A simple dynamical system that mimics open-flow turbulence
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The possible relevance of recent theories concerning the chaotic behavior of nonlinear
dynamical systems to turbulence, especially in open flows, has frequently been questioned.
Here, the issues that have led to this skepticism are investigated by studying a simple

system that has been devised to include, albeit in an impressionistic way, the major
mechanisms that are widely considered to operate in a broad class of turbulent flows. The
variables in the system seek to represent the amplitudes of large- and small-eddy motion,
respectively, and are governed by equations that allow for a Landau-Stuart nonlinear growth,
a one-step Richardson cascade, and a specified time-dependent driving force. It is found

that the critical value (at the onset of chaos) of the Reynolds-number-like control parameter
(v~ 1) in the system depends on the character and magnitude of the driving force; and

it is analytically demonstrated using the Melnikov technique that, with an appropriate choice
of model parameters, chaos can persist at all sufficiently high values of the model Reynolds
number (unlike as in most other low-dimensional models). The routes to chaos in the
system when the forcing is increased at fixed v are different from those when v is decreased
at fixed forcing, the latter being found to be more relevant to the case of
streamwise-developing flows like a boundary layer. The observed routes are sensitive to the
presence of even small stochastic components in the forcing. Computed spectral evolutions
in the model show qualitative similarities with observations in boundary layer flow

under different disturbance environments. It is concluded that many of the gross features of
open-flow turbulence can be understood as dynamical chaos.

I. INTRODUCTION
A. Dynamical chaos and turbulence: Some issues

Recent developments in the theory of dynamical sys-
tems possessing strange attractors and exhibiting chaotic
behavior!™ have raised the question of whether turbulence
in fluid flows could be understood as dynamical chaos. The
various proposals on possible routes to chaos that have
been made in these studies have found some support from
observations in bounded flows such as Taylor-Couette or
convection in a box.”® However, the existence of any con-
nection between the dynamical chaos exhibited by such
systems and fully developed turbulence, especially in open
flows like boundary layers and wakes, has frequently been
questioned.”'! It is generally felt that the chaotic phenom-
ena observed in low-dimensional nonlinear systems may, at
best, be relevant to “weak” turbulence, i.e., to stages pre-
ceding onset of fully turbulent behavior.!?

The questions mentioned above crystallize into three
basic issues. '

(i) Low-dimensional chaotic dynamical systems do
not exhibit a strong cascade process, of the kind generally
considered an essential feature of turbulence,'* where en-
ergy put in at low wave numbers or frequencies produces
strong fluctuations at very high wave numbers or frequen-
cies. Thus, while the spectral density in the well-known
model of Lorenz!® is exponential in the frequency and
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drops by about six decades over a frequency range of one to
ten, the corresponding drop in a typical shear flow'® is only
about a decade (see Fig. 1) for the same frequency range.
In other words, the dynamical chaos frequently observed
tends to be slow, as may be expected from the wide prev-
alence of period-doubling bifurcations.

(ii) In the absence of a special relaminarizing
agency,'’ turbulence invariably persists in the flow for all
values of the control parameter beyond that at onset,
whereas in low-dimensional dynamical systems chaos and
order often alternate in narrow windows, and indeed chaos
eventually tends to disappear as the control parameter is
increased (the Lorenz system is again a good example; see,
e.g., Sparrow'®). It is not clear whether higher-order trun-
cation will solve the problem. In two-dimensional Bénard
convection, Curry et al.'® found that chaotic behavior dis-
appears when a large number of modes are considered, and
concluded that the chaos observed in earlier models was
due to severe truncation, i.e., lack of sufficient resolution.
On the other hand, solutions of the Navier-Stokes equa-
tions in a two-torus suggest the opposite; in a five-mode
truncation®® chaos disappeared for large values of the Rey-
nolds number, whereas in models truncated at seven or
more modes®! chaos seemed to persist once it had set in.

(iii) In the dynamical systems studied to date, the
onset of chaos occurs (for each system) at some fixed value
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FIG. 1. Comparison of a typical spectrum of the solution of the Lorenz
model’® with that of the streamwise fluctuations in a turbulent jet,"’ nor-
malized to agree at the lowest frequencies. The flat spectrum of the Lo-
renz solution beyond a frequency of 10 is a numerical artifact.

of the control parameter, whereas it is widely recognized
that in many open or semiopen flows (particularly in
boundary layers and ducts) the onset of transition is gov-
erned by external or environmental disturbances; indeed
there is solid experimental evidence (e.g., Schubauer and
Skramstad??) to show that transition to turbulence in
boundary layers can be delayed enormously by reducing
the level of such disturbances, leading to the view that
there is no such thing as “free” transition in these flows.
Indeed, recent analysis of available experimental data on
boundary layers that allows for the presence of residual
nonturbulent disturbances in the facilities used for testing
strongly suggests>> that the Reynolds number at transition
to turbulence is inversely proportional to the disturbance
intensity (Fig. 2), at least over the (fairly wide) range of
disturbance levels covered in experiments to date.
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FIG. 2. Dependence of transition Reynolds number R, in a boundary
layer on free-stream turbulence g; at low values of g transition is driven by
facility-specific nonturbulent disturbances, parametrized by the variable
go- The full lines show a correlation with (¢° + g3)"/? proposed in Ref. 23.
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In an early review of the new ideas, Monin!® forcefully
made the criticism listed as (ii) above, but in addition
suggested that the presence of only a small number of spa-
tial modes in the nonlinear systems considered (e.g., that
of Lorenz) was a serious deficiency, for this implied that

" there was no continuous spectrum in wave number, i.e., no

spatial chaos, of the kind considered essential for flow tur-
bulence. However, the latter criticism will now appear less
fundamental than the others, in part because of the discov-
ery of strong spatial order in fully turbulent flows (e.g.,
Brown and Roshko®®) and in part because the spatial
chaos can be generated through mere advection (e.g.,
Aref?®). Furthermore, temporal development in a
Lagrangian frame can approximate spatial development in
an Eulerian frame, especially in convectively unstable
flows.

The question that arises, therefore, is how generally the
criticisms (i)—(iii) apply to dynamical systems. Because of
the difficulty of analyzing the complete Navier-Stokes
equations, several attempts have been made to simulate
aspects of flow turbulence in simpler models, beginning
with such celebrated efforts as those of Burgers®® and
Lorenz.!> Other models that have attracted considerable
attention are the Ginzburg-Landau®’ and Sivashinsky®®
equations. A significant advance has been made recently by
Aubry et al.? in linking relatively low-dimensional chaotic
dynamics and turbulence in open-flow systems. They
model the behavior of streamwise vortex rolls near the wall
in a fully turbulent boundary layer and show that it is
possible to capture the ejections and bursting events ob-
served experimentally.’® Their study, utilizing modes de-
rived from observation but incorporating Navier-Stokes
dynamics, confines itself by design to a specific flow, and in
particular is not concerned with transition; thus the Rey-
nolds number does not explicitly appear as a parameter in
the model.

However, none of these interesting efforts directly ad-
dresses the criticisms listed above.

Some very interesting experimental work has been re-
ported on wakes;*'~33 the central issue here appears to be
the necessity or otherwise for the presence of forcing of
some kind to induce chaos.

In the present paper we briefly describe one of a set of
simple models devised by Narasimha and Bhat,* and dem-
onstrate that its behavior answers the above criticisms and
mimics certain generic features of open-flow turbulence.
The model is “impressionistic” (in the sense used in Ref.
35), being intended to offer insight rather than quantitative
predictions for any particular flow, although it is motivated
by the considerable experimental data available on bound-
ary layer transition. The main advantage in the study of
such impressionistic models is the elucidation of basic is-
sues, as the complexities not relevant to the resolution of
such issues can be eliminated. It is hoped that the conclu-
sions so drawn will be of use in the formulation or study of
more exact models for turbulent flow.

In view of the emphasis in the rest of the paper on the
routes to chaos in the model, a brief review of the relevant
work seems appropriate.

Bhat, Narasimha, and Wiggins 1984
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B. Routes to chaos: A brief survey

Extensive studies have been made of various “‘scenar-
jos” that lead to chaotic behavior in dynamical systems.*
In general, a system that is at rest at low values of the
control parameter p loses stability when u increases, and
exhibits a steady behavior; for higher u, the steady solution
loses stability leading to a periodic (limit-cycle) behavior
through a Hopf bifurcation (change from one steady solu-
tion to another is also possible before periodic behavior').
As p increases further the limit cycle may lose stability,
after which different routes to chaos are possible.

