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Discovering New Ordered Phases of Block Copolymers
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We propose a new and general method for discovering novel ordered phases of block copolymer melts.
The method involves minimizing a free energy functional in an arbitrary unit cell with respect to the
composition profile and the dimensions of the unit cell, without any prior assumption of the microphase
symmetry. Varying the initial conditions allows to search for different stable and metastable structures.
Application of this method to ABC star and linear triblock copolymers using an approximate free energy
reveals new morphologies not yet observed in experiment.

PACS numbers: 61.25.Hq, 61.41.+e, 64.75.+¢g

Block copolymers serve as a fertile source of “soft
materials” exhibiting fascinating periodically ordered mi-
crophases such as the “knitting pattern” (KP) [1] and the
core-shell bicontinuous gyroid phase [2]. The spontaneous
microphase ordering of block copolymers is driven by
repulsive interactions acting between distinct blocks, deli-
cately balanced by the configurational entropy which re-
flects the elasticity of the polymer chain. The chemical
bonds connecting different types of blocks keep the segre-
gation on a molecular scale leading to domains of the or-
der of 10-100 nm. The morphology formed in the ordered
state depends on composition, the interaction energies be-
tween distinct blocks, as well as the particular molecular
architecture. These facts are responsible for the rich and
complex phase diagrams characterizing block copolymer
melts [3].

Different levels of mean field theory have proven to cap-
ture the essential features characterizing microphase order-
ing of block copolymers [3,4]. Among those, the most
accurate calculation requires a full self-consistent field
(SCF) approach [5]. However, in spite of the theoretical
successes, novel morphologies have almost always been
discovered first in experiments. The reason is that theo-
retical approaches are all based upon calculating and com-
paring free energies of predetermined symmetries. This
limitation is especially accentuated when exploring the
large parameter space and various molecular designs of
multiblock copolymers. On the other hand, Monte Carlo
simulation methods, though free of assumptions about the
symmetry of the phases, are computationally expensive
and limited by finite size effects [6,7].

In this paper we propose an alternative approach for
studying the morphology of multiblock copolymers with-
out the need to assume the symmetry of the ordered phase.
Drolet and Fredrickson [8] have recently proposed a nu-
merical implementation of SCF theory that, similarly, does
not require the assumption of the microphase symmetry.
Unlike Matsen and Schick [5] they search for low free
energy solutions by solving the self-consistent equations
in real space. In contrast to their optimization procedure,
our approach involves minimizing an approximate free en-
ergy functional in an arbitrary unit cell, with respect to
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both the density profile and the dimensions of the unit
cell. Obviously, the same idea can be implemented us-
ing a SCF free energy; however, considerations for com-
putational efficiency led us to propose an approximate free
energy which is presented next. We then demonstrate the
efficacy of our approach by applying it to ABC star and
linear triblock copolymers.

The free energy of an incompressible block copolymer
melt, consisting of n polymers in a volume V, can in
principle be expressed relative to any arbitrary reference
free energy such that

F[{A¢a(;)}] = Frt + AF. ()

Here A o(F) = ¢o(F) — fo is the order parameter of the
system. It denotes the local volume fraction of monomers
of type «, measured relative to its overall (bulk) volume
fraction, f, = N,/N; where N, is the degree of poly-
overall polymerization index. For simplicity’ we assume
that all monomers occupy the same volume and the differ-
ent blocks have the same Kuhn length. The reference free
energy in (1) is chosen to have the form of a local ideal
Flory-Huggins free energy. In terms of the local volume
fraction it is given by

A,B,... >
Fog = ”k‘fT S fd;d’;_(”)m(pa(;). @)

As a first approximation for AF, we keep terms only up
to quadratic power in the order parameter, A¢,. Thus,

k T _ d -> -
PEL S S h(kDA L (AGg(—k) — FY
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where Aqﬁa(lz) is the Fourier transform of the order pa-
rameter defined as A(ﬁa(%) = (1/V) [dF Ao (F)e k7
and Ffff) stands for the expression given in (2) expanded
up to second order in A¢. The first term in (3) in-
cludes contributions from the block copolymer conforma-
tional entropy and interaction energy. Within the random

