢ = [a, —a,0,0,0,0,0,0,0] , (43)

a, =3, ag=}, azg=4}{;

Sl

1701 J. Math. Phys., Vol. 25, No. 6, June 1984

SO X SU,X Uy:

FIG. 4. The complete orbit space of
the SU; adjoint representation.
Shown at the upper left corner is a
view from the direction oriented 30°
from the a, axis and 60° from the a,
axis. The numbers in the square
brackets are the relative ratios of
scale. Each projection is a view from
the positive direction of the axis not
shown in the picture. The dotted
curves represent edges on the back
(hidden) side of the orbit space.

9=(51[0] +(1,2)[1] + (1L,2)[ — 1],
¢ =la, —aa,—a0,0000], (44)

a, =5, ag=4,
SU,XSU,X U,:

ag==2;

9=(3,1[1] +(3,1)[ — 11 +(1,3)[0] ,
¢ = la, —a,a, —a,a, —a,0,0,0], (45)

a, =}, ag=+%,
SU,X Uy

Qg = 315 5

9=1[0]+4[1]+4[—1],
¢= [a; -—a.a, —a,a, —a,a, —ayo] ’ (46)

a4=21;, a6=3!.3,
SU, X U; XUy

g =3h;

9=1[0,0] 4+ 1[0,1] 4 1[0, — 1]

(47)

¢ = [a’ - a,a, — a,a, — a,b, - b’O] 5

SU,XSU,X U, X U;:

9 =(1,1)[0,0] + (2,1)[1,0] + (2,1)[ — 1,0]

¢7 = [a) —a,a, — a,b, - b,b, _ b,O] s

SU, XSO, X Uy X Uy:

(48)

9=(1,1)[0,1] + (1,1)[0, — 1] + (2,1)[1,0]
+ (2,1 - 1,0] + (1,3)[0,0], (49)
¢ = [a, — a,a, — a,b, — 5,0,0,0] ;
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SOSXUIXUI:
9=1(1,0] +1[ — 1,0] + 1[0,1]

+ 1[0, — 1] + 5[0,0] ,
¢ = [a) - a’b, - b90’0’0)0,0] .
SU, XU XU XUy(4):
+ 2{1)0’0] + 2[ - 1,0,0] ’
P = [a, —aa, — a,b, - b,c, — C,O] 5
SU,XU, XU, XU,B):
¢ = [a’ - a)b, - b,C, - C,O’OyO] .
The orbit space is shown in Fig. 5. It is a thin and sharp
tetrahedron. Cusp P1 of [SO, X U,] and cusp P2 of [SO;
X SU, X U,] are connected by curve C1 of [SO;x U, xXU,].
Cusp P3 of [SU; xSU, X U,] and cusp P4 of [SU, X U,] are
connected by curve C2 of [SU, X U, X U,] which connects
also P1 and P4. P2 and P4 are connected by curve C3 of
[SU,XSU,xU,;xU,]. P1, P2, and P3 are connected by
curve C4 of [SU, X80, XU, X U,]. The stratum of
[SU, XU, XU, X U,(B)] occupies the warped triangular sur-

face P1-P2-P3 bounded by C1 and C4. The stratum of
[SU, XU, XU, XU,(4)] closes the rest of the boundary of

(50)

(51)

Curves C1 and C3 are convex plane-curves and curves
C2 and C4 are concave space-curves. Surface P1-P2-P3 is
convex along its length but it meets with a @, = const plane
along a straight line. All the other surfaces meet with a
a, = const plane along concave curves. Surface P1-P3-P4
is totally concave. Each of the surfaces P2-P3-P4 and P1-
P2-P4 have two principal curvatures of opposite sign, i.e.,
the surfaces are saddle-shaped.

Sp(8)

We choose the vector representation for the basis. The
generic stratum and the orbit parameters are represented as
follows:

U XU XU XU;:

¢=la,—ab,—bec,—cd,—d],
2% 4264+ 2c* +2d*

(2@ +2b2+ 22+ 24P
_ 2a°4+2b°+4 2+ 2d°

- (2a2+2b2+202+2d2)3 ’
2284+ 2%+ 2% 4 2d°

- (2(12+2b2+2c‘2+2d2)4 :
The stratum of each little group is represented as fol-

lows:
SP6>< Ul:

8=1[1] +1[ —1] + 6[0],

4

(53)

6

Qg

the generic stratum [U; X U, X U, X U,] which occupies the ¢ = [a, —4,0,0,0,0,0,0], (54)
interior. a,=1, as=1, az=};
agf]
| 0. s? Pi
agl2) 1
8=556°
=55°
¢ P2 c2
AN
P3—f Cc3
A
c2 ] P4 FIG. 5. The complete orbit space of
the SO, adjoint representation.
Shown at the upper left corner is a
C3: SUXSUXU,XU, 5 ma‘ view from the direction oriented 55°
Pl C4: SUXSO¥XU,XU, ‘ from the a4 axis and 55° from the a,
axis. The numbers in the square
C2 brackets are the relative ratios of
0.5 . . | . 0.125 scale. Each projection is a view from
& P3 P4 the positive direction of the axis not
ca shown in the picture. The dotted
p2 C3 curves represent edges on the back
(hidden) side of the orbit space.
cly//cz
0.25 0.25
Pi as aq
1702 J. Math. Phys., Vol. 25, No. 6, June 1984 Jai Sam Kim 1702

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



SpaXSU, X Uy:

8=(4,1)[0] +(1,2)[11 +(1L,2)[ - 1],

¢ = [a, —aa, —a,0,000], (55)
a, =}, ag=4{, aG=4%;

SU,XSU,x U;:

8=(3,1)[1] + (3,1)[ — 1] +(1,2)[0],

@ = [a, —a,a, —a,a, —a,00], (56)
a,=}, as=+%, QAg=3k;

SU XUy

8=4[1] +3[—1],
¢=[a,—aa, —aa —aa —al, (57)
as=}, as=4%, az=xh;

SU, XU X U;:

8=1[0,11 + 1[0, — 1] + 3[1,0] +3[ — 1,0], sg)
¢=I[a,—aa,~aa —ab, —bl;
SU, X SU, X U, X U\(A):
8 =(1,2)[1,0] +(1,2){ — 1,0] + (2,1)[0,1]

+(2,1[0, - 1], (59)
¢ =|a,—aa, —ab,—bb —b];
SU,XSU,X U, X U\(B):
8 =(1,1)[0,1] + (1,1)[0, — 1] +(1,2){0,0]

+ (2,1)[1,0] + (2, — 1,0], (60)
¢=la,—aa, —ab, —b00];
Spa X U XUy
8=1[1,0] + 1[ — 1,0] + 1[0,1]

+ 1[0, — 1] + 4[0,0] , (61)
@ = la, — a,b, — 5,0,0,0,0] ;
SU, XU, XU, XU\(A):
8 = [0,1,0] + 1[0, — 1,0] + 1[0,0,1]

+1[0,0, — 1] +2[1,0,0] + 2[ — 1,0,0],  (62)
¢ =la,—aa,—ab,—bec,—cl;
SU,X U, xU; X U,(B):
8 =1[1,0,0] + 1[ — 1,0,0] + 1[0,1,0]

+ 1[0, — 1,0] + 1[0,0,1] 4 1[0,0, — 1]

+2[0,0,0], (63)
¢ = [a, — a,b, — b,c, — c,0,0] .

The orbit space of the Spg adjoint is identical to the SO,
case except for the labeling of the little groups.