Some of these routes are best understood from maps,
but they are equally valid for differential equations that can
be investigated through the maps that result from taking
Poincaré sections. For any such map its fixed points and
their stability determine how the limit cycle undergoes
transition to chaos. For example, if the fixed point (which
in the map represents limit-cycle behavior) has an eigen-
value of — 1 at some value of p = y', then for u>p’ the
system undergoes a cascade of period-doubling bifurca-
tions, which, in one-dimensional hump maps that are qua-
dratic near the hump, exhibit certain universal character-
istics described through the Feigenbaum numbers.® The
cascade ends in an accumulation point, usually denoted by
U, at which the system undergoes an infinite number of
bifurcations. At 4 = u_,, the system is expected to exhibit
a periodic behavior but does not possess a wide band spec-
trum, which is encountered only for 4 > p . This scenario
is well tested in both numerical and physical experiments.

If, on the other hand, the fixed point has two distinct
(complex) eigenvalues with an absolute value of 1 at some
value of p = p’, then for pu >y’ stability is lost through a
Hopf bifurcation giving a limit cycle in the map, or motion
on a two-torus 7” that is quasiperiodic with two incom-
mensurate frequencies in the original system. If u increases
further, the torus 72 may lose stability giving a three-torus
T3 and so on. Generalizing this scenario, Landau’® pro-
posed that turbulence is a quasiperiodic motion with a
large number of incommensurate frequencies.

It has, however, been shown'? that a torus 7% with
k>3 is structurally unstable and that a ‘‘strange attractor”
could result, with sensitive dependence of the solution on
initial conditions. In this scenario (called RTN, after Ru-
ell, Takens, and Newhouse) the power spectrum exhibits
first one, then two, and possibly three independent frequen-
cies before a wide band spectrum appears. Some
experiments®’ have shown that when the third frequency is
about to appear, the spectrum develops a broadband con-
sistent with the above scenario.

A modification of this scenario often seen in many
systems (typically in periodically forced ones) involves
quasiperiodic motion and frequency locking followed by
sudden chaos.® A simple example is provided by the circle

map®®

0,,1=0,+ (F/2m)sin 276, + Q, 0<0<], (1)

which maps the circumference of a circle to itself. Here the
sinusoidal term represents the effect of periodic forcing, )
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represents the ratio of the natural frequency to the forcing
frequency, and F is the strength of the nonlinearity. For
small values of F quasiperiodic solutions are likely, and as
F approaches 1 frequency locking is more likely. For F> 1,
the map becomes noninvertible. The boundary F = 1 rep-
resents transient chaos; for larger F steady chaotic solu-
tions are possible.*840

Another widely studied scenario is that of intermit-
tency, first described by Pomeau and Manneville.*! This
occurs if the map attains a slope of + 1 at some value of
(=p', say); beyond this value solutions show small am-
plitude oscillations interrupted by bursts that become more
frequent as p increases. Physically this corresponds to a
stable fixed point meeting an unstable fixed point leading to
their total disappearance for >y’ (saddle-node bifurca-
tion). Such intermittency has been observed in the Lorenz
model,*! interestingly at a value of r (the normalized Ray-
leigh number in the model) near 166, much larger than the
value of 24.06, at which chaos is first encountered in the
model.

It may be noted here that all chaotic phenomena
known today are related to homoclinic or heteroclinic
connections.® Yorke and Aligood*? have shown that peri-
oddoubling bifurcations lead to homoclinic connections
(i.e., stable and unstable manifolds of the same fixed point
intersect each other) and horseshoes in the attractor. Ost-
lund ez al.*® have shown that chaos from quasiperiodicity
and a frequency-locked state results from intersection of
stable and unstable manifolds of separate fixed points in a
Poincaré map, i.e., from heteroclinic connection.

Although chaos can arise in purely deterministic sys-
tems, most real open-flow systems are subjected to noise in
some form or other, so it is important to understand the
influence of (partially and wholly) stochastic forcing. In a
study of the forced dissipative motion of an anharmonic
oscillator,* it has been shown that, with sinusoidal forcing,
the system undergoes period-doubling bifurcations before
the onset of chaos as the forcing frequency is lowered; in
the presence of noise, the threshold frequency (i.e., the
frequency at the onset of chaos) increases almost linearly
with the noise level and in effect produces a bifurcation gap
in the set of available states. In the logistic map, for exam-
ple, higher periodicities disappear in the presence of noise
as a result of the spreading of iterates of the map and
consequent merging of close-by islands (regions) of
attraction.* Universal scaling laws near transition have
been found for the Lyapunov characteristic exponent in a
system that follows a period-doubling route, and for the
average duration of small amplitude (“laminar”) motion
in systems exhibiting intermittency.

It is not very clear what happens to the quasiperiodic-
ity route to chaos in the presence of noise, but the expec-
tation is that the influence is not strong.*

While the studies cited above support the general view
that noise destabilizes a system, Matsumoto and Tsuda®
show that noise can, under certain conditions, induce some
order in certain types of maps, e.g., those with flat tops and
steep gradients.

A large number of well-controlled experiments in fluid
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flow have been carried out to test the predictions of dy-
namical theory. Gollub and Swinney*’ find that in Taylor—
Couette flow, the observed transition sequence as Reynolds
number increases is: no motion — steady motion — periodic
state—two frequencies— disappearance of frequency and
appearance of new frequency—sudden disappearance of
sharp peaks, emergence of a broadband spectrum. This
route supports the RTN scenario. Gollub and Benson’ car-
ried out detailed experiments on convection in a small cell
with different aspect ratios and Prandtl numbers Pr, and
observed four different types of transition: (i) Quasiperi-
odic motion at two frequencies leading to phase locking or
entrainment, and chaos as a result of loss of entrainment.
(ii) Cascade of period-doubling bifurcations. (iii) Three
incommensurate frequencies before the appearance of a
broadband spectrum. (iv) Intermittency. A feature of
these experiments was that the behavior was sensitive to
small changes in Pr and aspect ratio.

In a convection experiment carried out with silicon oil
as working fluid (Pr = 130), Berge et al.* observed bursts
of strong perturbations at random intervals between nor-
mal oscillations (laminar periods), consistent with the sce-
nario proposed by Pomeau and Manneville.*!

Giglio et al.,47 studying convection in a small cell,
could detect subharmonics up to the fourth order; beyond
this the system seemed to deviate from the Feigenbaum
scenario. Libchaber et al.,*® using mercury as a working
fluid, applied a magnetic field along the axis of the convec-
tive rolls to give convection a better two-dimensional char-
acter. They observed period-doubling bifurcations and sub-
harmonics up to the fifth order following the Feigenbaum
scenario. In another experiment,* a low Prandtl number
fluid developed two-dimensional cells with the scenario
two frequencies — frequency locking — period-doubling bi-
furcations, whereas high Prandtl number fluids had a
three-dimensional character and followed either the route
two frequencies —three frequencies—chaos or the route
two frequencies — intermittency — chaos.

We now briefly discuss the model proposed by
Narasimha and Bhat** before studying the routes to chaos
in the model.

Il. THE MODEL

The basic philosophy in constructing the model stud-
ied here was to incorporate in it those physical mechanisms
that appear essential to turbulent behavior, at the same
time retaining simplicity to enable detailed analysis. The
conventional method of using a truncated Galerkin ap-
proximation to obtain a set of ordinary differential equa-
tions from the governing partial differential equations will,
in general, need a large number of modes, and hence also
equations, to even attempt meeting the criticisms of Sec. 1.
The present model avoids this difficulty by treating turbu-
lent flow as mainly the outcome of interaction between
motions at two widely different scales, somewhat in the
spirit of Liepmann’s “turbular” fluid,*® the emphasis being
not on any particular flow, such as over a flat plate or
behind a cylinder, but on general physical arguments valid
for a wide class of flows. More specifically, the spectral or
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FIG. 3. Schematic representation of energy transfer in a turbulent flow by
a single-step cascade.

wave number space is considered to consist of two broad
regions, one where nonlinearity and external disturbances
play the major role (representing the so-called large-eddy
motion) and the other where direct viscous dissipation is
significant, representing the small or Kolmogorov-scale
motion; these two scales are coupled by a nonlinear energy
transfer mechanism, often called the Richardson cascade
process, schematically illustrated in Fig. 3.

