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The authors examine the possibility of a two-step nucleation to the bulk condensation transition that
proceeds via a metastable liquid cluster intermediate having some preferred size. The metastable
intermediate is stabilized by electrostatic repulsion, which becomes screened by small mobile ions
at sufficiently large cluster sizes, thus allowing the eventual condensation to a bulk phase. Our
calculation employs a capillary model for the cluster and the electrostatic interactions are treated
using the Poisson-Boltzmann approach. Condensation via this metastable intermediate may be a
very general phenomenon which applies not only to solutions of charged particles �e.g., proteins,
colloidal particles, and polyelectrolytes� but to any system involving short-range attraction and
long-range repulsion undergoing macrophase separation in which a metastable microphase
separation is also possible. © 2007 American Institute of Physics. �DOI: 10.1063/1.2761891�

I. INTRODUCTION

Weakly charged polyelectrolytes and colloidal particles
are of great interest due to their rich phase behavior and
relevance to biopolymers. For example, weakly charged
polymer solutions below the coil/globule transition and
charged colloidal suspensions share many properties with
proteins in solution. Because protein structural determination
still largely relies on x-ray diffraction from high quality pro-
tein crystals, protein crystallization from solution has been
an area of active study. Recent work by Vekilov et al. on
several protein solution systems1–4 suggests a two-step
nucleation mechanism, whereby the nucleation of the crys-
talline phase is preceded by the formation of a dense liquid-
like precursor. This two-barrier scenario predicts different
features than implied by the more common single-barrier
model, such as the temperature dependence of the nucleation
rate.2,5 The nature of the dense liquidlike clusters is not clear.
However, in order for there to be two nucleation barriers in
the formation of the bulk crystal phase, these clusters must
correspond to a local free energy minimum with respect to
the size �which is one of the key reaction coordinates�. In this
paper we explore one physical scenario due to long-ranged
Coulomb repulsion which can give rise to metastable cluster
intermediates in the transition between a dilute solution of
monomers and a bulk, condensed phase.

The existence of large equilibrium clusters stabilized by
charge has been demonstrated previously for a charged col-
loidal system in the absence of excess ions by Groenewold
and Kegel.6 In this case, the driving force for condensation
due to short-range van der Waals interactions is checked by
the unfavorable long-range electrostatic repulsion between
the particles that increases superlinearly with the number of
particles in a cluster, thus preventing the formation of a bulk
condensed phase. In contrast, we are interested in clusters

that can further nucleate a bulk condensed phase. We pro-
pose that the presence of excess ions that neutralize and
screen charges on the monomers in solution provides the
needed mechanism for allowing the formation of a bulk liq-
uid phase. We find that for some combinations of parameters,
a bulk condensation transition proceeds by going through a
metastable cluster state with a well-defined cluster size, and
that the metastable cluster itself is formed through nucle-
ation, i.e., the overall process involves two nucleation barri-
ers. While our model may not be directly applicable to the
crystallization of proteins from solution, we believe the
mechanism for condensation via metastable cluster interme-
diates to be quite general, though possibly confined to a
small region of the phase diagram, in systems having short-
range attraction and long-range repulsion, such as solutions
of polyelectrolytes,7 charged colloids,8 and globular
proteins,9 which can exhibit both microphase and mac-
rophase separations,10 with the former involving clusters of
finite sizes.

Conditions giving rise to the metastable intermediate
cluster behavior as well as the nature of cluster formation are
analyzed in the following sections. Our analysis employs a
simple capillarity model for the cluster that is commonly
used in classical nucleation theory, combined with the
Poisson-Boltzmann equation for treating the electrostatic in-
teractions. In Sec. II A, we briefly review the classical nucle-
ation theory and describe its application to our system. In
Sec. II B, the electrostatic contribution to the cluster free
energy is calculated using the Poisson-Boltzmann approach.
We present the results of our calculation in Sec. III: we show
the free energy of cluster formation as a function of size and
demonstrate several scenarios with respect to the stability of
the intermediate clusters for a specific set of parameters. The
formation of clusters with preferred size is shown to be simi-
lar to the formation of micelles and a concentration similar toa�Electronic mail: zgw@cheme.caltech.edu
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the critical micelle concentration can be identified. Section
IV provides a summary of our results with some concluding
remarks.

II. MODEL

We consider a dilute solution of weakly charged particles
�henceforth called unimers in their unclustered state�, which
can be globular proteins, polyelectrolyte globules, or colloi-
dal particles, each carrying an electric charge q. Without loss
of generality, we take the charge on the unimers to be posi-
tive. The system is maintained electrically neutral by coun-
terions which we assume to be monovalent for simplicity. In
addition, the system contains ions from salt, also assumed to
be monovalent. Short-range attractions, e.g., van der Waals
or hydrophobic interactions, provide the driving force for the
formation of clusters and for potential condensation into a
bulk phase; a schematic is shown in Fig. 1. As the focus of
this work is on the metastable liquidlike clusters, we will not
address issues directly related to the formation of a crystal
phase.