S0(8)

We choose the vector representation for the basis. The
generic stratum and the orbit parameters are represented as
follows:

1703 J. Math. Phys., Vol. 25, No. 6, June 1984

U XU xUxU;:

¢=I[a,—ab —bec,—cd, —~d],
2a* +2b* + 2¢* + 24"

TR+ 2428+ 247

4

(64)
o = 2054+ 2b6 + 2¢% +2d°¢
© (2a+2b% 422+ 247
o = 2%abed
f T 28+ 262+ 27 + 2

The stratum of each little group is represented as fol-
lows:

SO U,:

8=1[1} +1[ — 1] +6[0],

¢ = [a, — a,0,0,0,0,0,0] , (65)
a,=4, as=}, a,=0;

SO, xXSU,x Uy:

8=(2,L,1)[1] +2,,1)[ — 1] +(1,2,2)[0] ,

¢ = [a, — a,a, — a,0,0,0,0], (66)
a, =4, as=4x, a;=0;

SUXxU,;:

8=4[1] +4[ —1],

¢=[a,~aa —aa —aa —aj, (67)

a4=il;) a6=&, a-;=j:£)
SU, X U; X Uy:
8 =1[0,1] + 1[0, — 1] + 3[1,0] + 3[ — 1,0],

(68)

¢=1a,—aa,—aa, —ab —b];
SU,XSU, X U; X Uy:
8=(2,1)[1,0] +(2,1)[ —1,0] +(1,2)[0,1]

+(L,2)[0, — 1], (69)
¢=[a,—aa,—ab —bb, —b];
SO, x U, xXU;:
8 =(L,1)[1,0] + (L[ — 1,0] +(1,1)[0,1]

+ (L1)[0, — 1] + (2,2)[0,0], (70)
¢ = [a, — a,b, — 5,0,0,0,0] ;
SU,X U, XU, X Uy:
8 =1[0,1,0] + 1{0, — 1,0] + 1[0,0,1] 4+ 10,0, — 1]

+ 2[1,0,0] + 2[ — 1,0,0], (71)

¢ =la,—aa, —ab, —bec,—c].

The orbit space is shown in Fig. 6. It is a warped tetrahe-
dron. Cusp P1 of [SO, X U,] and cusp P2 of [SO,
X 8U, X U,] are connected by line L1 of [SO, XU, X U,].
Cusps + P3 of [SU,X U,] and P2 are connected by line L2
of [SU,xSU, XU, XU,]. P1 and + P3 are connected by
curve C3 of [SU; XU, X U,]. The stratum of
[SU, XU, XU, X U,] closes the boundary of the generic stra-
tum [U, X U, XU, X U,] which occupies the interior.

The projected orbit space a, — a, is not closed by the
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+P3

+P3 .
af1] ay ‘
0.2
L a.m aftl L2 ¢3 LI
6=90°
Pl o3
=32¢ ;
P2 P! ¢ c3 / s
L2—
P1: SOgXU, c3
P2: SOXSUXU,
+P3: SUXU, | FIG. 6. The complete orbit space of
L1: So‘wbx,gﬁ the SO; adjoint representation.
Iég gg;ﬁ; 0 XUy -p3 Shown at the upper left corner is a
-p3 ’ L view from the direction oriented 32°
from the a, axis and 90° from the
axis. The numbers in the square
03 . 0.3 brackets are the relative ratios of
% %e scale. Each projection is a view from
Lo L2 the positive direction of the axis not
+P3 1 -P3 1 +P3 shown in the picture except for the
Cc3 c3— one viewed from the — a, axis. The
] dotted curve represents the edge on
surface— L2 the back (hidden) side of the orbit
P2 space.
C3 c3 1 C3
P2
LI
LI
a,” Pl O.Sa‘ Pl
one-dimensional strata L1, L2, and C3. The concave punc- SO, x Uy
tured portion belongs to the two-dimensional stratum. This 26 — 1[0] 4+ 1[2] + 1[ — 2] + 7[0] + 8[1] +8[ — 1],
is related to the fact that the triangular surface P2— + P3- , , ,
. . . . @ =[2a, — 22,8 a’s ,8 (—a)s,8 Os], (73)
— P3 is convex in the direction + P3— — P3 but concave
in the direction normal to it. All the surfaces that contain As=o, Cg=gh, Q2= 131%:
cusp P2 are saddle-shaped. Surface P1- + P3— — P3 is to- SpeX Uy:
tally concave.
d 26=6[1] +6[ — 1] + 14[0]
@=[6as,6 (—a)s, 140s], (74)
F4) a, = Ao = L Aoy = Ll
We choose the 26-dimensional representation for the 6T T TRy T2 6’
SU;XSU,x UyA):

basis. The generic stratum and the orbit parameters are rep-
resented as follows:
UIXU]XU]XUI:

@ = {24,0, — 2a,2¢,0, —2¢,b+d,b—d,— b+ d,
—b—da+b+ca+b—ca—b+c,—a+b+ec,
—a—b—¢c,—a—-b+c,—a+b—-—ca—b-c,

a+c+da+c—da—c+d, —a+c+d,
—a—c—d,—a—c+d,—a+c—da—~c—d],
(72)

26

P2

—‘—l;l 2’ 2=
> sv?]

i=1

26
;fp?
asz———_[é RE
o

i=1

S 26

prfrl

i=1
The stratum of each little group is represented as fol-

lows:
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26 =(8,1)[0] + (3,2)[1] + (3,)[ — 2]

+(3.2)[ - 11 +(3,1)[2],
@=1[6 a’s, 6 (—a)s,3 (2a)s,3 (— 2a)s, 8 0’s],

(75)
ae=11/1296, az=43/46656,
a,, = 683/60 466 176 ;
SU,;XSU, X U,(B):
26 = (1,1)[0] + (1,2){3] +(L,2)[ — 3]
+(1,3)[0] +(3,1)[ — 2] + (3,2)(1]
+(3.1[2] + 32011,
@=1[2 (3a)s, 2 (—3a)s, 6 a’s, 6 (—a)s,
3 (2a)s, 3 (—2a)s, 4 0], (76)
as=23/2592, az=193/186 624,
a,; = 14933/967 458 816 ;
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SOsx U, X U,:

26 = 1[0,0] + 1[2,0] + 1[ —2,0] + 1[0,2]
+ 1[0, — 2] +5[0,0] + 4[1,1] +4{1,— 1]
+4[ - 1L1]+4[ -1, 1], (77)

@ = [2a, — 2a,2b, — 2b,6 O’s,
4 (@a+bys,4 (@a—>bys,
4 (—a+b)s, 4 (—a—>b)s];

SU,XSU,X U, X U;:

26 = (1,1)[2,0] + (1,1)[0,0] + (1,1)[ — 2,0] + (1,3)[0,0]
+(2,1)[0,1} + (2,1)[0, — 1] +(1,2)[1,1]
+(L2)[1L — 11+ (2,2)[1,0] +(1,2)[ - L1]
+(1.2[ -1, -11+(22)[ - 1,0], (78)

¢ = [2a, — 2abb, — b, —bla+b)a+b)a—b)
(a*b)’(—a+b)y('—a+b)’(_a—b)’
(—a—b)4as, 4 (—a)s,4 0s];

SU,X U, X U,(A):

26=3[1,11+3[1,—-1]4+3[ - 1,11 +3[~1,—1]
+3[0, — 21 + 3[0,2] + 8[0,0] ,

e=[3(a@+b)s,3 (@a—b)s,3 (—a+b)s,
3(—a—>b)s,3 (2a)s,3 (—2a)’s, 8 O’s];

(79)

SU;X U, X Uy(B):
26 = 1[2,0] + 1[0,0] + 1[ — 2,0] + 1[0,0] + 3[0,2]
+3[0,— 2] + 1[1,3] + 3[1, — 1] + 1[1, — 3]
+3[L,1]+1[ —-1,3] +3[—1,—1]
+1[—1,-3]+3[—1,1], (80)
@ = [2a,0,— 23,03 (2b)s,3 (—2b)’s,
(@+3b),3 @—b)sfa—3b),3 (@a+b)s,
(—a+3b),3 (—a—>b)s,(—a—3b),
3(—a+bys],