The model has two independent variables U, u both
considered functions only of time #, and a specified external
forcing g(¢). Note that U and # may be thought of as
representing the amplitudes characteristic of large and
small eddies, respectively, the actual velocity being a com-
bination like

aU(t)exp i(kyx — w1) + bu(t)exp i(kyxy — wqt + @),
(2)

where k;, @, and k,, 0, are characteristic large- and small-
eddy wave numbers and frequencies and @ and b are
weighting functions that are a measure of the bandwidth
covered by the respective motions in wave number space.
For the sake of simplicity we shall assume that the eddies
have a common celerity, @,/k;=w,/k,, and that time is
measured in a coordinate frame moving with the fluid at
this speed, invoking a form of Taylor’s hypothesis. Note
the significant departure from earlier studies, typified by
the Lorenz system, where only the lowest few modes are
selected for describing the dynamics. If u(z) is seen as
including Kolmogorov-scale motions, we should expect the
weighting factor b to be a function of the Reynolds number
characterizing the large-eddy motion.!* An alternative in-
terpretation that is helpful in motivating the model is in-
spired by experimental observations in boundary layer
transition,’*> where it is found that as the amplitude of
oscillation in the primary Tollmien-Schlichting instability
increases, an intense small-scale high-shear layer develops;
the instability of this layer rapidly leads to the growth of
fine-scale motion. In Gaster’s experiments>>>* on spectral
evolution in such a transitional boundary layer, a clear
distinction can be made between the development of slow
(or low frequency) and fast (or high frequency) chaos.
There is here, once again, a natural division into two
widely different scales.

Bhat, Narasimha, and Wiggins 1986
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The importance of including a forcing term ¢(¢) is
evident from experimental data on boundary layers.!"** It
is our premise here that in boundary layers certainly, and
possibly in most open flows, there is no transition if there is
no forcing (ignoring microscopic triggering such as that
resulting from Brownian fluctuations): the flow is seen as a
(somewhat peculiar) driven nonlinear oscillator. (As an
aside, therefore, one way of keeping a flow laminar would
be to provide it with a quiet environmental sheath, itself
maintained possibly by active control operating on the re-
ceptive frequency bands.)

The following physical considerations, especially those
relevant to boundary-layer flow, were used to suggest pos-
sible forms for the model.

(i) The large-scale variable U must be governed by a
control parameter that plays the role of Reynolds number
(denoted by R, say), whose variation changes overall sys-
tem behavior.

(ii) There must be a critical value R, of this parameter
such that for R < R, the motion is stable, and for R
> R, the system exhibits linear instability.

(iii) For R > R, the growth of U because of linear
instability will eventually be checked by nonlinearity and
saturate at some finite maximum that depends on R.

(iv) The value of R at which onset of chaos will occur,
say R,, will in general be higher than R and depend on the
forcing ¢g(¢) (which may be deterministic or stochastic or
a combination of both).

(v) The small-scale motion u will gain energy from the
large-scale motion U by nonlinear interaction.

(vi) Energy at the small scales is lost by direct viscous
action.

Clearly, not all these considerations are valid for all
open flows (e.g., pipe flow does not exhibit linear instabil-
ity at all), and some of them (e.g., linear instability fol-
lowed by nonlinear saturation) are present in earlier
models.?*° (A distinction may have to be made between
convectively and absolutely unstable flows,” but as the
distinction is not Galilean invariant the observer’s coordi-
nate frame would have to be specified carefully.) Never-
theless, a model that successfully reproduces the behavior
described previously will cover a fairly wide class of open
flows, and can be easily modified to mimic others if neces-
sary.

Several nonlinear models may be written down that are
generally consistent with the features listed above. Here we
shall discuss the model called system 2 in Ref. 34, as it was
found to be the simplest model that has many desirable and
interesting properties. The model is described by the equa-
tions

dUu

Z:U(l—v—uz)—Ku|u|+q(t), (3a)

v % 3b

= (lu] +0) — Vu, (3b)
with the forcing taken in general to be the sum

q(t) =7 cos wt + q,5(1), (3¢)
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where g is the amplitude of a periodic component at fre-
quency o and £(#) is a stochastic term with zero mean and
unit mean square.

It is necessary to discuss briefly the different terms in
Egs. (3). First of all, the linear and cubic terms in U in
(3a) are prompted by the argument of Landau®® and the
nonlinear stability theory of Stuart.’® The parameter v rep-
resents the effect of viscosity on the large-scale motion.
With an expression like (2) for the velocity, the viscous
term in the Navier-Stokes equation will be proportional to
the actual viscosity of the fluid times k3 and k%; the v and
v of (3) are to be thought of as these products. The limil
v—0 is like the Reynolds number tending to infinity in a
flow, and (3a) reflects the fact that at high Reynolds num-
bers nonlinear interaction dominates over viscous effects
on the large scales (cf. the principle of high Reynolds num-
ber similarity,”’ according to which the viscosity is asymp-
totically irrelevant in large-eddy motion as the flow Rey-
nolds number tends to infinity). Clearly v plays the role of
control parameter here and may be thought of as propor-
tional to the inverse of a Reynolds number based on large-
eddy scales. The coefficients K and k govern the nonlinear
interaction between large and small-eddy motion, and rep-
resent as a single-step process the net effect of the cascade,
which actually takes place through intermediate scales.
(The picture implicit in the model is that these intermedi-
ate scales are “‘dummies” that constitute a conveyer belt
carrying energy from the large to the small eddies.) If Egs.
(3a) and (3b) are multiplied, respectively, by U, u, we
obtain equations for the rate of change of the energies U,
u*, which show that the loss from the large eddies, KUu|u|,
can exactly balance the gain by the small eddies kUu|u| if
a® K="b? k. The small-eddy variable u grows because of the
interaction with U and is assumed to act roughly like a
Reynolds stress on U, as given by the second term in (3a).
The parameter o, assumed small, is added to ensure that u
is always excited in the presence of U. We have found that
it plays no great role in the model, but in its absence u = 0
is always a solution. In practice, numerical noise ensures
that u does not remain zero even if ¢ =0, but we have
preferred to put in explicitly an “‘agitation” from the eddies
instead of leaving it to numerical “stirring.” At the small
scales, viscous dissipation is represented by the term con-
taining ¥, which is assumed to be significant always and in
particular, therefore, does not vanish with v (k, adjusting
itself suitably in the limit); this is a crucial feature of the
present approach.

The forcing (3c) permits us to mimic experimental
studies undertaken to elucidate the mechanisms underlying
transition, where free-stream turbulence and other stochas-
tic disturbances have often been greatly reduced and arti-
ficial periodic forcing introduced.*

The use of the absolute value sign in (3) introduces a
symmetry in the (U,u) phase plane [the transformation
U—- — U, u— — u leaves Egs. (3a) and (3b) invariant],
and actually results in a simpler system (with only three
fixed points instead of five).

We look upon all variables in Eqgs. (3) as being non-
dimensional, the scales adopted for the purpose being the
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saturating large-eddy velocity amplitude and the e-folding
time in the linear instability constituting the Landau-
Stuart part of Eq. (3a) in the limit v—0. The parameter v
itself is best seen as the ratio R./R.

We believe that the system (3) is the simplest impres-
sionistic model that can be devised for a wide class of
driven fluid-dynamical oscillators. It shares some charac-
teristics with other widely studied nonlinear oscillators
(e.g., the Dufﬁngsg), but differs from them in several re-
spects, in particular, by including a model for the cascade
process that is such a distinguishing characteristic of fluid
flows.

It is seen that, apart from the forcing, there are five
unspecified parameters in the model. Out of these o is
assumed small and has been assigned a value of 0.05 in all
the investigations reported here. The choice of values for
the other parameters is guided by the solutions of the un-
forced system, which we now briefly describe (details are
available in Refs. 59 and 60).

Ill. UNFORCED SOLUTIONS

In the absence of forcing, the system has only two
dependent variables; trajectories in the U-u phase plane
cannot cross each other, and chaotic behavior is not pos-
sible.