AF =

phase approximation (RPA) S, é = Si{’},_l + Xap Where
Xap = N xap is the interaction energy between « and 8
monomers expressed in terms of N and a Flory-Huggins
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parameter, Y., Where the interaction energy between

similar blocks is chosen to be zero. Sg)/; arises from the
single (Gaussian) chain density-density correlation func-
tion originating from the chain connectivity [9]. Similar
approximate free energy has been previously used by sev-
eral groups for studying the equilibrium microphase or-
dering of both AB [10,11] and ABC copolymers [12] as
well as nonequilibrium [13,14] and surface segregation
phenomena [15]. These studies suggest that including the
chain architecture at the RPA level captures the essential
physics of the problem. Since the present focus is on ef-
ficiently discovering new ordered phases, rather than on
accurately evaluating their free energy, the use of an ap-
proximate free energy is numerically advantageous.

The equilibrium morphology for a given block copoly-
mer melt (i.e., composition and interaction parameters) is
found by minimizing the free energy functional (1) subject
to the constraint of local incompressibility, > , A¢, = 0.
One way to approach this task in real space involves dis-
cretizing the free energy (1). Since we are dealing with
periodic structures we focus on an arbitrary unit cell of
dimensions D, D, D, and divide it into M, M, M, discrete
grid points. In addition to the local composition, the di-
mensions of the unit cell (i.e., each periodicity Dy, .)
are allowed to vary during the optimization process. In
contrast to all previous works that consider minimizing
free energy with respect to the periodicity of predetermined
symmetries [5,11], our use of an adaptive cell allows the
symmetry to be selected by the minimization procedure.
On the other hand, our approach is advantageous over
straightforward discretizing an arbitrary but fixed volume;
it considerably reduces the number of grid points needed
and, hence, the equilibration time. More important, it re-
moves any possible constraints imposed by the fixed cell
dimension on a periodic microphase, which generally cre-
ate strains in the system and, thus, bias the system toward
structures with lower strain energy. This point has been
clearly demonstrated in Monte Carlo simulations of lattice
models where it was shown that certain patterns appear
only at a particular box size [7].

To demonstrate our approach for exploring new self-
assembly we have chosen to first restrict our study to
two-dimension periodic microphases; extension to three di-
mension is straightforward. The scheme we have used con-
sisted of the following. A two-dimension periodic cell was
considered such that A ¢, (g, g,) becomes the fast Fourier
transform of A¢,(ny,ny), where the integer wave num-
ber, ¢,, and the integer coordinate number, ng, are defined
through k; = 27qy/Dsand rg = ngDg /M, (s = x,y), re-
spectively. For the initial guess of A¢, a random con-
figuration (either in real or Fourier space) was constructed
within an arbitrary unit cell divided into M, X M, grid
points. For the yN values considered here 32 X 32 grid
points produced an accuracy of at least 10™# in the free
energy; a finer grid would be required for higher values
of yN. The equilibrium density profile and size of the

unit cell were determined by simultaneously solving the set
of equations [0F /dA¢.(ny)] = 0, (0F/0Dy) = 0, using
standard numerical minimization algorithms such as the
steepest descent and the conjugate gradient methods. Each
minimization was repeated several times and examined us-
ing different initial conditions and a different number of
grid points. The resulting patterns, presented next in the
form of density plots, were constructed using the follow-
ing color scheme: Three different colors, red, green, and
blue were, respectively, assigned to the three A, B, and C
blocks. Only one color (red, green, or blue), correspond-
ing to the highest value of the local volume fraction, was
plotted at each point in the cell, with an intensity propor-
tional to its volume fraction. For a clear presentation of
the final pattern, the linear dimensions of the final unit cell
were replicated 3 times in each direction. The lengths were
scaled by the radius of gyration of an ideal chain, R,.