SU,X Uy X Uy X Uy(A ):
26 = 1[2,0,0] + 1[0,0,0] + 1[ — 2,0,0] + 3[0,0,0]
+1[0,1,1] + 1[0,1, — 1] + 1[0, — 1,1]
+1[0, — 1, — 1] +2[1,1,0] + 2[1, — 1,0]
+2[1,0,1] +2[1,0, — 1] +2[ — 1,1,0]
+2[—=1,-1,0] +2[ — 1,0,1] +2[ — 1,0, — 1] ;
(81)
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SU,X U, x U, X U,(B):

26 = 1[2,0,0] + 1[0,0,0] + 1[ — 2,0,0] + 1[0,0,2]
+1[0,0,0] + 1[0,0, — 2] + 2[0,1,0] + 2[0, — 1,0]
+1[L,1,1] + 1[1,1, — 1] +1[1, — 1,1]
+1[1, — 1, — 1] +2[1,0,1] +2[1,0, — 1]

1 ~LL1+ 1 =11, — 1] +1[~1,—1,1]
+1[~1,—1,—11+2[ —1,0,1]
+2[~1,0,—1]. (82)

The unspecified components of @ in Egs. (81) and (82) can be
obtained as follows: in order to get @;, multiply the first
number in the ith square bracket by g, the second by b, the
third by ¢, and sum all three.

The orbit space is shown in Fig. 7. It is a very thin
warped tetrahedron. Cusp P1 of [SO, X U,] and cusp P2 of
[Spe X U,] are connected by curve C1 of [SO; X U, X U,].
Cusp P2 and cusp P3 of [SU; X SU, X U,(4 )] are connected
by curve C2 of [SU; X U, X U,{4 }]. Cusp P1 and cusp P4 of
[SU, XSU, xU,(B}] are connected by curve C3 of
[SU,x U, XxU,(B)). All the cusps are connected by curve C4
of [SU, x SU, X U, X U,]. Surface S1 (P1-P2-P3) and sur-
face S2 (P2-P3-P4) belong to the stratum of
[SU,x U, xU,xU4)]. Surface S3 (P1-P3-P4) and sur-
face S4 (P1-P2-P4) belong to the stratum of
[SU,x U, xU, xU,(B )} Theinterior is occupied by the gen-
eric stratum of [U, XU, x U, X U,].

C2 and C3 are convex plane-curves. C1 and the portion
of C4 between P3 and P4 are concave space-curves. The
other portions of C4 are convex space-curves. Surface P1-
P3-P4 is totally concave. All the other surfaces are saddle-
shaped.

4. SINGLE IRREDUCIBLE REPRESENTATIONS WITH
LOW-DIMENSIONAL ORBIT SPACES

In this section we tabulate orbit spaces of all the single
coregular irreducible representations which allow less than
(or equal to)*! five independent basic invariant polynomials.
Since all the generators that do not leave a generic orbit in-
variant are consumed in simplifying the scalar fields through
a global gauge transformation, the number 7 of independent
basic invariants is given by

I=D —(dim G — dim G,), (83)

where D is the dimension of the representation, dim G the
number of generators of the symmetry group G, and dim G,
the number of generators of the little group of the generic
orbit. The little group of the generic orbit is trivial for most
irreps. Hsiang and Hsiang*' listed the nontrivial little groups
of generic strata of all the single irreps of compact connected
Lie groups.

It is a nontrivial job to construct the invariant polyno-
mials in the integrity basis for a given representation. Al-
though there exists a systematic method*? for constructing
them, it is excessively laborious to build high degree invar-
iant polynomials. However, we do have practical methods
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for some representations such as the examples considered in
this paper.

Some valuable hints are available in the mathematical
literature. Reference 32 lists the degrees and symmetry prop-
erties of the polynomials for coregular representations. Non-
coregular representations admit polynomial identities (syzy-
gies) among the members of the integrity basis. Patera and
Sharp*® developed a powerful method for finding character
generating functions of finite group representations, which
can be used for finding the degrees of polynomials in an in-
tegrity basis and the degrees of the syzygies among them.

It is convenient to have tables of maximal little groups**
in carrying out classification of little groups.

A. Symmetric tensor representations
1. Symmetric tensors of SU(N)

Symmetric tensors /; of SU, can be diagonalized
through a group transformation, ¥}, = U, (g)U;( ¢,
where U;( g) is a unitary matrix representing a group ele-
ment. We abbreviate the diagonal elements as
¥, = diag(y,,¥,,...,¥0y) exp(id) with ¢, real. Thus there are
N + 1 independent basic invariants. They are given by

I, = '/'UWJ , Iy= ¢'ij¢ik‘¢’k1¢“""’
Iy= éjmk!‘ﬁu'ﬁzj""pwf 1)k '/’Nl »
Iy = etj-ukI'/’”’/IZj"'l/’(N_ R
We shall see that the cross section of the orbit space of
an SU,, symmetric tensor at any phase angle is identical,

except for different scale factors, to the orbit space of the
SO, adjoint representation.

(84)
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SU (3) symmetric tensor 6 + 6: The generic stratum is
invariant under a finite group, [Z, X Z,], (Z,: a finite group
of order 2) and is represented by ¥,; = diag(a,b,c) exp(id). Or-
bit parameters are defined as follows:

a4=(a4+b4+c4)/(a2+b2—+-c2)2,

a; = exp(3idlabe/(@® + b* + P2,

aj* = exp( — 3idlabe/(@* + b2 + c?)P/2.

Each stratum and its little group are represented as fol-

lows:
S0;:3=13:

(85)

¢ = diag(a,a,a) exp(id) , (86)
a, =1, ai =exp(3i6)/V3;

SU,XZy;:3=1+2:

¥ = diag(a,0,0) exp(i6) , (87)
a, =1, aj=0;

U, XZ,:

¥ = diag(a,b,b ) expl(id) . (88)

The cross section of the orbit space at any angle & is
identical, except for different scale factors and locations, to
the orbit space of the SO, adjoint representation (Fig. 1) with
[SO,] at + P1, [SU,X Z,] at P2, and [U, X Z,] at C1.

SU (4) symmetric tensor 10 + 10: The generic stratum
is invariant under a finite group, [Z, X Z, X Z,], and is repre-
sented by ¢, = diag(a,b,c,d ) exp(i§). Orbit parameters are
defined as follows:
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a4=(a4+b4+c4+d4)/(a2+b2+62+d2)2,
ag=(a*+bS+c*+d)/(@+b*+7+d?,
a = exp(4ibabed /(@* + b+ +d°),

ay* = exp( — 4id)abed /(@® + b2 + > +d %) .

(89)

Each stratum and its little group are represented as fol-
lows:

SU, X Z,:
4=1+3,
¥ = diag{a,0,0,0) exp(id) , (90)
a,=lag=1a,=0;
SU, XU, XZy:
=1[1] +1[ — 1] + 2[0],
¥ = diag(a,a,0,0) exp(id) , (91)
a, =1, ag=4%, a;=0;
SU, X SU.,:
4 =(2,2),
¥ = diag(a,a,a,a) exp(id) (92)
a,=1, as=+, ai=-exp(4id)/16;
SU,XZ, X Z,:
4=1+1+2,
¥ = diag(a,b,0,0) exp(id) ; (93)
U, XU, XZ;:
4=1[1,0] +1[ — 1,0] + 1[0,1] + 1[0, — 1],
¥ = diag(a,a,b,b ) explid) ; (94)
SO, X Z;:
4=1+13,
o = diag(a,b,b,b ) expl(id) ; (95)
U, XZ,XZy:
4=1[0] +1{0] + 1[1] +1[ —1],
¥ = diag(a,b,c,c) explid) . (96)

The cross section of the orbit space at any angle § is
identical, except for different scale factors, to the orbit space
of the SO, adjoint representation (Fig. 6) with [SU; X Z,] at
P1, [SU, XU, X Z,] at P2, [SU,XSU,] at + P3,
[SU,xZ,xZ,]at L1, [U,XU,;XZ,] at L2, [SO; X Z,] at
C3, and [U, X Z, X Z,] on the surfaces.