We study the formation of clusters and the eventual con-
densation into a bulk phase by taking a nucleation perspec-
tive, i.e., by constructing the appropriate free energy of for-
mation as a function of the size of the clusters. Since a
cluster is formed from the surrounding solution of unimers
and in the presence of small mobile coions, and counterions,
it is convenient to treat the volume enclosing the cluster as
an open system, with chemical potentials �, �+, and �−,
respectively, for the unimers, the coions, and the counterions.
The appropriate free energy is the change in the grand po-
tential upon the formation of a cluster from a uniform solu-
tion, defined as

�W = Wc�m;�,�+,�−,V� − Ws��,�+,�−,V�

= Fc�m,n+,n−,V� − m� − n+�+ − n−�−

+ �ps + p+ + p−�V . �1�

In this expression, Fc�m ,n+ ,n− ,V� is the Helmholtz free en-
ergy of a charged cluster of size m, with n+ coions and n−

counterions, and Ws�� ,�+ ,�− ,V�=−�ps+ p++ p−�V, with ps,
p+, p−, the �osmotic� pressure of the unassociated unimers,
the coions, and counterions, respectively; we have implicitly
assumed that these pressures are additive for the purpose of
calculating Ws, which amounts to making an ideal solution
�in the sense of Henry’s law� approximation for these spe-
cies. Since we do not explicitly consider the solvent, for
simplicity of terminology, we will often refer to the dilute
solution as the vapor, and the osmotic pressure as just the
pressure.

We treat the cluster using a simple capillary model, i.e.,
taking it as a spherical of liquid of uniform density with a
sharp interface. While this is clearly a crude approximation
and there are many recognized pitfalls in its application to
nucleation, for our present purpose, the model is sufficient to
capture most of the essential physics of interest without com-
plications that would be introduced in a more realistic but
mathematically more involved representation and solution.

With the use of the capillary model, it is convenient to
separate the free energy change into two parts: a contribution
due to the short-range interactions in a hypothetical un-
charged system and a contribution due to the electrostatic
effects. Hereafter we will use the word “uncharged” when
referring to the hypothetical uncharged system lacking
coions and counterions. We write Eq. �1� as

�W = �W�0� + �W�e�

= �Fc
�0��m,V� − m��0� + psV� + �Fc

�e��m,n+,n−,V�

− n+�+ − n−�− + �p+ + p−�V − m��e�� , �2�

where Fc
�0� and Fc

�e� are, respectively, the uncharged and elec-
trostatic parts of the Helmholtz free energy of the cluster �the
translational entropy of the cluster is not included�, and ��0�

and ��e� are, respectively, the uncharged and electrostatic
parts of the chemical potential of the unimers ���0�+��e�

=��, with the translational contribution contained in ��0�.
We now proceed to calculate these two free energy

changes separately. We treat the uncharged part using the
classical nucleation theory and the electrostatic part using the
Poisson-Boltzmann approach.

A. Free energy without electrostatic interaction

We calculate the free energy of formation for an m-sized,
uncharged cluster using classical nucleation theory. The clas-
sical nucleation theory makes the simplistic assumption that
the free energy of a cluster can be dissected into a negative
bulk free energy and a positive interfacial free energy. Thus
the grand free energy of a dense cluster of volume Vc having
interfacial area Ac is

FIG. 1. Schematic of a cluster of charge +Q within a monovalent coion and
counterion reservoir.
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Wc = − pc���0��Vc + Ac� ,

where pc is the pressure �the negative of the grand potential
density� inside the cluster and � is the interfacial tension.
The grand potential change upon creating a cluster of volume
Vc in an observational volume V from a homogeneous solu-
tion of unimers with pressure ps is then

�W�0� = − Vcpc���0�� + Ac� − �V − Vc�ps���0�� + Vps���0��

= − Vc�pc���0�� − ps���0��� + Ac� . �3�

We now write the pressure difference in terms of the super-
saturation relative to the phase coexistence pressure of the
hypothetical uncharged system.