As a first application of our approach we have exam-
ined several points in the parameter space of ABC star
and linear triblock copolymers. The three density plots
shown in Figs. 1(a)—1(c) correspond to symmetric star tri-
block copolymers (i.e., f4 = fp = fc¢). A star copoly-
mer melt, with Yap = ¥sc = Xac = 26, separated into
three microdomains forming a hexagonal (HEX) honey-
comb lattice characterized by D, /D, = 1.732052 = /3
[Fig. 1(a)]. Repeating the calculation for slightly different
interaction parameters revealed that this phase is indeed
robust. The same morphology has been obtained in three-
dimension Monte Carlo simulations under similar condi-
tions [7] and was recently obtained in a SCF calculation
for a linear ABCA tetrablock copolymer melt [8]. For the
same system a metastable structure consisting of hexago-
nally ordered lozenge-shaped columns was also obtained
[Fig. 1(b)]. Both structures have been previously hypothe-
sized for ABC star triblock copolymers [16], although they
have yet to be obtained experimentally.

We have studied other types of star triblock microphases
by first varying the interaction parameters while keeping
fa = fp = fc. When Yap < Yac = ¥ac = 20 the sys-
tem converged to a HEX phase, with C blocks compris-
ing the cylinders embedded in a continuous matrix of A
and B blocks (not shown). On the other hand, when y4p
is increased above Ypc = Yac = 23 a lamellar ordering,
composed of a lamella of C blocks and a lamella of al-
ternating A and B cylinders, was obtained [Fig. 1(c)]. Fi-
nally, for yap < Yac < ¥sc ~ 30, a HEX phase of C
cylinders, within a nonuniform matrix of A and B blocks
formed (not shown). Interestingly, breaking the composi-
tion symmetry changed the morphology to the core-shell
HEX phase shown in Fig. 1(d). Unlike the patterns shown
in Figs. 1(a)—1(c), the HEX and core-shell HEX phases
[Fig. 1(d)] were both experimentally observed in ABC star
triblock copolymer melts [17].

Recent investigations of linear triblock copolymers have
led to the discovery of some fascinating two-dimension
morphologies such as the KP. In attempting to reproduce
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FIG. 1 (color).
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Ordered microphases obtained using the proposed method and free energy for ABC star triblock copolymers. Do-

mains rich in A, B, or C blocks are shown in red, green, or blue, respectively. The color scale is explained in the text. (a),(b) fa =
fs = fc and Yap = ¥sc = ¥ac = 26. The free energies per chain in units of kg7 are —0.306979 and —0.237 951, respectively.
(C) fA = fB = fc, j/AB = 26, and X/BC = X/AC = 23 (d) fA = 6/24, fB = 11/24, j/AB = 20, X/BC = 30, and X/AC = 28 The

scale in each figure is different.

this phase we have explored regions of parameter space for
which the ABC linear triblock copolymer is almost sym-
metric, i.e., f4 = 0.36 and fc = 0.33 [1]. The results
we present next are obviously preliminary and incomplete
mainly due to our restriction to two-dimension structures.
Nevertheless, they reveal a series of metastable phases
which are amenable to initial conditions, emphasizing the
advantage of the method for exploring the relative stabil-
ity of different phases and possible kinetic pathways. It is
possible and indeed likely that some of these metastable
phases will become stable in other regions of the parame-
ter space.