A. The fixed points

The fixed points (Ugu,) are the solutions of
dU/dt=0=du/dt. The origin is clearly one fixed point
(say Py). The others are given by the equations

u,=0kU,/ (v —kU,S), (4)
Uj —28U,8 — (1 —v—8) U2 + [28(1 —v) + Ko?]

XUS — (1 —v)§=0, (5)

where § = sgnu, and 6 = v /k. As K is multiplied by o®
and o is assumed to be small, the dependence of U, on K
(unless it assumes very large values) is not as significant as
that on v and 8. Now & clearly represents the ratio of
viscous dissipation to nonlinear energy transfer; as there is
a balance between the two in a turbulent flow (the viscous
scales adjusting themselves to dissipate the energy that cas-
cades down from the large eddies), we shall require & to be
of order unity.

With 6 = 0(1), (5) has no real roots for v> 1; for
v < 1, there are two real roots with the same magnitude but
of opposite signs. Therefore at v =1 there is a pitchfork
bifurcation, giving rise to two additional fixed points for
v <1, to be labeled P, and P_, situated, respectively, in
the first and third quadrants of the phase plane. Their
variation with v for the “standard” system parameters we
shall adopt (for reasons to be set forth below), namely
8 =0.556 33 and K=k=2.3 (o has been fixed at the value
0.05, as was already mentioned), is shown in Fig. 4. It is
seen that as v—O0 the position of the large-eddy fixed point
U, is insensitive to v, which is consistent with the principle
of high Reynolds number similarity.>’
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0.6

FIG. 4. Dependence of the fixed points U, and u, on v for standard
values of the system parameters.

B. Stability of the fixed points

The origin, with eigenvalues | — v and — %, is a stable
node for v> 1; after the pitchfork bifurcation at v =1, it
becomes a saddle point for v < 1. This is the basis for the
suggestion that the value v =1 corresponds to the
instability-critical Reynolds number R, of a flow (not to be
confused with the transition Reynolds number), so that we
may put v = R./R. The other fixed points P are stable
nodes or foci for v near 1, but they lose stability through a
Hopf bifurcation at some value of v, = vy say (<1),
which depends on v and ¥ for K=k=2.3 in the manner
shown in Fig. 5. For v < vy, P, are unstable.”

The fixed points and their stability are not significantly
influenced by values of K not too different from that of k.
In view of this, here we have taken k=K to reduce the

1.2
Attractor als
at origin
J e D ottt L — g
Pitchfork bifurcation
0.8F
2
v 0.6
2 limit
Homoclinic orbit
cycles
Vhe
0.4
0.2+ Single limit
cycle
[o} 1 1
0 0.5 1 1.5

<>

FIG. 5. Bifurcation boundaries in the unforced system as a function of v
and ¥ for K=k =2.3.
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FIG. 6. Typical phase portraits at different values of v labeled with the
same letters as in the section in Fig. 5; v = 1.

number of independent parameters in the system. The re-
sults for forced solutions are not sensitive to this assump-
tion provided K does not differ substantially from k.

C. Attractors in the unforced system

The nature of the attractors in the unforced system is
illustrated in Fig. 6 for the nonstandard case ¥ = 1. For
v>1, the origin is the sole attractor; for 1>v>wvy
(=0.44) the other two fixed points become attractors, and
these lose stability to give limit cycles for v<vy As v
decreases further, each limit cycle grows in phase space,
and a special case occurs if the limit cycle touches the
origin, resulting in a saddle fixed point being connected to
itself, i.e., in a homoclinic orbit. The value of v (denoted by
vic) at which this happens in the system depends on ¥, as
shown in Fig. 5.

Now a homoclinic orbit plays a special role in dynam-
ical systems because it can break even under very small
perturbations, giving rise to chaos. Since it should take
little external forcing to trigger turbulence at high Rey-
nolds numbers, we should want the present model to be-
come very sensitive to external forcing as v—0. We there-
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fore assign that value for ¥ that ensures a homoclinic orbit
at v =0 for the selected K.

In the computations reported below, we have selected
K=k=2.3 and ¥ =1.279 56 (corresponding to
8 =0.556 33) as “standard values,” satisfying the above
criterion. It is worth reiterating that the values of X, k, and
o can be chosen over a fairly wide range without altering
the qualitative behavior of the system significantly, but for
any set that is chosen the value of ¥ assigned is of crucial
importance.

With this choice, v and g(¢) are the only parameters
now left free in the model.

The numerical results presented below were obtained
by integrating the equations in double precision on a
VAXI11 using a code discussed in Ref. 59. This code ad-
justs the order of an interpolating polynomial and the step
size in time to control the local error in such a way that
increasing the order does not change the values at the de-
sired output time by more than the specified accuracy level.
This accuracy level has ranged, depending on the delicacy
of the conclusions drawn, from 10~ > to 10~ ? between
outputs sampled at time intervals from 0.05 to 1.0.

D. Physical interpretation of unforced solutions

As we shall demonstrate later, the nature of the solu-
tions of the forced system, even when chaotic, is greatly
influenced by the motion around the fixed points of the
unforced system. These may be thought of as representing
states of flow that the system prefers in some way, although
the strength of the preference depends on system parame-
ters. The presence of two fixed points, apart from the ori-
gin, indicates the existence of two such preferred states of
motion at v < 1. There are many flows that exhibit such
behavior. For example, the wake behind a body (especially
one that is blunt) contains vortices of opposite sign in a
Karman vortex street when the Reynolds number is not
too low; organized vortices of some kind are known to
persist in the wake even at very high Reynolds
numbers.®"%2 It has been shown by Sreenivasan et al.% that
the Karman vortices are the result of a Hopf bifurcation at
an initial Reynolds number of order 40, followed first by
exponential growth in a linear regime and later by nonlin-
ear saturation as in the Landau-Stuart equation—both of
these mechanisms being present in Eq. (3a). These must,
however, be distinguished from a convective far-wake in-
stability, which appears to need external forcing for its
maintenance.’>** As a second example, we may cite the
(turbulent) boundary layer in which the flow may largely
be described as the succession of two basic patterns of
motion called, respectively, “sweeps” and “ejections,”30
the latter occurring either singly or in trains from multiple
streaks.®’

It is therefore useful to think of the two nonzero fixed
points in the present dynamical system as indicating the
possibility of two characteristic patterns of motion, i.e., the
fixed points may be regarded as representing latent coher-
ent structures.
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IV. FORCED SOLUTIONS

With time-dependent forcing, the direction of the tra-
jectory at any phase point can vary with ¢, giving rise to the
possibility that trajectories can cross each other in the
phase plane. We first study a purely sinusoidal forcing
function [¢g, = 0 in (3c)], and shall show, numerically as
well as analytically, that the resulting deterministic system
does indeed possess chaotic solutions under certain condi-
tions.

A. Evidence of chaotic behavior

Here by chaos we shall mean the disappearance of the
autocorrelation at sufficiently large time lags, or the emer-
gence of a broadband spectrum. Such chaos is known to
appear from the irregular behavior of deterministic systems
as a result of repeated stretching and folding of volumes in
phase space,® with the associated property of sensitive de-
pendence on initial conditions. We shall analytically dem-
onstrate below that the present system exhibits chaotic be-
havior in a certain limit by the use of a perturbation
technique of Melnikov.%® More generally, however, infer-
ences about the existence of chaos have to be made from
numerical studies.

We begin by showing a typical set of Poincaré maps for
fixed v (=0.1) and forcing frequency w ( = 1) as the
forcing amplitude is increased (Fig. 7). These maps are
obtained by sampling the solution of (3) at time intervals
equal to the period of forcing, i.e., successive points are
iterates or images of their predecessors one period earlier.
(In spirit this procedure bears some resemblance to the
technique of conditional sampling used in the search for
persistent “coherent” structures in turbulent flows.) The
single fixed point in Fig. 7 at § = 0.070 represents periodic
behavior at the forcing period. At § = 0.078 there are two
points in the plot, indicating that the orbit returns to the
same point after every two forcing periods, i.e., that the
period of the oscillation has doubled. As 7 increases fur-
ther more period-doubling bifurcations take place, and by
‘g = 0.081 the Poincaré section shows a folded and layered
structure, which is a well-known signature of chaotic
behavior.” In this particular case the onset of chaos is
clearly preceded by a cascade of period-doubling bifurca-
tions, but we will return to a more detailed discussion of
the routes to chaos in Sec. V.