To do so, we utilize the thermodynamic relation
��� /�p�T=1/�, where � is the density. It follows that the

pressure difference is related to the difference in chemical
potential through pc− ps= ��c−�s����0�−�coex

�0� ���c���0�

−�coex
�0� �, where �coex

�0� is the chemical potential of the hypo-
thetical uncharged system at vapor-liquid coexistence at
which pc= ps. Finally, assuming ideal gas behavior for the
vapor phase, the chemical potential difference can be written
as ��0�−�coex

�0� =kT ln�ps / pcoex��kT ln�S�. The resulting free
energy of formation is

�W�0� = − kT�cV ln�S� + Ac� = − mkT ln�S� + Ac� . �4�

To use Eq. �4� for the free energy of formation for a
cluster of m unimers, the dependence of the surface area on
m needs to be specified. In the case of coalescing globular
polyeletrolytes, if we assume that the globules are uniform
spheres of radius R1 and that there is no change in the mono-
mer density �as the polymers can deform and interpenetrate�
upon the formation of a cluster of radius Rc, then clearly

m = �Rc/R1�3. �5�

On the other hand, hard spherical colloids pack less densely
and therefore this expression would need to be modified by
inclusion of a packing factor. Throughout the rest of the pa-
per, we assume the former so that

Ac�m� = 4�R1
2m2/3. �6�

The expression for �W�m� as given by Eqs. �4� and �6�
contains one of the well-known inconsistencies of classical
nucleation theory: the existence of a finite free energy of
formation for a cluster of one monomer. Resolution of this
inconsistency is subtle and has been discussed intensely by
Lothe and Pound,11 Reiss and Katz,12,13 and more recently by
Kusaka.14 Rather than make use of these more rigorous
methods, which are unnecessary given the nature of the ap-
proximations we are making, we utilize a simple corrected
form that has been artificially shifted by taking the free en-
ergy relative to a cluster of size one,

�W�0� = − kT ln�S��m − 1� + 4�R1
2��m2/3 − 1� . �7�

We note that this shift has no consequence on the main re-
sults of this study.

Equation �7� is the expression for the free energy of
formation of a cluster of m unimers for an uncharged system.
For S�1, this expression predicts the well-known behavior
for nucleation of a dense liquid phase through a single nucle-

ation barrier. No metastable cluster is allowed. We next dis-
cuss the electrostatic interaction which provides the neces-
sary balancing force that makes the metastable clusters
possible.

B. Free energy of electrostatic interactions

It is easy to see how Coulomb repulsion can lead to a
preferred cluster size. We first consider the case of no coun-
terions and no added salt.

In a cluster of m unimers each having a point charge q,
the total Coulomb interaction is given by

Ec =
1

2 �
i,j�i

q2

4��0�Rij
,

where Rij is the distance between charges i and j, � is the
dielectric constant of the medium �assumed uniform through-
out V here�, and �0 is the vacuum permittivity. Since the
average distance between the charges scales as the size of the
cluster Rc, the electrostatic interaction in a cluster of m
charged unimers scales as

Ec 	
q2

8��0�Rc
m�m − 1� 	

q2

8��0�R1
m5/3, �8�

where the second part follows from the relationship between
the size of the cluster and the size of the unimer, Eq. �5�, and
we have assumed m to be much larger than one.

When combined with the neutral part of the free energy
�W�0� from Eq. �4�, we see that as the cluster size �number of
unimers� increases, the free energy first increases due to the
positive surface free energy term, then decreases because of
the negative bulk free energy term, but increases again due to
the positive superlinear electrostatic energy term, creating a
free energy minimum at some intermediate size

�W 	 4�R1
2�m2/3 − mkT ln�S� +

q2

8��0�R1
m5/3;

this is, in fact, the same argument as given by Groenewold
and Kegel.6

While this simple scaling analysis predicts the existence
of clusters with a preferred size, the superlinear dependence
of the free energy on m for large clusters excludes the pos-
sibility of a dense bulk phase. Thus these mesoscopic clus-
ters are fully stable. A dense bulk phase is made possible by
the combined neutralization and screening by the coions and
counterions. It is expected that bare Coulomb repulsion is
dominant when the cluster size is small, while neutralization
and screening become effective when the cluster size be-
comes sufficiently large, making the electrostatic free energy
extensive again. Figure 2 shows the crossover from the m5/3

scaling to the linear scaling of the electrostatic free energy as
a function the cluster size. We now proceed with a more
detailed description of the calculation for the electrostatic
part of the free energy of cluster formation.