Two sets of results, all of which keep the same order of
X values, yap < Yac < XBc, are shown in Figs. 2 and
3. Starting from a random density profile in real space
a metastable phase shown in Fig. 2(a) has evolved. Be-
cause of its resemblance to the KP [1] we shall denote it
as the “knittinglike pattern” (KLP). A metastable lamella-
cylinder (LC) phase, similar to that shown in Fig. 2(b), but
with different relative positions of the cylinders, emerged
from a slightly randomized KLP profile. In some cases,
depending on the initial degree of randomness, either the
KLP was recovered or a stable LC phase [Fig. 2(b)] was
obtained. The LC pattern has previously been studied and
obtained in experiments of ABC triblock copolymers [18].
Interestingly, at lower values of ¥, a random initial profile
converged to a “tricolor checkerboardlike” (TCB) phase
characterized by D,/D, = 1 [Fig. 2(c)]. From our pre-
liminary studies of the patterns formed in ABC linear
copolymers, the TCB phase was found stable for relatively
large regions of parameter space. A similar phase, com-
posed of A and C cylinders tetragonally ordered within
a B matrix, has been previously obtained in experiment
[19] and studied theoretically [12]. Although the KP was
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not obtained in this search it was experimentally discov-
ered in the vicinity of the lamella and the LC [Fig. 2(b)]
phases [1].

The second interesting set of calculations at higher val-
ues of y yielded new morphologies from which we present
only three of the lowest free energy structures obtained.
The microphases shown in Figs. 3(a)—3(c) were each ob-
tained from different initial conditions: a random initial
profile constructed in real space, a hexagonal order of A
(red) cylinders in a B/C matrix, and a hexagonal order of
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FIG. 2 (color). Ordered microphases of ABC linear triblock
copolymers with f4 = 0.36 and fp = 0.31. (a),(b) yar = 30,
¥sc = 32, and jac = 22; a “knittinglike pattern” (KLP) and
a lamella-cylinder (LC) phase. (c) yas = 26, ¥sc = 30, and
Xac = 20; a “tricolor checkerboardlike” (TCB) phase. The
scale in each figure is different.
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FIG. 3 (color). Ordered microphases of ABC linear triblock
copolymers obtained from different initial conditions for
fa = 0.36 and fp = 0.31. Here, yazp = 30, ¥pc = 35, and
Xac = 22. (a) An “interconnected wheel-like” (IW) pattern.
(b) A decorated lamella-cylinder pattern. (c) An alternating
lamella-cylinder pattern. The scale in each figure is different.

C (blue) cylinders in an A/B matrix. The pattern shown
in Fig. 3(a) was found to have the lowest free energy. It
resembles interconnected wheels (IW) where the center
of each wheel (blue) resembles the unit cell of the KP,
whereas, each connection resembles the unit cell of the
TCB pattern. The second ordered phase shown in Fig. 3(b)
has a pattern of alternating layers of A (red) “bones” and C
(blue) cylinders, each differently decorated with B (green)
blocks. The morphology of the third metastable phase,
shown in Fig. 3(c), clearly retained the initial C block
(blue) microdomains, from which it is understood that
the minimization process mainly involved the separation
of A and B blocks. The TCB pattern was also obtained
for this system starting from a random profile in Fourier
space. However, its free energy lies in between that of
the patterns shown in Figs. 3(a) and 3(c). The susceptibil-
ity of the final phase to different initial conditions, as fea-
tured in these examples, is essential for discovering various
stable and metastable phases and can be exploited to study
metastability arising from different degrees of preordering
constraints.

In this paper we have proposed a new method for dis-
covering ordered phases of block copolymer melts. The
central idea is based on discretizing and minimizing a
free energy functional in an arbitrary unit cell in real
space, and allowing for both the profile and dimensions
of the unit cell to vary. Application of the method and
its efficacy to predicting two-dimension ordered phases
have been demonstrated using an approximate free en-
ergy for triblock copolymer melts. Several new stable
and metastable morphologies of triblock copolymer melts
have been revealed, reflecting the ability of the method
to explore the diverse self-assembly of multiblock copoly-
mers and to help guide experimental design of new mate-

rials. To effectively search the vast configuration space of
multiblock copolymers more ellaborated sampling meth-
ods such as simulated annealing or parallel tempering [20]
may be considered. A powerful extension of our approach
is to combine it with SCF, wherein new ordered morpholo-
gies identified by our approach serve as input for more
elaborated SCF calculations. This combination will pro-
vide the long desired theoretical tool for efficiently and
accurately predicting, a priori, complex phase diagrams
of multiblock copolymer melts.
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