2. Symmetric traceless tensors of SO(N}

Symmetric traceless tensors ¢; of SO, can be diagona-
lized through a group transformation,
¥y = Oy (8)0;( 8)¥., where Oy g) is a real orthogonal ma-
trix representing a group element. We abbreviate the diag-
onal elements as ¥, = diag(¢,,¥,,...,¢y) With ¢; real. The
traceless condition is given by
b;¥; =¥, + ¥+ -+ + ¢y = 0. Thus there are N — 1 inde-
pendent basic invariants. They are given by
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I, = ¢ij'/’ij y Iy= 1//rj¢jk¢ki , 1= '/’q"/’jk'/’kﬂﬁn"" .
(97)

We immediately see that the orbit space of an SO, symmet-
ric traceless tensor is identical to that of the SU,, adjoint
representation.

SO (3) symmetric traceless tensor 5: The orbit space is
identical to that of SU; adjoint:

U,XZ, [3=100)+ 1(1) + 1= 1)], @ = + /Y6,
Z, X Z, occupying the interior.

SO (5) symmetric traceless tensor 14: Without going into
details we identify various portions of the orbit space (Fig. 4)
as follows:

SU,xXSU,XZ, [5=(1,1) + (2,2)] at + P1,

SO, XU, XZ,[5=112) + 1(—2) + 3(0)] at + P2,
SO, xZ,XZ,[5=1+1+43]atCl,

U, XU, XZ,XZ,atC2,

U, X Z,X Z,XZ, on the surfaces, and

Z,X Z,X Z,%X Z, occupying the interior.

Embedding of each subgroup is indicated by the branching
rule given in the square bracket.

3. Symmetric tensors of Sp(2N)

Symmetric tensors ¢; of Sp,, are adjoint representa-
tions.

B. Antisymmetric tensor representations
1. Antisymmetric tensors of SU(N)

Antisymmetric tensors, @, of SU,, can be skew-dia-
gonalized through a group transformation,
@; = Uy (8)U,( 8)@i - Each diagonal element consists of a
real number for odd N and it comes with an overall phase
factor for even N. Thus there are (N — 1)/2 for odd N (N /
2 + 1 for even N ) independent basic invariants. They are
given by

L=g,p?, I,=@;¢p"*pup"~ for odd N,(98a)
L=g,0", ILi=0;,0"pue" (98b)
Iy, =€ qy,

I}, =€ up’p k' for even N.

We immediately see that (the cross section at any angle
& of) the orbit space of an SU,, antisymmetric tensor is iden-
tical to that of the SO, adjoint for N > 4. In the following we
match various portions of each pair of orbit spaces.

SU (5) antisymmetric tensor 10 + 10: The orbit space is
identical to that of the SO, adjoint, with

SU, X SU, [5 = (2,1) + (1,3)] replacing SO, X U,,
Sp, [5 =1 + 4] replacing SU, X U,, and
SU,xSU, [5 =(1,1) + (2,1) + (1,2)] replacing U, X U,.

SU (6) antisymmetric tensor 15 + 15: The cross section
of the orbit space at any angle & is identical to that of the SO,
adjoint, with
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SP, [6 = 6] at + P,
SU, xSU, [6 =(2,1) + (1,4)] at P2,
SU, xSp, [6 =(2,1) 4+ (1,4)] at C1, and

SU,XSU,x8U, [6 ={2,1,1) + (1,2,1} + (1,1,2)]
occupying the interior.

SU (7) antisymmetric tensor 21 + 21: The orbit space is
identical to that of the SO, adjoint (Fig. 2), with

SU, X SUg [7=(2,1) + (1,5)] at P1,
SU; X Sp, [7=1(3,1) + (1,4)] at P2,
Spe [7=1+ 6] at P3,
SU,x8U, xSU, [7=(3,1,1) + (1,2,1) + (1,1,2)] at L1,
SU, xSp, [7 = (1,1) + (2,1) + (1,4)] at C2, and
SU, X SU,xSU, [7=(1,1,1}) + (2,1,1) + (1,2,1)
+ (1,1,2)] occupying the interior.

SU (8) antisymmetric tensor 28 + 28: The cross section
of the orbit space at any angle & is identical to that of the SO,
adjoint (Fig. 6), with

SU, X SUg [8 = (2,1) + (1,6)] at P1,

Sp,xSU, [8 =(4,1) + (1,4)] at P2,

Sps [8 = 8] at + P3,

SU,xSU,xSU, [8 =(2,1,1) +(1,2,1) + (1,1,4)] at L1,
Sp4XSp, [8 = (4,1) + (1,4)] at L2,

SU, X Spe [8 = (2,1) + (1,6)] at C3,

SU, X SU, X Sp, [8 = (2,1,1) + (1,2,1} + (1,1,4)] on the
surfaces, and

SU, X SU, X SU,XSU, [8 = (2,1,1,1) + (1,2,1,1)
+(1,1,2,1) + (1,1,1,2)] occupying the interior.

SU (9) antisymmetric tensor 36 + 36: The orbit space is

identical to that of the SO, adjoint (Fig. 5), with

SU, xSU, [9 = (2,1) + (1,7)] at P1,

Sp, X SU; [9 = (4,1) + (1,5)] at P2,

Spe X SU, [9 = (6,1) + (1,3)] at P3,

Sps [9 = 1 + 8] at P4,

SU, xSU,xSU, [9 = (2,1,1) +(1,2,1) +(1,1,5)] at C1,

SpeXSU, [9 = (6,1) + (1,2) + (1,1)] at C2,

Sp,XSp, [9 = (4,1) + (1,4) + (1,1)] at C3,

Sp, X SU, xXSU,; [9 = (4,1,1) + (1,2,1) + (1,1,3)] at C4,

SU, X SU,X8U, x8SU, [9 = (2,1,1,1) + (1,2,1,1)
+ (1,1,2,1) + (1,1,1,3)] occupying the warped
triangular surface P1-P2-P3 bounded by C1 and C2,
Sp, xSU, xSU, [9 = (4,1,1) + (1,2,1) + (1,1,2)] closing
the rest of the boundary of the generic stratum,
SU, X SU, xSU,XSU, [9 = (1,1,1,1) + (2,1,1,1)
+(1,2,1,1) + (1,1,2,1) + (1,1,1,2)] occupying the
interior.
2. Antisymmetric tensors of SO(N)
Antisymmetric tensors g; of SO, are adjoint represen-
tations.
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3. Antisymmetric traceless tensors of Sp(2N)

Antisymmetric traceless tensors @;; of Sp,, are skew-
diagonalized through a group transformation,
@5 = Su( 8)S:( 8w, where S;( g) is a simplectic matrix sa-
tisfying S8, fi, = f;- We abbreviate the skew-diagonal ele-
ments as @; = skew-diag(@,,@,,....¢n) With @; real. In this
notation f; = skew-diag(1,1,...,1). The traceless condition is
given by f,@, = 2(@p, + @, + -+ + @) = 0. Thus there are
N — 1 independent basic invariants:

I, =f4 f;’1¢’ij¢7k1 y Li=f, f;’m Jin Pim@PinPras - (99)

We shall see that the orbit space of an antisymmetric
traceless tensor of Sp, , is identical, except for different scale
factors, to that of the SU,, adjoint representation.