Consistent with our use of the uniform liquid model for
the cluster, we assume the charge distribution due to the
clustering unimers to be continuous and uniform inside the
cluster with a constant charge density �0. This jellium model
is similar to that used by Sear and Warren15 in their calcula-
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tion of the electrostatic contribution to planar surface ten-
sion. We then include coions and counterions that equilibrate
with the charged cluster with ion density profiles c+ and c−.
�We make the simplifying but inconsequential assumption
that the cations from the salt are the same as the counterions
for the charged clusters of interest.� Superposition of these
charge density profiles with the step-function charge density
profile of the cluster results in an overall charge density pro-
file ��r�=�0e	�Rc−r�+ec+�r�−ec−�r�, where 	�Rc−r� is a
step function equal to one inside the cluster and zero outside
and e is the elementary unit of charge. Re-expressing Cou-
lomb’s law in terms of a variational integral by introducing
the electrostatic potential 
�r� leads to the following expres-
sion for the electrostatic energy:

Ec���r�,
�r�� =
 dr���r�
�r� −
�0�

2
��
�r��2� . �9�

The total electrostatic free energy must include the transla-
tional entropy of the mobile free ions. Since the volume sur-
rounding the cluster is semiopen: closed with respect to the
condensed cluster unimers, but open with respect to the
coions and counterions, we add the grand free energy due to
these mobile ions. Treating the ions as volumeless, noninter-
acting particles in contact with a reservoir of chemical po-
tential �2, we have the total electrostatic free energy of the
cluster as

W�e� = 

V

dr���r�
�r� −
�0�

2
��
�r��2�

+ kT

V

dr
c+ ln�c+a3� − c+ − c+��2�

+ kT

V

dr
c− ln�c−a3� − c− − c−��2� . �10�

The system volume �V� is taken to be large enough to in-

clude the cluster and any variations in ion concentration. The
length scale, a, assumed to be the same for both types of
ions, is of no consequence in the results because of cancel-
lation with its appearance in the reservoir chemical potential,
�2=kT ln�c�a3�.

The spherically symmetric equilibrium ion concentration
profiles c+ and c− and the electrostatic potential are obtained
by extremization of the free energy in Eq. �10� with respect
to these variables. Variation with respect to the ion concen-
trations yields

c+�r� = c� exp�− �e
�r�� ,

c−�r� = c� exp��e
�r�� ,

where � is the inverse thermodynamic temperature 1/kT.
Substitution of these relations back into the free energy Eq.
�10� and subsequent variation with respect to 
�r� results in
the Poisson-Boltzmann equation,

�0��2
�r� = − �0e	�Rc − r� + 2kTc� sinh��e
�r�� . �11�

To reduce the number of independent parameters and gain
better insight into the relative importance of the various
physical effects, it is convenient to nondimensionalize the
equations. To this end, we introduce the Debye screening
length, 
= �8�bc��−1/2, and the Bjerrum length, lB

=�e2 / �4��0��. We elect to express the length r in units of lB

as opposed to 
 to avoid the complication of an ion concen-
tration dependent length. Similarly, the charge density �0 is
nondimensionalized as �0lB

3 . Finally, �e
 is the resulting di-
mensionless electrostatic potential, �. The free energy of a
charged cluster in an ion reservoir expressed in terms of the
above dimensionless variables is

W�e� = − kT

V

r2dr�1

2
����2 + � lB



�2

cosh���r��

− 4��0lB
3��r�	�Rc − r�� . �12�

The corresponding nondimensionalized Poisson-Boltzmann
equation is

− �2� + � lB



�2

sinh���r�� = 4��0lB
3	�Rc − r� . �13�

The ratio lB /
 is seen to be a natural parameter measuring
the importance of screening. It can be easily verified that in
the limit of lB /
=0 or 
 / lB→�, we recover the electrostatic
energy of a uniformly charged sphere.

For simplicity of presentation, thus far we have consid-
ered the dielectric constant to be uniform. In reality, the two
regions inside and outside the cluster will have different di-
electric constants, �1 and �2, respectively. Apart from modi-
fying the energy due to change in the electrostatic potential,
the difference in dielectric constant also results in a preferred
solubility of the ions within the region of higher dielectric
constant due to difference in the reference chemical potential
in the two different media. This difference may be approxi-
mated using the Born solvation energy �see Appendix A�. An
analogous derivation can be performed that treats the effect
of a difference in the dielectric constant between the cluster

FIG. 2. Example of the size dependence of the free energy of electrostatic
interaction ���W�e�� depicting m5/3 and m behavior for small and large clus-
ters, respectively. This curve was obtained using cluster charge density,
�0lB

3 =0.08, Debye screening length, 
 / lB=0.15, and dielectric constant ratio,
�1 /�2=0.2.
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and the solvent. It requires two additional dimensionless
groups, the ratio of the dielectric constants �1 /�2, and the
difference in reference chemical potentials, ���*=��1

*

−��2
*. The expressions for this derivation are given in Ap-

pendix B. It is the solutions to these equations that are pre-
sented in this section and Sec. III.