Now it is well known>®” that chaotic behavior is in
general the result of an intersection of the stable and un-
stable manifolds associated with hyperbolic invariant sets
such as a fixed point, periodic orbit or invariant torus,
resulting in a structure that has homoclinic tangles and
exhibits properties associated with Smale horseshoes. Iter-
ations of a map possessing Smale horseshoes can be shown
to be equivalent to the Bernoulli shift process that can be
proved to possess chaotic behavior.® Therefore establishing
that manifolds intersect is a conclusive step in demonstrat-
ing that the system is chaotic. We now do this for the
present model by the Melnikov technique.
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FIG. 7. Poincaré maps showing period-doubling bifurcations when the
system is forced at w = 1, v = 0.1 at increasing amplitudes.

For this purpose, we consider the system (3) subjected
to a small forcing in the high-Reynolds limit, § and v
being of the same order (say €). Equations (3) are now
rearranged as

dUu
2=V - U?) — Kulu| + €(q' cos wt — v'U), (6)
du

dt

where §=¢€q', v=€v' and e<1. We have already seen that,
with the choice made for K and ¥, the unperturbed part in
(6) and (7) possesses a homoclinic orbit. Following the
procedure described in detail by Guckenheimer and
Holmes,> the separation between the stable and unstable
manifolds of the perturbed system, measured normal to the
unperturbed homoclinic orbit, is proportional to the Mel-
nikov function M, which for the present problem takes the
form

M(rv,¢' )

=KU(|u| +0) — v u, (7

- f°° KU(1) [[o(D)] + 01 — D up(0)

X [¢ cos w(t+ 7) — v Ug(2)]A(2)dt, (8)
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FIG. 8. The ratio of integrals in the Melnikov function, showing collapse
for two different starts at (0.259, 0.016), (0.879, 0.350), respectively, in
the (U,u) plane.

where

A(t)=exp( - ft [1 —3Uy(s)% 4+ KUpy(s)sgn uy(s)
0

—% ]ds). (9)

The subscript O on U and u denotes that these variables are
evaluated along the unperturbed homoclinic orbit, and 7 is
a variable that denotes the phase of the Poincaré section.
Basically we stand at a point on the homoclinic orbit and
watch how the separation between the manifolds changes
in the Poincaré sections at different phases.

The integral in (8) can be expressed as the sum

M(rv,q0)= — gl (w)cos(or+ B) + IV, (10)

from which it follows that M has simple zeros provided
qg>[I/L(0)]v or G>|[I,/I|(w)]v. (11)

This expression gives the minimum forcing amplitude re-
quired to get homoclinic tangles, and therefore chaos, for a
given forcing frequency w and v(<1).

In the present case, I,(@w) and I, are numerically de-
termined by selecting some initial point on the homoclinic
orbit and integrating in forward and backward directions.
The integration is found to converge rapidly. Although I,
and I, individually depend on the initial point, the ratio
1,/1, does not,”® and is easily computed (Fig. 8). It is seen
that the minimum forcing amplitude 7 ., required to in-
duce chaos occurs at a forcing frequency w=1.

This result demonstrates that chaos in the system (3)
persists in the limit of high Reynolds number, the forcing
required to induce chaos going simultaneously to zero in
the limit—a behavior that we have seen is characteristic of
boundary layer flows.

We now turn our attention to the important problem
of identifying the range of v and ¢, where the system
possesses chaotic solutions. This purpose is best served by
computing the Lyapunov characteristic exponent.

B. Lyapunov characteristic exponent (LCE)

This number is a measure of the average divergence
rate of two trajectories close to each other at the start, and
is defined as
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FIG. 9. Dependence of the Lyapunov exponent on @ and gat v=20.

(12)

Ae i d(e)
= lim ln(d(O))’

{— 0,

d(0)-0

where d(¢) denotes the separation between two orbits at
time ¢. In general, a system with »n degrees of freedom has
n characteristic exponents, and if at least one of them is
positive then the system may be taken to be chaotic. We
have used the method of Wolf ez al.%® to estimate the larg-
est exponent; as the exponent associated with time is al-
ways zero, the largest is just the larger of the remaining
two. These, in general, show a slow variation for small
averaging times (typically < 500). Conclusions drawn be-
low are based on LCE’s that have reached a more or less
steady state. Since the LCE represents orbital stability, the
accuracy of the numerical integration scheme employed for
its determination is very important, and an absolute accu-
racy of at least 10~ at output interval of 1 was essential
for obtaining reliable estimates.

In general, the LCE depends on v, g, and w; as an
example, Fig. 9 shows it as a function of o for three values
of g at v =0. In this figure, o is varied in steps of 0.1 over
the range 0.6-4.0 and successive points are joined by a
straight line. It is seen that for a given g, the LCE is
positive in certain frequency bands, i.e., the model is more
“receptive” at certain frequencies (using the word in the
sense of Morkovin69), a well-known feature of many open
flows. Further, it is seen that even for § = 10~ %, there are
frequency bands where the LCE is positive, suggesting that
the system is chaotic even at the smallest forcing, although
there can be no chaos when the forcing vanishes; at higher
levels of g there is a tendency to saturation. Similar vari-
ations of the LCE are observed at higher values of v also,
but the range of @ over which the LCE is positive narrows
down, and a higher forcing amplitude is required to induce
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FIG. 10. Boundary separating chaotic and nonchaotic regimes in the
system.

chaos. The latter point is brought out in Fig. 10 where the
boundary separating LCE > 0.01 from smaller and negative
values, irrespective of forcing frequency, is shown. This
diagram has been prepared from solutions in which v is
varied in steps of 0.025 for v<0.2 and of 0.05 for larger v,
and o is varied in steps between 0.025 to 0.1 in the fre-
quency range where the system is found to be most sensi-
tive (e.g., 0.6 to 4.0 at v =0, and 0.7 to 1.25 at v = 0.25).
Because of the difficulty of accurately estimating the LCE,
we have adopted the operational definition that the system
is chaotic whenever LCE exceeds 0.01. It is seen that the
boundary in Fig. 10 turns back on itself, the region be-
tween the upper and lower curves covering the chaotic
regime for the system. The lower curve depicts the mini-
mum forcing required to induce chaos, and may be thought
of as mimicking the known dependence of transition Rey-
nolds number R, on the external disturbance level (seen in
Fig. 2). Above the upper curve the system exhibits forced
periodic oscillations, much as the wake behind a cylinder
does if the cylinder is itself oscillating with large
amplitudes,” the system in this case may be regarded as
exhibiting relaminarization (by “domination,” as identified
in Narasimha and Sreenivasan!’). It is interesting to note
that, as v increases, the lower and upper curves approach
each other and there is a value of v (~0.76) above which
no chaos is possible according to the present criterion; this
number may be thought of as corresponding to the lowest
possible transitional Reynolds number R, ,;,, a concept for
which there is considerable observational support.'!

Some additional data on the frequency dependence of
the sensitiveness of the system are shown in Fig. 11. Here
the “most dangerous” frequencies, i.e., those at which the
LCE first exceeds 0.01 as the forcing amplitude is
increased, are plotted against v. This figure shows that for
smaller v, the system responds to a wider frequency range
centered around w=1. This conclusion is consistent with
results from the Melnikov analysis carried out above.

One issue that is yet to be resolved is whether the

1992 Phys. Fluids A, Vol. 2, No. 11, November 1990

2.5

2.0r

0 0.25 0.50 0.75 1.00

FIG. 11. The most dangerous or receptive frequencies (i.e., those yielding
positive Lyapunov exponents at the lowest forcing amplitude).

boundary of the chaotic regime in Fig. 10 is a fractal, as
Moon’! has suggested in his study of a two-state mechan-
ical oscillator.

C. Time series, correlations, and spectra

The conclusions based above on LCE are confirmed by
examination of time series, correlations, and spectra. Fig-
ure 12 shows time series of U at v =0.1 and at various
forcing amplitudes motivated by the analysis of Sec. IV B.
At @ =0.05, U is periodic (as is u, not shown), whereas
at g =0.1 they appear to be nonrepeating, suggesting
chaos. These forcing levels are, respectively, in the periodic
and chaotic regions shown in Fig. 10. At ¢ = 1, both U
and u show chaotic behavior. At § = 1.5 periodicity is
prominent, the system now clearly being in the forced os-
cillation regime of Fig. 10.