Sp(6) antisymmetric tensor 14: The generic stratum is
invariant under [Sp, X Sp, X Sp,]. The orbit parameter is de-
fined as follows:

ay=02a>+2b>—-2a+b) )

(2a* + 262+ 2(a + b )2 (100)
Each stratum and its little group are represented as fol-
lows:

Sp, X Spy:
6=(2,1)+(1,4),

@ = skew-diag(a,a, — 2a),
a; =+ 1/2v3.

(101)

The orbit space is identical, except for different scale
factors, to that of the SU, adjoint.

Sp(8) antisymmetric traceless tensor 27: The generic
stratum is invariant under [Sp, X Sp, X Sp, X Sp,]. The orbit
parameters are defined as follows:

ay;=(2a>+2b>+2—2a+ b+ )Py

(2a° + 267 + 2c* + 2(a + b + )2,
(102)

as=2a*+2b*+2c* +2a+b+c)Y)/

(24> + 267 +2c* + 2(a + b+ ).
Each stratum and its little group are represented as fol-

lows:

Sp. X Sps:
8 =(2,1) +(1,6),

@ = skew-diag(a,a,a, — 3a), (103)
ay= +1/V6, a,=7/24;

Sp4 X Spy:

8=(4,1)+(1,4),

@ = skew-diag(a,a, — a, — a), (104)
a; =0, a,=1/8;

Sp, X Sp; X Sps:

8 =(2,1,1)+(1,2,1) 4+ (1,1,4),

@ = skew-diag(a,a,b, —2a — b). (105)

The orbit space is identical, except for different scale
factors, to that of the SU, adjoint (Fig. 1). Identifications are:
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[Sp, X Spe] at + P1, [Sps X Sp,] at P2, and [Sp, X Sp, X Sp,]
at Cl.

Sp(10} antisymmetric traceless tensor 44: The generic
stratum is invariant under [Sp, X Sp, X Sp, X Sp, X Sp,]. The
orbit parameters are defined as follows:

28+ 263+ 23 +2d> - 2a+b+c+d))

ST et 2P 124+ 2AatbtetdPPt ]
_ (228 +26° 42 +2d* + 2a+ b+ c+d)) (106)
Y e+ 262+ 27+2d +2a+b+c+dPP]
2 (2a° +2b°+2°+2d° —2a+b+c+d))

T+ 26 42247 +2a+b+e+dpp
Each stratum and its little group are represented as fol-
lows:

Sp, X Sps:

10=(2,1) + (1,8),

@ = skew-diag(a,a,a,a, — 4a), (107)
a;= +3/2J/10, «a,=13/40, as= 4+ 51/80J10;
Sp4 X Spe:

10 = (4,1) +(1,6),

@ = skew-diag(2a,2a,2a, — 3a, — 3a), (108)
a; = + l/zmr a,=17/60, as= + 13/120\[1—5;

Sp, X Sp, X Spe:
10 =(2,1,1) + (1,2,1) + (1,1,6),

@ = skew-diag(a,a,a,b, — 3a — b); (109)
Sp, X Sps X Spy:

10 =(2,1,1} + (1,4,1) + (1,1,4),

@ = skew-diag(a,a,b,b, — 2a — 2b); {110)
Sp> X 8p, X Sp, X Sps:

10=(2,1,1,1) + (1,2,1,1) + {1,1,2,1} + (1,1,1,4) ,

@ = skew-diag(a,a,b,c, —2a — b —¢}. (111)

The orbit space is identical, except for different scale
factors, to that of the SU adjoint (Fig. 4). Identifications are:
[Sp. X Sps] at + P1, [Sp,XSpe] at + P2, [Sp, X Sp, X Spg]
at Cl, [Sp, X Sp, X Sp,] at C2, and [Sp, X Sp, X Sp, X Sp,] on
the surfaces.

C. Other low-dimensional irreducible representations

The remaining irreps that allow less than four-dimen-
sional orbit spaces (or the cross sections at arbitrary phase
angles) are the defining representations of various groups,
spinor representations of SO, and SO; representations.

The defining representations of classical Lie groups and
G, yield single quadratic invariants only and their orbit
spaces are trivial. Their little groups are

SUy_, (N>2)for N+ NofSU, ,
SOy _, (N>3)for Nof SO, ,

Span - 2 (N>3) for 2N + 2N of Sp,, and
SU, for 7 of G,.
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The spinor representations of SO, for low N { < 10) also
yield single quadratic invariants only. Their little groups are

Sp, for 4 + 4 of SO,

SU, for 4 + 4 of SO,

G, for 8 of SO,

SO, for 8 of SO,

SO, for 16 of SO,.

The spinor representation of SO,,, the defining repre-
sentations of F, and E, and low-dimensional (less than 8)
SO, representations yield nontrivial low-dimensional orbit
spaces.

Spinor representation of SO(10) 16 + 16

The 16 component complex spinor of SO, is left invar-
iant under SU, and is reduced, through an SO, transforma-
tion generated by the 30 non-SU, generators made out of 45
o-matrices a,»j,” to two real components, say, ¥, and ¢.
Two independent basic invariant polynomials exist:

L= '7"/’ = 2Y2Ys + YEYs)
I, = gy, by, b = dysby st + dy ¥y 1ot
= 16¢:¢4¢:¢6 »

where we left the complex conjugate intact to show the con-
traction of ¥’s between y matrices.

Each stratum and its little group are represented as fol-
lows:

(112)

SUs:

16=1+5+10, (113)
Ye=a, =0, a,=0;

S50;:

16=1+7+38, (114)
Ye=a, Yy=a, a,=1.

Defining representation of F(4) 26

The representation spaces of exceptional groups are
naturally described on the octonionic basis. We refer the
reader to Refs. 45 and 46 for further details.

The 26-dimensional defining representation of F, is rep-
resented by a 3 X 3 real, symmetric, and traceless matrix over
octonions:

f), (115)
a c

where a,b,c are real numbers satisfyinga + b + ¢ = 0 and
a, B,y are real octonions (the bar denotes octonionic conju-
gation), It is left invariant under an SOy transformation
{26=1+1+8, + 8, + 8,.). The dimension formula (83)
yields 2 = 26 — 52 + 28, which is the number of indepen-
dent basic invariants. They are given by

L=4Trp" @), L=1Trl(px¢) @], (116)
where the dot represents the Jordan product (half the anti-

¢=

)
PR
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commutator) and ¢ X @ is the Freudenthal product:

¢Xp=glp —Tro) -} Trlplp — Tro)] .

An F, transformation involving those generators not
included in SO4 reduces @ to a diagonal matrix containing
two real parameters:

a O
=0 b 0 =[ab,—(@+b)]. (117)
0 0

—(a+b)
Written in terms of these two real parameters, the invariant
polynomials are
L=Wa*+b*+(@+b)), I,= +abla+b).(118)

Each stratum and its little group are represented as fol-
lows:

SO,
26=1+9+16,

(119)
Y=[aa —2a], a;= +2/3V3.

Defining representation of E(6) 27 + 27

The 27-dimensional complex defining representation of
E, is represented by a 3 X 3 complex, Hermitian, octonionic
matrix

p= al, (120)

<RI
RI o =

4

where a,b,c are complex numbers and e, 5,y are complex
octonions. It is left invariant under an SOy transformation
(27=1+1-+1+8, + 8, + 8,). The dimension formula
(83) yields 4 = 27 + 27 — 78 + 28, which is the number of
independent basic invariants. They are given by*®

L=1Trp"-¢), L=1Trllpgxe) - (@Xe)l,
(121)

I, =1Trl{¢Xg) @], I%=complex conjugate of I,.