The Poisson-Boltzmann equation is solved numerically
using the Runga-Kutta method. Boundary conditions arise
from neutrality at an infinite distance from the cluster, �
→0 as r→�, and spherical symmetry, �� /�r→0 as r→0.
Additionally, across the cluster boundary, we have the conti-
nuity of the electric potential, ��Rc

−�=��Rc
+�, and the electric

displacement field, −�1���Rc
−�=−�2���Rc

+�.
Solution of the differential equation that includes the di-

electric constant discontinuity �Eq. �B2�� results in potential
profiles and corresponding total charge density profiles such
as those shown in Fig. 3 for clusters of different sizes, m. It
is clear from these figures that for small cluster sizes, e.g.,
m=10, the charge of the cluster is essentially the bare charge
carried by the aggregating molecules, and the corresponding
electrostatic potential is barely distinguishable from that ob-

tained from solving the simple unscreened Poisson equation
�with an inverted parabolic potential profile�. For m=100, we
find that there is now appreciable neutralization of the charge
by the counterions in the center of the cluster and the poten-
tial in the center nearly reaches the bulk asymptotic value.
For the larger clusters, m=103 and m=104, the neutralization
of charge in the interior of the cluster is almost complete.
The charge that is not neutralized is distributed primarily
near the edge of the cluster with an oppositely charged re-
gion in the immediate vicinity outside the cluster. The poten-
tial profile becomes essentially flat inside the cluster for
these larger sized clusters and decays to zero with a length
scale on the order of the Debye screening length. For clusters
whose radii are much larger than the Debye screening length,
it is possible to write the electrostatic free energy of the
cluster as a volume term and an interfacial term, with a nega-
tive interfacial tension.15,16

The crossover from the small cluster to the large cluster
behavior in the electrostatic potential and charge density is
consistent with the crossover in the free energy shown in Fig.
2. It is this crossover that is largely responsible for the two-
barrier nucleation scenario in the condensation of the mol-
ecules.

C. Total free energy

By construction, we have written the total free energy of
cluster formation as composed of an uncharged part and an
electrostatic part. Referring to Eq. �2�, the free energy ex-
pression derived in Sec. II A accounts for the terms in the
first bracket of the second equality in Eq. �2�, while the elec-
trostatic free energy described in the last section corresponds
to the first three terms in the second bracket. It is straightfor-
ward to include the remaining bulk osmotic pressure terms
due to the coions and counterions in a uniform solution by
defining a free energy difference ��W�e� using W�e� from Eq.
�10� yielding

��W�e� = W�e� − kT

V

dr 2c�, �14�

which has no effect on solution of the governing differential
equations. To complete our total free energy, we need to
account for the last term in the second bracket of Eq. �2�. By
our definition, ��e� is the excess chemical potential of the
unassociated unimers due to the electrostatic self-interaction
within the globular cluster. We treat the unimer in a manner
identical to that for the cluster, i.e., regarding it as a uni-
formly charged sphere surrounded by mobile coions and
counterions. The excess chemical potential is then logically
identified as the special case of Eq. �14� when m=1. The
total electrostatic free energy that accounts for all the terms
in the second equality of Eq. �1� is then

�W�e� = ��W�e��m� − m��W�e��1� �15�

and the total free energy of cluster formation is

�W = �W�0� + �W�e�. �16�

This expression yields the free energy of formation of an
m-sized cluster for a given set of parameters: 
 / lB, R1 / lB,

FIG. 3. �Color online� Electrostatic potential profiles �a� and total charge
density profiles �b� obtained from the Poisson-Boltzmann equation �Eq.
�B2�� for cluster radii of increasing radius.
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�0lB
3 , �1 /�2, the interfacial tension �, and the supersaturation

S. Its behavior as a function of m provides information about
the thermodynamic stability of the clusters, their size distri-
bution, and their role in the formation of a dense bulk phase.

D. Bulk phase coexistence

In Sec. II A, the supersaturation S is introduced with
reference to the coexistence vapor pressure of a hypothetical
uncharged system. For this hypothetical system, a bulk con-
densation occurs at S=1. The addition of electrostatic inter-
actions shifts the value of the coexistence supersaturation
from one, for an uncharged system, to a value greater than
one, for the charged system. Its new value is determined by
the condition that the extensive terms ��m� in the total free
energy of cluster formation must sum to zero in the limit of
m→�; this is equivalent to the equality of the grand poten-
tial between the dilute solution of unimers and the condensed
phase �within the same volume�, i.e., the equality of �os-
motic� pressure. From our expression for the total free en-
ergy, it is straightforward to show that the coexistence “su-
persaturation” �that is, the supersaturation relative to the
coexistence pressure of a hypothetical uncharged system� is
given by

Scoex = exp� 1

kT
�wbulk

�e� − ��W�e��1��� ,

where wbulk
�e� =limm→���W�e��m� /m. The full algebraic ex-

pression for wbulk
�e� is somewhat cumbersome and is given in

Appendix C. Note that while there exists an algebraic form
for wbulk

�e� , we still must solve the Poisson-Boltzmann equation
to obtain the electrostatic energy of a unimer, W�e��1�.