Some traces of the combination signal (2) for various
values of the associated parameters are shown in Fig. 13. It
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FIG. 12. Time series of U at various periodic forcing levels, v = 0.1.
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FIG. 13. Examples of velocity traces using the linear combination (2).

will be seen that these traces are not unlike velocity fluc-
tuations characteristic of intermittent and fully turbulent
flows.

The autocorrelations and spectra confirm the conclu-
sions drawn from an examination of the LCE, and so will
not be cited here (see Ref. 59).

V. ROUTES TO CHAOS: PERIODIC FORCING

In discussing routes to chaos, two different tracks in
the (g ,v) plane of Fig. 10 turn out to be of interest. In the
first, the forcing amplitude gis gradually increased at a
fixed value of v, as already described in Sec. III through an
illustrative example. The second track, with fixed 7 but
decreasing v, is more relevant to the fairly common fluid-
dynamical situation in which the level of external distur-
bance remains the same while some system parameter such
as the Reynolds number increases continuously (for exam-
ple, flow in a boundary layer developing downstream in a
turbulent or acoustically excited environment, say in a
wind tunnel or on an aircraft). Increasing Reynolds num-
ber in the flow corresponds roughly to decreasing v in Eq.
(3a); it is therefore interesting to understand the route to
chaos with decreasing v. This track can be qualitatively
different from the first because of a decrease in the natural
frequency of oscillation of the unforced system as v de-
creases (which is similar to the trend exhibited by
Tollmien-Schlichting instability in the boundary layer).%
Thus if the forcing frequency is held constant while v de-
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creases, the ratio of the natural to the forcing period varies
continuously, and as a consequence the coupling between
the forcing and the system as well; this could give rise to a
more complicated transition scenario.

Before we describe the observed routes to chaos, a few
words about the methodology adopted are necessary. In
general, we have examined Poincaré maps and computed
the spectra and the Lyapunov exponents whenever neces-
sary. When the forcing is periodic, it is usual to study the
return map at the forcing period. An alternative procedure
is to project the trajectory into the phase plane, cut it by a
suitable line and examine the relationship between succes-
sive values of U or u as the trajectory crosses the line. This
approach is adopted here sometimes, in particular, when
the system undergoes period-doubling bifurcations; a judi-
cious location for the section in the region where the orbits
are well separated helps analysis. The equations are inte-
grated with an absolute accuracy of 10~ 7 or better.

In drawing conclusions on the routes to chaos, it is
important to be able to distinguish transient and steady-
state behavior. As it was observed that the present system
reaches a stationary state in most cases by ¢ = 1000, the
equations have been integrated up to ¢ = 2500 and the re-
sults presented relate to the behavior in the last 500-1000
units of time.

If an orbit returns to a position within an error toler-
ance of 10~ * regularly every nth time in a Poincaré sec-
tion, the behavior will be referred to as a Pn cycle; thus P1
represents the classical limit cycle. If there are two (inde-
pendent) frequencies in the solution (frequency-locked or
quasiperiodic) motion takes place on a two-torus, easily
identified by the arrangement of the points along a smooth
closed curve in the Poincaré maps.

Last, as the emphasis here is on the qualitative changes
in the structure of the solutions, Poincaré maps and phase
plots are often given without specifying the scales, which
are adjusted in each plot to get the maximum clarity. In the
spectrum, all components are normalized with respect to
the tallest spike (when present), so that the relative
strength of other spikes stands out.

A. Increasing forcing amplitude

We have already presented preliminary and illustrative
results for Poincaré maps along this track in Sec. III,
where it was shown that with v fixed at 0.1 and forcing
frequency w fixed at 1, a cascade of period-doubling bifur-
cations occurs as g increases. For § < 0.05, quasiperiodic
oscillations are seen for some starts; up to § ~0.07 there is
a Pl cycle. It turns out that four subsequent period-
doubling bifurcations could be clearly recognized;® the
first two convergence ratios

an=(?n+l - 7n)/(7n+2_ 7n+1)’

for n = 1,2, are, respectively, 5.66 and 4.5, the latter being
not far from the corresponding Feigenbaum number
(4.669...). The spectrum (Fig. 14) fills up at lower fre-
quencies, illustrating the “slow” chaos referred to in Sec. 1.
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FIG. 14. Spectral evolution of U along the “increasing ¢ ” track, at
v=0.1, o = 1. The first three period doublings can be easily identified;
the low frequency spectrum fills rapidly for g>0.081.

The above behavior is typical of this track, and could
be indicating the Feigenbaum scenario, although conver-
gence ratios of the kind quoted above cannot be taken as
unambiguous evidence, in light of the work of Holmes.”

B. Increasing Reynolds number

Along this track the forcing frequency is an important
parameter: we demonstrate this fact by considering two
values of the frequency, namely, ® = 0.7 and 3.9, which
are, respectively, close to and far away from the natural
frequency of the unforced system (approximately, 0.7 at
v=0.05 and 1.05 at v=0.11).

1. Forcing near the natural frequency: v =0.7,
q =0.05

Figure 15 shows a selection of spectra as v decreases. A
detailed study® reveals the following picture. For
0.128 < v < 1 the steady state behavior is a P1 cycle at the
forcing frequency f; ( = w/2m). Between v = 0.127 and
0.128 there is a Hopf bifurcation, resulting in a second
frequency f, in the system for v<O0.128. For
0.07 <v <0.128, f, and f, are not rationally related (at
any rate not in small integer ratios), and the behavior is
quasiperiodic. The frequency f, shifts as v decreases, until
at v = 0.068, f; is rationally related to f, resulting in fre-
quency locking. The frequency-locked state prevails until v
decreases to 0.043 (quasiperiodic solutions are also seen
for some values of v in this interval, e.g., at v =10.06).

1994 Phys. Fluids A, Vol. 2, No. 11, November 1990

0.0416

RARL

FIG. 15. Spectral evolution of U along the “decreasing v” track, at
g =0.05, = 0.7. Note the second spike at f, at v<0.12; it first appears
at v =0.127, changing in value from 0.200 at v = 0.127 to 0.167 at v=

0.068, at which stage it locks with £,[= (3)£,].
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When v decreases below 0.043, the system undergoes
period-doubling bifurcations with a convergence ratio of
4.2, suggesting a Feigenbaum scenario, ending up with
chaos at v=0.0414.

When v decreases further, the behavior is mainly cha-
otic, but there are narrow windows of periodicity buried in
between, such as a P6 cycle at v = 0.0408. At v = 0.0402,
the Poincaré map resembles a cubic map, and takes more
complicated shapes with a further decrease in v.

Thus the scenario here is quasiperiodicity -» frequency
locking — cascade of period-doubling bifurcations — chaos.

2. Forcing at high frequency: ©=3.9, §=0.05

In this case, the interaction between the forcing and U
is weak (or “receptivity” is low), and the system responds
poorly, as can be seen from Fig. 16 where typical phase
plots for w = 0.7 and 3.9 are compared. There is a Hopf
bifurcation around v = 0.128, leading to quasiperiodic be-
havior for 0.0525 <v <0.128. Around v = 0.0525, fre-
quency locking takes place and prevails until v decreases to
0.025. For smaller v, the Poincaré maps develop a folded
structure and the behavior is chaotic. This is confirmed by
the positive Lyapunov characteristic exponents.®® There is
no evidence to show the existence of period-doubling bi-
furcations so the route to chaos appears to be
quasiperiodicity — frequency locking —sudden chaos. Such
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FIG. 16. Comparison of the response of the system to forcing of the same
amplitude § = 0.05 at @ = 0.7 and 3.9, respectively, near and away from
the natural frequency.

a route has been observed by Gollub and Benson’ in con-
vection experiments carried out in a cell. Spectra (Fig. 17)
show that even though the behavior is chaotic, a strong
periodic component is present in the solutions. In contrast
to the previous case, there is no strong tendency for the low
frequency region in the spectrum to fill up; furthermore,
the milestones on the route to chaos occur at lower values
of v.