An E transformation involving those generators not
included in SO; reduces @ to a diagonal matrix containing
four real parameters:

a 0 O
@=expli6] 0 b O |=exp(id)[ab,c] . (122)
0 0 ¢

Written in terms of these four real parameters the invariant
polynomials are

122%(02+b2+C2), I4=i(a2b2+b262+0202)’
I, = exp(3id)abc . (123)
Each stratum and its little group are represented as fol-
lows:
F,:
27=1+26,
@ = exp(ib){a,a,a] ,
a,=1%, ay=exp(3i8)(2/3)**;

(124)
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SO,

@ = exp(id)[a,0,0] , (125)
a,=0, a;=0;

SOy:

27=1+4+14+9+8+38,

@ = exp(ib)[a,b,b] . (126)

The cross section of the orbit space at an arbitrary phase
angle & is shown in Fig. 8. It is again a warped triangle.

The generic strata of SU, representations 4 + 4 and
6 + 6 have trivial little groups and thus their orbit spaces are
four- and eight-dimensional. The SO, seven-dimensional
representation (totally symmetric traceless third-rank ten-
sor) is non-coregular and has five invariants of degree 2, 4, 6,
10, and 15 in the integrity basis and a syzygy. They are listed
in Ref. 47. Its maximal little groups'>*® are U}, T, D,, and
D,.

D. Comments

Our observations for single irreps are summarized as
follows:

(1) The orbit spaces for the adjoint representations of
Lie groups of the same rank all have similar geometrical
shapes, namely, straight line for groups of rank two, triangle
for groups of rank three, tetrahedron for groups of rank four,
and so on. (This pattern was evident in the examples of Ref.
16.)

This implies that there is an interesting relationship
between the degrees of polynomial invariants, the number of
maximal little groups, and the shape of the orbit space. For
example, the SU; adjoint has only two maximal little groups
but odd degree invariants such as ; and I duplicate the
cusps providing the third and fourth cusps needed to build a
tetrahedron. For the adjoint representations of all the other
groups of rank four there are four maximal little groups and
their invariants are of even degree yielding only four cusps,
again just enough to build a tetrahedron.

1.0 ra"
-PI i +PI
Cl
TP Fy
P2: SO,O cl F Cl
Cl: SOQ
L i L 1
-0.75 P2 0.75
L *
-0.25
FIG. 8. The orbit space of 27 + 27 of E,.
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However, this relationship does not seem to hold in the
case of non-coregular representations. The SO, seven-di-
mensional representation has four maximal little groups. If
its orbit space is built out of polynomials of degree 2, 4, 6, and
10, then it is a warped tetrahedron. If it is built out of 2nd,
4th, 6th, and 15th degree polynomials, then some cusps may
be duplicated and the orbit space may even become a warped
octahedron. It will be interesting to see if the orbit space built
out of all five polynomials and the syzygy has indeed a tetra-
gonal shape.

{2) The orbit spaces (or the cross sections at an arbitrary
phase angle) of symmetric and antisymmetric tensor repre-
sentations are identical, up to scale factors, to those of ad-
joint representations.

Giirsey suggested that this similarity among the orbit
spaces of adjoints, symmetric and antisymmetric second-
rank tensors results from deeper mathematical roots.*®
These representations all have definite exchange symmetries

among the tensor indices. Even the 27 + 27 of E has such
symmetry: it is a Hermitian matrix (over octonions).

Michel'? pointed out that the orbit spaces of the vector
representations of Weyl groups are, up to scale factors, iden-
tical to those of corresponding adjoint representations. We
quote two examples given in Ref. 50. The orbit spaces for the
vector representations of the tetrahedral groups T and 7,
are identical to that of SO, adjoint. The orbit spaces for the
vector representations of the tetrahedral group 7, and the
octahedral groups O and O, is identical to that of SO, ad-
joint.

(3) Lower-dimensional strata of higher symmetries
form the boundaries of higher-dimensional strata of lower
symmetries in an orderly way. The hierarchy of protrusive-
ness on the orbit space boundary is not a global property (a
poorly defined concept in any case) but a local property,
which is shown by the saddle-shaped surfaces in most three-
dimensional orbit spaces.

The last observation is not what we like because it may
lead to a counterexample to the minimal symmetry breaking
principle. However, none of the cases we have considered
makes a counterexample.

In our formalism we take the singlet form for a given
subgroup as the definition of a stratum. Its equation is ob-
tained by putting the singlet form into the invariant polyno-
mials and is thus parametric. In order to obtain the singlet
form, which is the minimum information needed to specify
an extremum point in any case, we have to find the matrix
elements of group generators over the given representation
and require that the subgroup generators annihilate the rep-
resentation vector.

It is convenient to have nonparametric equations for
strata. Since there are fewer independent parameters than
basic invariants for all the strata except for the generic stra-
tum, we should have some identities among the basic invar-
iants on these strata. Like syzygies they are polynomials. Itis
not easy, though possible in principle, to derive these identi-
ties from our parametric equations. Abud and Sartori®® de-
vised a general method for finding nonparametric equations
of orbits. It is a good tractable method usable also for the
projected orbit space associated with a Higgs potential. It

1711 J. Math. Phys., Vol. 25, No. 6, June 1984

requires only the knowledge of invariant polynomials. One
can obtain the singlet forms (though not the little groups)
from the nonparametric orbit equations by solving high de-
gree algebraic equations. This is as difficult as minimizing a
Higgs potential using a conventional method. The method
outlined in the previous paragraph is the only tractable way
for finding the little groups and singlet forms, as far as we
know. Jarié¢®® devised another elegant nonparametric meth-
od for representations of finite groups which can be used for
adjoint representations of low rank compact Lie groups. He
provided both singlet forms and nonparametric equations
for orbits. However, its applicability seems to be limited to
only a small number of representations. It will be interesting
to see if his method can be extended to more complicated
cases.

In a Higgs potential there appear invariant polynomials
only up to fourth degree. Thus we deal with a projected orbit
space. Due to the projection some cusps are buried inside the
projected space, as shown in SO, and Sp,,, examples. These
buried cusps cannot yield the absolute minimum, though
they correspond to maximal little groups. A similar pheno-
menon was noticed earlier in the examples of SO, adjoint

+ vector representations.!” As a matter of fact, it was ob-
served much earlier by Li.?* This implies that, in unification
theories, simple-minded classification of possible symmetry-
breaking directions based on maximal or maximaximal little
groups is not enough. One should check if the symmetry
breaking really occurs in the desired direction.

5. TWO IRREDUCIBLE REPRESENTATIONS

The orbit spaces of two irreducible representations are
normally high-dimensional because after one of the repre-
sentations is simplified only a small number of group param-
eters are left for further simplification of the other represen-
tation. We have found two cases where the orbit space is
three-dimensional, SU, adjoint + vector and SO5 adjoint

+ vector.

A. SU(3) adjoint + vector representations

Using the same notation as in Ref. 15, the orbit param-
eters are

g}

a, = AT (127)
Stex, Syt i,

8 — X'ox Xty (128)

ezt T Ce it

The stratum of each little group is represented as follows:

SU,:
8=14242+3, 3=142,
@ = [a,a, - 20] y X = [0,0,C] ’ (129)
ay=+1//6, Bi= +2//6, B,=2/3;
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U,
¢7=[a,b,—a'—b], X=[0,0,C],

ay=(a+b*—(@+bPV(@+b>+(@a+b)P2,
(130)

Bi= —@+b)/(@+b>+(a+b))",

B:=(a+b)/l@+b*+(a+b)).
The generic stratum is represented by Eqs. (127)—(128) and
its little group is the null group. Can a curve confine a three-
dimensional volume? The answer is no, and thus the stratum
of the null group must confine itself. The volume is extre-
mized when either y, or y, is equal to zero with all the other
components nonzero. The orbit space is shown in Fig. 9. The
strata of SU,, namely, the cusps, are the most protrudent as
we might guess from the fact that they satisfy the most singu-
lar boundary conditions. The stratum of U, namely, the
curve, is the next most singular. This may lead us to expect
that such a hierarchical relationship would be a prominent
feature of the orbit space of two irreps. But, as we shall see in
the next example, the strata of a lower level little group can
be as singular as the higher level ones.