We now have a reference with which to judge whether
any clusters formed are metastable with respect to the dense-
liquid phase, and therefore can take part as an intermediate in
bulk phase formation.

III. RESULTS AND DISCUSSION

Before presenting and discussing the main results of this
study, we first revisit the physics leading to cluster formation
and discuss the limits of their existence and their relation to
bulk phases. As discussed in Sec. II B and illustrated in Fig.
2, there are two main regimes associated with the electro-
static part of the free energy of formation, the superlinear
�m5/3� and the linear �m� regimes, corresponding to highly
charged and largely neutralized clusters, respectively. The
interplay between the location and magnitude of these re-
gimes, the surface tension, and the solution supersaturation
gives rise to several possible behaviors involving preferred-
size clusters.

In order to obtain the two-barrier free energy curve we
discuss here, the electrostatic and the uncharged free energies
must be of the same order of magnitude. This results in rich
phase behavior, but limited cluster sizes. The size of clusters
is limited by the size range of the m5/3 region in Fig. 2. In
other words, clusters acting as metastable intermediates can
be no larger than the size �m� at which the �W�e� dependence
changes from m5/3 to linear. While very large clusters
�m�104� are predicted under certain conditions, we find that

these clusters do not exist in a state metastable to the bulk
liquid, i.e., the bulk liquid state does not exist for these con-
ditions. It may be possible that these large clusters are meta-
stable with respect to a more stable crystalline state; this
possibility will be examined in future work.

We now briefly discuss the parameters used in our
model. An ion concentration c� in the range of 0.8M –8 mM
in water �physiological salt concentration =0.2M� with a di-
electric constant of 80 ��2 in our notation� results in the pa-
rameter 
 / lB ranging from 0.25 to 25, the Bjerrum length
being 7 Å. We choose 
 / lB=15 for our representative calcu-
lations. The dielectric constant within proteins, �1 is difficult
to estimate; however, values from 4 to 20 �Ref. 17� have
been theoretically estimated and used, resulting in corre-
sponding �1 /�2 values of 0.05–0.25. In our representative
calculations, we set �1 /�2=0.2. Decreasing �1 /�2 increases
the electrostatic free energy W�e� as well as results in a slight
increase in the cluster size at which crossover between the
m5/3 and m behavior occurs. For the interfacial tension, we
use �=0.95kT / lB

2 =8 mN/m, which is intermediate between
a clean oil/water interface �50 mN/m� and tensions mea-
sured in colloidal phases �1–20 �N/m�.15 We use a low
charge density �0lB

3 =0.08. This charge density is on the same
order of magnitude as many globular proteins. Low charge
density is necessary in order to still allow for a bulk conden-
sation. In the case of polyelectrolytes, the low charge density
is also necessary to ensure that the collapsed polymer is in
the globular regime, not in the necklace regime.18 Finally, we
choose R1 / lB=1 for the unimer size. We choose this size
because it most clearly illustrates the behavior we wish to
highlight. This size is on the smaller end even for proteins.
For larger unimer size, the range of the superlinear depen-
dence of the free energy electrostatic interaction decreases,
thus decreasing the aggregation number of the metastable
clusters, other conditions being equal. On the other hand,
smaller sizes for charged unimers are relevant for other sys-
tems, e.g., in zeolite or nanoparticle synthesis.19,20

The main result of this study is summarized in Fig. 4,
which shows the free energy of formation as a function of

FIG. 4. Total free energy of cluster formation for six increasing values of
supersaturation �S�.
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the cluster size for increasing values of the supersaturation
�or equivalently the unimer concentration�. At small super-
saturation, the only minimum of the free energy curve occurs
at m=1. As supersaturation increases beyond some critical
value �curve A�, a local minimum in the free energy for a
finite-sized cluster first begins to develop. As the concentra-
tion of unimers increases, the free energy of the finite-sized
cluster decreases, with an attendant shift in the location of
the minimum to larger cluster size. When the supersaturation
exceeds that corresponding to the vapor-liquid coexistence
�curve B, indicated by Coex.�, the global free energy mini-
mum is that of the bulk liquid phase �i.e., infinite cluster
size� and the vapor phase becomes metastable with respect to
the stable bulk liquid. However, the formation of the bulk
liquid phase requires overcoming two barriers, the first for
the formation of the finite-sized clusters and the second for
the clusters at the free energy minimum to grow into the bulk
liquid phase. We thus have the scenario of a two-step nucle-
ation process with the clusters of finite sizes acting as long
lived metastable intermediates. The lifetime of these meta-
stable clusters is determined by the barriers on the two sides
of the minimum. For the range of parameters we use in our
study, the typical free energy barrier for the dissolution of the
clusters is on the order of 10kT, depending on the supersatu-
ration. The barrier to the formation of the bulk liquid phase
can be quite large �which also implies large critical nuclei�,
again depending on the supersaturation, due to the strong
electrostatic interactions. In reality, these large clusters are
more likely to take other shapes, such as disks or rods,6 to
decrease the electrostatic repulsions; this would lead to a
decrease in the second nucleation barrier. For sufficiently
large supersaturation, the second nucleation barrier disap-
pears �curve F� and the condensation into a liquid bulk phase
proceeds through a simple single-barrier scenario.