It must be pointed out that there are difficulties some-
times in deciding whether the observed chaos is transient
or steady. For example, for values of v slightly above 0.025
solutions appear chaotic initially but later settle down to a
periodic state. The outcome of some numerical experi-
ments carried out to test the influence of accuracy of inte-

0.02495
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FIG. 17. Spectral evolution of U close to transition along the *“‘decreasing

v’ track, with forcing at high frequency, ¢ = 0.05, @ = 3.9, showing no
strong tendency toward filling the low frequency side.
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gration and choice of initial condition on the transient pe-
riod showed that for all levels of accuracy tested (up to
10— %), chaos persists for v <0.025, whereas for v>0.025
results vary; no systematic dependence on accuracy of in-
tegration or starting point could be inferred except that for
poorer accuracy (e.g., 10~ %) chaos seems to persist even
at v =0.025.

Comparison of these observations with the remarks
made about the circle map (1) in Sec. I suggests that the
value v=0.025at § =0.05 and ® = 3.9 is like F=1 in
the circle map.

V1. COMBINED PERIODIC AND STOCHASTIC
FORCING

In practice, some noise is always present in any exper-
iment, especially in open fluid flows, and this brings in
some uncertainty in the inputs themselves. So there is con-
siderable practical interest in understanding how the sys-
tem behavior is modified when stochastic elements are
present in the forcing.

In this section we study a few cases in which the forc-
ing is largely periodic but includes a small stochastic term.
This is intended to mimic the situation in a relatively quiet
wind tunnel where a wave maker provides periodic excita-
tion but the background contains some random distur-
bances, either naturally or otherwise (as, e.g., in Gaster’s
experiments,”>>* where noise is deliberately introduced).
In the present work, the stochastic term is generated using
algorithms described in Ref. 60, and is either a Gaussian
pink noise (referred to as N1) with a peak in the spectrum
near the natural frequency of the system (up to w=2), or
an amplitude-limited white noise (referred to as N2).

The method of Poincaré sections, which proved to be a
powerful tool in characterizing the nature of the solutions
in Sec. V, is of little use in the present situation, as the
driving noise contains a wide range of frequencies. Spectral
analysis, on the other hand, has certain advantages, as it
clearly brings out the relative importance of different
modes and can give insight into the changes taking place in
the solutions as the control parameter varies. So in this and
the next section most conclusions are based on a study of
the spectra. In order to get an idea of the actual develop-
ment of different spectral components, the spectra below
are given without normalization.

Results are presented in the following order. First a
combination of N1 and a periodic component is consid-
ered, the choice of system parameter values being moti-
vated by the results reported in Sec. V for deterministic
forcing. Then transition under noise N2 is studied to assess
the influence of the spectral distribution of the forcing on
the scenario.

A. Transition scenario with pink noise N1

The result of increasing (the relative) noise level
a=gq,/q on the spectral shape of U at the parameter val-
ues v=0.1, » =1 and ¢ = 0.07 is shown in Fig. 18. Data
are sampled after an initial integration period of 1200 time
units to remove transients. At these parameter values, the
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- FIG. 18. Effect of increasing
noise N1 in the forcing; ¢
= 007, «=1, and v=0.1.
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deterministic system has a P1 cycle and will experience the
first period-doubling bifurcation if gincreases (Fig. 7).
Figure 18 shows that the introduction of an extremely
small noise level (even a = 0.001 is enough) produces a P2
cycle, i.e., to cause the system to undergo a period-
doubling bifurcation. As a increases to 0.01, the first sub-
harmonic gains in strength; additional frequencies appear
and grow as a increases. At a = 0.1, except for the peak at
the periodic forcing, the spectrum is wide band suggesting
chaos; so, while the P1 - P2 bifurcation can be identified,
higher period-doubling bifurcations are not clearly seen.
Figure 19(a) shows the effect of increasing the forcing
at a fixed but low relative noise level a = 0.01. (For con-
venience of comparison with the results of Sec. IV, how-
ever, the diagrams are labeled in values of only the periodic
forcing component g .) In the range of g chosen, the de-
terministic system is in the regime of period-doubling bi-
furcations (there is a P1 cycle at § = 0.07 and a P16 cycle
at § =0.08 if a is zero). At § = 0.068 and 0.07, the
spectrum suggests a noisy P2 cycle, and at § = 0.072 the
behavior is quasiperiodic. At g = 0.078, a second period-
doubling bifurcation is suggested by the appearance of new
frequencies near one-fourth the peak frequency. At
‘g = 0.08, it is no longer possible to recognize any distinct
subharmonics beyond the first and the spectrum at low
frequency levels is almost wide band. Increasing the rela-
tive noise level advances the onset of chaos, as shown by
Fig. 19(b) where all the parameters except a ( = 0.05) are
the same as in Fig. 19(a). At all values of g, the spectra
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FIG. 19. Spectral evolution of U with increasing forcing amplitude 7 at
w=1,v=0.1 and (a) 1% and (b) 5% noise. Note the clear reflection
symmetry around o = 1 in the top spectrum of (b), very similar to the
observation of Gaster.™

cover a wider band; for ¢ > 0.078, the spectrum is more or
less continuous. These observations show that with
increasing noise level, fewer periodic states are seen, a re-
sult that is in general agreement with the conclusion of
Crutchfield and Huberman®® that noise deprives the system
of certain (periodic) states. Interestingly, the spectra
shown in Fig. 19(b) exhibit a symmetric development
around the forcing frequency of precisely the kind that has
been observed by Gaster® in experiments on the boundary
layer.

Next, the influence of noise when the deterministic sys-
tem is in a frequency-locked state is considered. The pa-
rameter values chosen are v = 0.025, § = 0.05, w = 3.9, a
set that has been shown in Sec. V to be very close to the
onset of chaos (behavior is chaotic for v < 0.025). It will be
seen from Fig. 20 that at = 0.001 and 0.005 the spectra
appear to be wide band. Interestingly, at @ = 0.01 and 0.05
the spectra seem to have a stronger periodic component,
suggesting that moderate noise levels have the tendency of
stabilizing the system. However, if the noise level increases
further, the stabilizing effect disappears and the spectra are
wide band again. Noting that the system is on the verge of
becoming chaotic, the noise does not exert as much influ-
ence here as when the system is in the period-doubling
regime.
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FIG. 20. Effect of addition of increasing noise levels N1 on spectral
evolution when the deterministically forced system is frequency locked:
v=0.025, § =0.05, and w = 3.9. The top two spectra are due to tran-
sient chaos, which vanishes in the presence of moderate levels of noise
(a=0.01, 0.05).

B. Transition scenario under N2

For comparison with N1, parameter values are the
same as earlier except that N2 replaces N1. Figure 21
shows that at low values of a, there are clear differences in
the spectra, suggesting that the system is less receptive to
noise N2 than to N1.

VIi. TRANSITION UNDER PURELY STOCHASTIC
FORCING

This situation roughly corresponds to a flow develop-
ment in a highly disturbed environment (e.g., turboma-
chinery). Studies on transition in different wind tunnels
suggest that apart from the intensity of free-stream turbu-
lence, its spectral distribution also plays an important role
in transition.”” We examine this issue here briefly using
forcing with N1 and N2.

A. Transition under N1

We first consider the case of constant forcing ampli-
tude and varying v, which is more relevant for spatially
developing flows. Selected spectra of U for ¢, = 0.02 at
different v are shown in Fig. 22. There is no major change
in the spectral shape for v in the range 0.2 to 0.1, with the
peak at the angular frequency 1.208 and nearby prominent
frequencies separated from the peak by integral multiples
of 0.134. However, there are some frequencies (e.g., 1.501
and 1.721) that do not follow this pattern; they have rel-
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FIG. 21. Effect of noise N2 on
spectral evolution under the
‘ same conditions as in Fig. 18.
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FIG. 22. Spectral evolution along the ‘‘decreasing v track with pure
stochastic forcing by N1, with ¢, = 0.02. Note mainly noisy periodicity at
high v, and the flat spectrum at low v.
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FIG. 23. As in Fig. 22, but with noise N2, ¢, = 0.025.

atively smaller energy. The overall conclusion is that the
system is mainly frequency locked, although it may also be
considered quasiperiodic since there is more than one in-
dependent frequency in the solution. As v decreases to
0.075, some major changes are seen, with the peak shifting
to 1.074 and two new frequencies appearing between the
earlier frequencies. These are almost equally spaced and
presumably represent a higher state of frequency locking,
i.e., the frequencies are related in the ratio of larger inte-
gers. With a further decrease in v spectral lines broaden
until slowly a wide band appearance is attained.