B. SO(5) adjoint + vector representations

Using the same notation as in Ref. 17, the orbit param-
eters are

Sot
a,=— (131)

T 2ZeP’

6=72° Bs

0.75

q

SU, |

B, — 2y ix: 5
2 y
(220 Zyx, +xo13) (132)
2 i :‘ i
B, XiP X

22 vy + et

where / runs from 1 to 2. The stratum of each little group is
represented as follows:

SO;:

10=14+3+343, 5=1+1+3,

¢ =1[a0], x=I[c00], (133)
as=4, Br=1, Bi=1;

SU,x U,

10 = 1(0) + 1(2) + 1{ — 2) + 3(0) + 2(1) + 2( — 1),
5=10) +2(1) + 2(~ 1),

(134)
P = [a9a] y X = [0,0,C] s
a, =%, B,=0, Bi=0;
UXxU;:
P = [a’b ] y X = [O!O’C] ’
(135)

a,=(2a"+2b%/(2a* + 2b%?, B,=0, B,=0;

FIG. 9. The complete orbit space of
the SU, adjoint + vector. Shown at

agl1]

the upper left corner is a view from
the direction oriented 18° from the 5,
axis and 72° from the B, axis. The
dotted lines are hidden lines. The
numbers in the square brackets are
the relative ratios of scale. Each pro-
jection is a view from the positive di-

SUs SU, rection of the axis not shown in the
U ] 1 picture. Here the dotted lines are
! \ portions of the boundary belonging
] ] to the null group stratum. Thus the
hidden curves are drawn solidly.
Bs , — : - — ay
0.75 0.5
U, \
{o.75 Uy ose—d su,
SU

B: B
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U;:

pg=1lab]l, y=1[0cd],

a, = (2a* +2b%)/(2a* + 2b?)?,

{136)

B. = (b%*/(2a* +2b%)(c* +d?),

Bi=b*c)/(2a> + 26 c* +d ).
The generic stratum is represented by Egs. (131)~(132) and
its little group is the null group. The stratum of U, is two-
dimensional and thus has a chance to enclose the whole vol-
ume. The U, stratum occupies the surfaces represented by
dotted lines in Fig. 10, but the surface represented by solid
lines is a part of the generic stratum. This is in contrast to the
case of one irrep where there was no mixture of this kind.
That is, equally singular surfaces consist of both the stratum
of a maximaximal little group and a lower level one. Though
the portion of the surface belonging to the null group is more
singular than the interior, there is no way to distinguish them
because there is no more subgroup left. The volume is extre-
mized when either y, is equal to zero (U,) or y; is zero (the
null group) with all the other components nonzero.

C.Comments

Contrary to the case of one irrep where the strata of
successively lower level little groups occupy successively
higher-dimensional and less singular (locally less protru-
dent) surfaces on the orbit space boundary, the orbit space
boundary of two irreps is more complex and things are pretty
much mixed. Whereas orbit parameters associated with each

ag

Uy

irrep tend to form warped concave boundary surfaces, orbit
parameters associated with both irreps tend to destroy such
behavior. With the representation vector of one irrep fixed
{consequently, orbit parameters associated with that irrep
fixed), one can rotate the vector of the other irrep creating a
volume traced by pencils.

It is notable that the generic strata in both examples are
not totally open as in an irrep case. They close themselves
partially. The same is true for lower-dimensional strata.

In the case of SU, adjoint + vector (Fig. 9) we find that
the maximaximal little groups, SU, and U,, occupy the most
protrudent portions of the boundary. But in the case of SO,
adjoint + vector (Fig. 10) we find that the U, stratum occu-
pies the boundary planes indicated by the dotted lines and
the stratum of the null group occupies the boundary plane
indicated by the solid lines. That is, there is no sharp distinc-
tion between the maximaximal little group U, and the lower
level little group, the null group, in terms of dimensionality
and concavity.

Another interesting point is that the little groups alone
cannot distinguish the fine structure of the orbit space. In
both of the above-mentioned examples we see that the null
group strata consist of two-dimensional surface and three-
dimensional volume. In the SO, case the strata of U, consists
of an edge curve and two-dimensional surfaces. This indis-
tinguishability comes from the fact that, whereas for a given
group there are only a finite number of subgroups, there is no
limit to the dimension of a representation. As we see from
Eq. (83) the orbit space dimension can be arbitrarily high. On

0.5

U,xU,

SUXU; 1

SOy

Uy

SUXU,
UxU,

FIG. 10. The complete orbit space of

0.25 the SO, adjoint + vector. Shown at
the upper left corner is a view from
the direction oriented 20° from the 8,
axis and 80° from the a, axis. The
dotted lines are hidden lines. The

0.25 numbers in the square brackets are

U, U,

U,

Lo.5 0.5
SO0, Ba Bs
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Be the relative ratios of scale. Each pro-
Jection is a view from the positive di-
rection of the axis not shown in the
picture. Here the hidden curves and

U, lines are drawn solidly.

S0,
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the other hand, the number of subgroups is too small to clas-
sify all the dimensions of the orbit space. Thus the indistin-
guishability is inevitable in both cases.
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APPENDIX A

Some people might doubt that the minimization can be
achieved so cheaply. To remove a possible doubt, we inter-
pret our method of minimization in the orbit space in terms
of conventional language. We show how to find all the ex-
trema (in the representation space) of a smooth group-invar-
iant function which is monotonic in the orbit parameters.
We also explain how to tell the type of an extremum, i.e., a
local minimum or an inflection point.

1. Single irreducible representation

Let us consider a group invariant smooth function,
P(p )=F (I,,A ,A,,), which is a monotonic function of orbit
parameters A, in the projected orbit space. In order to find
an extremum of P in the representation space, we need to
find the solution of the equation

P _ or OF A OF 0 OF

dp; o, Ir I, A, e, dA,
with 7 = I % Due to the assumed monotonicity, all 3F /dA,
are nonzero in the projected orbit space.

+ =0, (Al)

Case (i).0F/or =0
There are two ways to satisfy Eq. (A1}
I, /Op, =0 for all a and i. (A2)

This is satisfied at all the cusps (including buried ones) corre-

sponding to maximal little groups®®*®'® with phase angles of
complex invariants not counted
(é&.‘. , % ,) 1 (_@ R a_F ’) for all 7. (AB)
dp; Op; Ay A,

This is satisfied when the contour of directional extrema
contacts the orbit space boundary tangentially. Thus ex-
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trema of P with respect to ¢; may occur at points on the
curves, two dimensional surfaces, etc. Notice that the tan-
gential contact can occur.

It is laborious to check signs of a Hessian matrix in
order to find the extremum type. However, once the orbit
space is constructed, we can easily tell the type of an extre-
mum from the way the contour of directional extremum
meets the orbit space. For example, in the case of SOy adjoint
(Fig. 11) there are only five extrema consisting of four cusps
and one tangential contact point on the boundary curve.
Two of the cusps are local minima because the contour has
the lowest values at the cusps in their neighborhoods. (The
contour touching the upper cusp passes through the lower
right portion of the orbit space. However, the cusp is isolated
from that portion.) The lower right one is the absolute mini-
mum. On the other hand, the lower left one is a saddle point
and the remaining two extrema are inflection points.