In addition to the metastable liquidlike clusters that can
be intermediates in the bulk phase transition, in other words,
that result in two nucleation barriers such as those shown in
Fig. 4, our model also predicts the existence of clusters that
are metastable or stable with respect to the dilute solution,
with no possibility for bulk liquid formation. �We clarify that
the terms “stable” and “metastable” are used in the sense of
Fig. 4: the clusters are considered stable with respect to the
solution phase if the minimum in their free energy of forma-
tion from the solution phase is negative �curve E, for ex-
ample�, and metastable if the minimum of the free energy of
formation is positive �curve C�. Curve D denotes the limit of
this stability.� The case of metastable clusters with respect to
the unimer solution phase, whether a bulk liquid exists or
not, may be reasonably described by our model, as the num-
ber density of the clusters formed will be small due to the
positive free energy required for their formation. In the case
where the clusters are more stable than the solution of un-
imers, we expect that the clusters will appear in large num-
bers; cluster-cluster as well as unimer-cluster interactions be-
come important and our picture of noninteracting clusters is
no longer valid. In all likelihood this latter case would cor-
respond to microphase separation, which is beyond the scope
of this work.

Figure 4 demonstrates that several phase transition sce-

narios are possible as the supersaturation varies. Clearly the
transition scenarios will depend significantly on the extent of
screening. Since the unimer concentration is proportional to
S, and the reservoir ion concentration is proportional to
�lB /
�2, these serve as the natural controlling parameters in
experiments. We thus present in Fig. 5 generalized “phase
diagram” in S and 
 / lB that illustrates the different phase
transition scenarios. In this “phase diagram,” the dash line
designates the vapor-liquid coexistence. Region II corre-
sponds to stable dilute solutions, while in region I a super-
saturated dilute solution phase will turn into the bulk liquid
phase via the normal one barrier nucleation. Note that region
I corresponds to high screening and/or high supersaturation.
The region bounded by the two dotted lines is the region
where finite-sized clusters have a free energy minimum.
With reference to Fig. 4, the lower dotted line corresponds to
the first appearance of a shoulder on the left �curve A�, while
the upper dotted line corresponds to the disappearance of the
barrier on the right �curve F�. The dash-dot line denotes the
supersaturation at which the free energy of formation of the
clusters becomes zero �curve D�. Thus, regions III and VI
correspond to clusters that have lower free energy than the
unimers. As alluded to in the last paragraph, the energetic
favorability for forming the clusters will lead to a high con-
centration of clusters which is outside the regime of validity
of this study. Regions IV and V are the most interesting from
the perspective of this work. Region IV corresponds to meta-
stable preferred-size clusters that cannot grow into bulk liq-
uid, while in region V the metastable clusters serve as inter-
mediates to the formation of the bulk liquid. A two-barrier
nucleation mechanism operates in region V.

The formation of the metastable clusters with preferred
sizes is akin to the formation of micelles in surfactant solu-
tions. To explore this connection, we calculate the cluster
size distribution and the partitioning of the molecules be-
tween unimers and clusters. Assuming no cluster-cluster and
unimer-cluster interactions, the cluster size distribution, i.e.,
the number density of m-sized clusters is directly related to
the free energy of formation, �W�m�,21

FIG. 5. “Phase diagram” for a unimer radius of 1lB, dielectric ratio, �1 /�2, of
0.2, charge density, �0lB

3 , of 0.08, and surface tension, �=0.95kT / lB
2 .
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�m � e−��W�m�. �17�

The proportionality involves a volume scale that arises from
evaluation of the full partition function of the clusters, in-
cluding shape fluctuations. As such fluctuations are not in-
cluded in our mean-field calculation, we simply set the vol-
ume to be the volume of a unimer 4�R1

3 /3. As the size
distribution is dominated by the exponential term, uncertain-
ties in this volume factor should have little consequence on
the results.