If g, increases for a fixed v (not shown), the scenario
is similar except that there is no indication of a higher level
of frequency locking.®

B. Transition under N2

Again considering fixed g, and decreasing v, we see
from Fig. 23 that for all values of v shown the spectra are
wide band; the major change as v decreases is that the
periodic component becomes stronger. There is no indica-
tion of frequency locking and it is difficult to discern any
pattern in the spectra. Examination of time series, of which
some representative examples are given in Fig. 24, provides
some useful information. It is seen here that there are pe-
riods of low activity or small amplitude oscillations in be-
tween relatively active periods, giving an impression of in-
termittency; there is no indication of frequency locking.
The intermittent behavior is more prominent when the un-
forced system cannot sustain a continuous oscillation, i.e.,
before the Hopf bifurcation.
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FIG. 24. The time series of U at different forcing levels with noise N2, at
v = 0.2, showing intermittent-type behavior.

In none of these investigations of purely stochastic
forcing was there any evidence of period-doubling bifurca-
tions. As already mpntioned, the period-doubling cascade
is prominent especially when a special condition on the
forcing frequency is met, i.e., when it is in the range of the
natural frequency of the system. If there is no dominant
frequency in the forcing, especially around the natural fre-
quency of the system, as is often the case in highly dis-
turbed open flows, the more likely routes to chaos appear
to be those of intermittency and quasiperiodicity.

VIl. DISCUSSION

We have in previous sections argued that it is impor-
tant to distinguish between different tracks in the (g,v)
plane for the model (3), and that for spatially developing
flows like the boundary layer on a plate the track at fixed
‘g and decreasing v may be more appropriate, especially
when the disturbance environment can be considered to
consist of free-stream turbulence or acoustic excitation. We
have found the routes to chaos followed by the system
when the forcing is periodic, stochastic or mixed.

The presence of a stochastic term in the forcing influ-
ences the route to chaos considerably. When the determin-
istically forced system is in the regime of period-doubling
bifurcations, the number of bifurcations observed with the
addition of the stochastic component decreases as the noise
level increases; in a frequency-locked state, on the other
hand, the system is less sensitive to the presence of noise
that in moderate amounts appears to make the system
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FIG. 25. Spectral evolution of velocity fluctuations in a boundary layer
periodically excited at 81.4 Hz at a distance of 180 mm from the leading
edge (from Ref. 74). Note the appearance of subharmonics at 700 mm.
Beyond x = 800 mm the low frequency spectrum changes little, but the
high frequency end shows continuing development, even at 900 mm.

more strongly periodic. Also, the spectral distribution of
noise influences the transition process considerably.

Is there any correlation between what has been ob-
served in this model and in real open flows? Making this
comparison is rather difficult, chiefly because the forcing
adopted in experimental studies (usually involving a wave
maker at a fixed location) is not easy to reproduce in the
model, and because the spectral distribution of other (pre-
sumably stochastic) disturbances always present in open-
flow facilities is rarely monitored. Nevertheless, it is inter-
esting to examine, in particular, the work of Kachanov et
al.’*7 and Gaster,’>** who have studied the spectral evo-
lution of the fluctuations in a periodically excited flat-plate
boundary layer (the latter with an additional stochastic
component as well). Kachanov et al.” report that the forc-
ing amplitude is an important factor in determining the
type of transition. In the most extensively reported case of
relatively small amplitudes (typically less than 1% of the
free-stream velocity), one subharmonic and several har-
monics of the forcing frequency were observed before the
appearance of a wide band spectrum; the low frequency
end (in relation to the peak) of the spectrum developed
more rapidly than that at high frequencies (Fig. 25). On
the other hand, for large forcing amplitudes, the high fre-
quency end underwent rapid changes and the low fre-
quency end remained relatively unchanged.

These observations show some qualitative similarity
with the model. For example, both Figs. 19 and 25 show a
rapid rise in the energy content at low frequencies. In Fig.
19 we have already demonstrated that the system has a
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tendency to undergo period-doubling bifurcations (masked
to some extent if there is a stochastic component in the
forcing), and this leads to the rapid filling of the spectrum
at the low frequency side. There is some evidence that Fig.
25 reveals a tendency for period-doubling bifurcations, al-
though this is rendered fuzzy because of free-stream tur-
bulence: we have seen that a small stochastic component in
the forcing is enough to mask the later stages of the route.
On the other hand the high frequency side appears to grow
more rapidly than the low frequency end in a situation
involving frequency locking in the model (Fig. 20), and it
is plausible that the transition seen by Kachanov ef al. at
higher excitations is following this modified Ruelle-Takens
scenario, again rendered fuzzy by free-stream turbulence.

In Gaster’s experiments, a boundary layer in a quiet
tunnel (free-stream turbulence < 0.019%) was excited at a
single point by a loudspeaker; sinusoidal, stochastic and
mixed inputs were all tried. The observed spectral evolu-
tion suggests a clear distinction between *‘slow” and “fast”
chaos. It was found that when the amplitude of the forced
waves was large enough the flow was very sensitive to even
weak broadband disturbances. Gaster remarks, in particu-
lar, on the symmetries in the observed spectra around the
fundamental and the first subharmonic—of exactly the
kind found in the model (see Fig. 19).

The model results show that the exciting frequency is
an important parameter: if around the natural frequency
the route to chaos is through period doubling, and if much
higher the route is through frequency locking. It is not
possible to say whether this is so in the real flows as well.
In the experiments analyzed above the frequency was not
varied over a wide range, but it would, however, not be
surprising if the frequency played a less dominant role in a
boundary layer, as the Tolimien—Schlichting instability is
not limited to a single frequency but covers a continuous
band.

IX. CONCLUSIONS

We have presented a simple dynamical model for a
rather peculiar driven nonlinear oscillator that possesses
certain gross characteristics similar to those of many open
fluid flows. The cascade process is built into the model
through a single-step transfer of energy from large-eddy
motion (providing one dependent variable) to small-eddy
motion (a second variable). The model contains a param-
eter v = R /R that is the analog of the inverse Reynolds
number normalized by the value at the onset of linear in-
stability. All unforced solutions of the model are noncha-
otic. With periodic forcing the model is “receptive” to cer-
tain frequencies or frequency bands, and can be shown to
exhibit chaos by demonstrating the existence of homoclinic
tangles, horseshoes, and positive Lyapunov characteristic
components. The value of v at onset of chaos v, depends, in
general, on both the amplitude g and frequency o of the
forcing. However, if the frequency is treated as a hidden
variable, i.e., we look for the lowest forcing amplitude that
induces chaos at some frequency, a boundary that encloses
the chaotic regime can be found in the (g ,v) plane. Along
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the lower boundary of this regime the forcing level re-
quired to trigger chaos goes to zero as v—0, though in its
absence there is no chaos. Therefore the system has the
property that chaos persists in the high Reynolds limit.
(This property is consistent with a view of the laminar flow
solutions in the asymptotic limit of Reynolds numbers
tending to infinity as analogous to homoclinic orbits.) On
the other hand, there in no chaos for v> 0.76 for any fre-
quency of the sinusoidal forcing considered; this value of v
corresponds to the minimum transition Reynolds number,
below which turbulent flow is not possible. At extremely
high values of the forcing [above the upper boundary of the
chaotic regime in the (g ,v) plane], the system is in forced
oscillation, as may be expected if the flow relaminarizes by
the mechanism of domination.

The routes to chaos exhibited by the system when sub-
jected to periodic forcing are not unlike those observed in
closed flow systems. With an additional stochastic compo-
nent in the forcing, the transition processes are qualita-
tively similar to those observed in experimental studies of
periodically and stochastically excited boundary layers,
and are found to depend on both the intensity and spec-
trum of the forcing.

Further studies on variants of the model are continu-
ing, to help understand subcritical transition, the onset of
“fast” chaos following that of slow chaos and the role of
spatial variations. While it is, of course, clear that not all
flow chaos can be turbulence, it is hoped that the present
model has shown how the physical mechanisms well
known to operate in transitional and turbulent flows are
not inconsistent with a view of turbulence as dynamical
chaos.
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