As we showed in Ref. 16, the contour of directional
minima for a most general fourth-degree Higgs potential is
flat or concave in the direction of increasing equipotential.
Thus unless higher-dimensional strata are more protrudent
than cusps, the absolute minimum will occur at cusps on the
boundary of the projected orbit space. For a general smooth
group-invariant function the contour may be convex in the
direction of increasing equipotential. The cusps will still be
the most likely points for the absolute minimum to occur.
However, higher-dimensional strata will now have a better
chance for becoming an absolute minimum.

Case (ii): IF/3r=0

(i 94, 94y )l(ﬂ or JF ) for all i.(Ad)

a¢)i’a¢)i’a¢)i’ a"’ﬁl,@’
One of the equations cannot be satisfied, namely,
i, 94
€,p.. —— ——. = const (of a and i) 9F (AS5)
Ip; a¢’j or

On the boundary the lhs of Eq. (A5) is identically zero. Thus
Eq. (A5)can only be satisfied inside the projected orbit space,
where the vectors, (94,/3p;, dA,/Ip,,-), are independent.

Z projected orbit space

FIG. 11. The projected orbit space of the complete orbit space of the SOq
adjoint is further projected onto a line with the contour of directional mini-
ma projected onto a point. Some cusps are projected onto the extreme
boundary points; others into the interior.
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The smallest number of independent vectors is the dimen-
sion of the projected orbit space. Now too many independent
vectors have to be perpendicular to a fixed vector, the rhs of
(A4). Therefore, Eq. (A4) cannot be satisfied at any point of
the orbit space.

In fact, Michel'? showed that a fourth degree Higgs
potential cannot have an extremum in the generic stratum.
We have extended his result to include more general cases.
We have shown that a group-invariant function of a single
irreducible representation monotonic in the projected orbit
space can have an extremum only on the boundary of the
projected orbit space with dF /dr = 0.

2. Two irreducible representations

Let us consider a group-invariant smooth function,
P(p.y)=F (L,,a,,a,; J,,¥1,Y2; B1, B2}, which is a monotonic
function of orbit parameters, (@,,7., B;), in the projected
orbit space. We have omitted further orbit parameters for
the sake of saving space. It will not affect the generality of the
following argument. In order to find an extremum of Pin the
representation space, we need to find the solution of the
equation:

oP _9r dF  Ja, OF | da, OF

dp; dp; dr dp; da, dp; da,
dB, oF B, oF
4+ 2 ——=0, (A6a)
dp; B, Ip; B,
P _ 35 OF 3 OF  on OF
d; Ox; s dy; 9 ;s
9B, OF | 9B, OF (A6b)
dy; 9B, dy; 9B,

with r = I}, s = J 2. Due to the assumed monotonicity,
all dF /da,,, IF /3., F /B, are nonzero in the projected
orbit space.

Case (i): 3F/dr=0and dF/9s = 0
There are many ways to satisfy Eqgs. (A6):

o J)
% 0, Po 0, for all apy, (A7a)
op; g,
a o)
Ye_o, B0, forall chj, (A7b)
a; %;
(Ser, 2 B 2 )
Ip; ’ Ip; ’3¢,- ’a‘Pi "
8F JF JF JF JdF JF
W—— =, —,—,—] foralli,
da, Ja, 9B, dB. dy, Oy, (Aa)
a
(()0 9B, B, In ‘21’2)
dy;, dy; 9y dy;
NEST S 3
da, Jda, B, B, Iy I, (A8b)

Any combination of (Ala) and (AJb} with IJ = 7,8 will yield
a solution to Eqs. {A6a) and (A6b). However, Egs. (A7) are
less frequently satisfied than in a single irrep case. The extre-
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mum conditions (A7) can also be satisfied partially in con-
trast to the single irrep case where all the orbit parameters
are extremized simultaneously (with phase angles of com-
plex invariants not counted). The points satisfying these con-
ditions may be at cusps, on curves, on two dimensional sur-
faces, etc., on the orbit space boundary. They are all
tangential contact points of the contour of directional ex-
trema with the orbit space boundary. Again there are only
finitely many extrema.

Since an orbit space for two irreps is formed from two
independent spaces through the joint invariants, the Jacobi-
an determinant'*'® contains many zero elements. The di-
mension of a boundary portion is still given by the rank of the
Jacobian.

Case (ii):0F/9r#0 and/or oF/9s #0

This condition again takes us into the projected orbit
space and yields too many vectors to be perpendicular to a
fixed vector.

Again we have shown that a group invariant function of
two irreducible representations monotonic in the projected
orbit space can have an extremum point only on the bound-
ary of the projected orbit space with dF /dr = 0 and dF /
s =0.

APPENDIX B

When the Higgs potential contains more than four inde-
pendent invariant polynomials, it seems difficult to visually
minimize the potential. We show how to find the absolute
minima of these potentials. Let us consider a Higgs potential
for a single irrep containing two third-degree invariants and
three fourth-degree invariants. Call the associated orbit pa-
rameters, 3,, 5,,a,,a,,a;. Consider the following two-di-
mensional projected space of the five-dimensional orbit
space:

B=B,B,+B,B,, a=da,+A4,a,+4;a;,, (Bl)
where B ’s and A ’s are the coupling coefficients of the corre-
sponding invariant polynomials in the Higgs potential. No-
tice that 3 is proportional to the distance of the point ( 8,, )
from the B = 0 line perpendicular to the vector (B,,B,), and
that a is proportional to the distance of the point (a,,a,,a;)
from the @ = 0 plane perpendicular to the vector (4 ,4,,4,).

In the f—a space the absolute minimum of the potential
can be found using the formula previously derived in Ref. 16.
Now one necessarily asks whether we can uniquely deter-
mine ( By, B,) and (a,,a,,a;) from a given set of ( B,). From
the geometrical meaning of 8 and a, we see that there is a
continuous range of orbit parameters satisfying Eq. (B1) for a
given set of ( B,a). However, the absolute minimum occurs at
a unique point on the orbit space boundary, most protrudent
to the direction of decreasing directional minimum. Thus we
have a unique solution to Eq. (B1) at the absolute minimum.
If the absolute minimum occurs on a concave portion of the
orbit space boundary,’! then there is a continuum of points
satisfying Eq. (B1) and we have to stay in the five-dimension-
al orbit space. We have illustrated the mechanism in Fig. 11.

This raises the question: Is it safe to work in the project-
ed orbit space which is dimensionally smaller than the repre-
sentation vector space? Let us reconsider the significance of
the boundary conditions:
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ai,
=0 for all ¢ and i/, (B2a)
9,
oA, 94, .
€4 —— =0 for all (a,b) and (i, j},~. (B2b)
dp; dg;

Equation (B2a) implies that, at a cusp corresponding to a null
dimensional stratum, if we specify one orbit parameter, then
all the other orbit parameters are determined. Equation
(B2b) implies that, on a singular curve corresponding to a
one-dimensional stratum, if we specify two orbit parameters,
then all the other orbit parameters are determined, and so
on.

The boundary conditions are strong enough to let us
determine all the components of the scalar field (a vector in
the representation space) at the absolute minimum from the
knowledge of the norm and a small number of orbit param-
eters. The absolute minimum condition prompts the bound-
ary condition, which in turn determines the whole vector.

Without further arguments we state that for an even
degree Higgs potential of two irreps, we can safely work in
the projected space, (&, [3,7), of the possibly high-dimension-
al projected orbit space of the complete orbit space.

However, in the process of further projection we lose
the detailed extremum structure of the invariant function.
This is evident in Fig. 11: we see five extrema before the
projection and only two extrema afterwards. As far as we are
looking for the absolute minimum only, the projection is
harmless.
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