Figure 6 shows an example of the cluster size distribu-
tion �normalized by the total number of clusters� for several
values of the supersaturation �unimer concentration�. The bi-
modal nature of the distribution, with one peak for the un-
imers and one at some preferred size, is very similar to the
behavior of micellar solutions. However, the width of the
distribution is fairly broad and also the cluster peak shifts
significantly to larger sizes as the supersaturation increases,
in contrast to micellar solutions. In the case of micelles, the
size is determined primarily by local packing constraints,22

which severely limit the range of size variations.
A quantity similar the critical micelle concentration

�CMC� can be defined for the cluster formation by examin-
ing the partitioning of molecules between the unimers and
clusters. Because of the broad nature of the size distribution,
we include the entire distribution of clusters between the two
free energy barriers. A typical plot is shown in Fig. 7.

In the case of surfactant solutions, CMC is usually de-
fined to correspond to the condition at which the surfactant
molecules are equally distributed as unimers and micelles. In
Fig. 7, this occurs at a scaled density � /�coex�1.15. �Here,
�coex is the unimer density at which coexistence occurs for
the hypothetical uncharged system.� In our case, however, a
more dramatic change of behavior occurs at � /�coex�0.16.
This condition corresponds to the first appearance of a local

minimum in the free energy �curve A�. Since the condition
corresponding to curve A sets the limit of metastability for
clusters of finite sizes, i.e., clusters with finite sizes can exist
as entities with finite lifetime only beyond this supersatura-
tion, it should be logically termed the micellar �cluster� dis-
solution concentration �MDC�, following a similar concept
�the micellar dissolution temperature� introduced in Ref. 23
in the study of micellar formation in diblock copolymer
melts. For our current system, the MDC is a theoretically
more meaningful concept than the CMC.

For concentrations beyond the MDC, adding more mol-
ecules to the system essentially only increases the number of
clusters, with only small increases in the unimer density,
similar to the behavior seen in micelles. Thus, once the clus-
ters form, they provide a regulating mechanism for the un-
imer concentration and hence for the value of the supersatu-
ration, thus limiting the driving force for nucleation of the
bulk liquid phase. Therefore, for the same nominal relative
supersaturation, condensation through metastable cluster in-
termediates will take much longer than the simple vapor-
liquid nucleation.

IV. CONCLUSIONS

In this paper we have examined a simple model of liq-
uidlike clusters with preferred sizes that act as intermediates
in the formation of a bulk liquid phase in solutions of
charged macromolecules. Such clusters arise as a conse-
quence of competition between the short-range attractions
that cause condensation and the long-range Coulomb inter-
actions. The presence of these clusters can lead to a two-
barrier nucleation scenario, with the first barrier associated
with the formation of these clusters and the second associ-
ated with the growth of these preferred-sized clusters into the
bulk liquid phase. However, in order that these clusters are
only metastable and will eventually grow into a bulk liquid
phase, charge neutralization by counterions and screening by
both coions and counterions are crucial. The size of the clus-

FIG. 6. Cluster density profiles for varying supersaturations. The lower
figure is obtained by dividing the cluster density as obtained by Eq. �17� at
a given cluster size by the total number of clusters, obtained by integrating
the profile generated by Eq. �17� over the entire cluster size range, in other
words from barrier to barrier in the energy profiles shown in the upper
figure.

FIG. 7. Illustration of the critical micellelike behavior of cluster formation.
The micellar �cluster� dissolution concentration �MDC� is denoted here by
the dotted line.
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ters and the nucleation barrier from these clusters to the bulk
liquid phase are determined by a combination of these ef-
fects.

While this study is motivated by the experimental work
of Vekilov et al. on protein crystallization, direct application
of our results does not explain the experimental observations.
Their more recent work reveals that the clusters that are in-
volved in the protein nucleation contain on the order of 105

or more protein molecules per cluster.3,4 This size is much
too large to explain with our electrostatic model: the size in
our case is limited by the Debye screening length, which
under our subphysiological conditions is 100 Å, correspond-
ing to 102–103 protein molecules. Experiments on protein
solutions and charged colloidal particles with depletion at-
traction show stable clusters with aggregation number of or-
der 10.24 Also, the typical charge on proteins is larger than
the small charge necessary to make the clusters metastable
with respect to a bulk liquid �however, they can be meta-
stable to the crystalline phase�. Therefore, our study seems to
suggest that the clusters in the protein nucleation are not due
to electrostatic interactions. At present, the nature of the in-
termediate clusters in the protein crystallization is still un-
clear, although Pan et al. have recently suggested that the
clusters are purely kinetic in nature as a result of slow
dynamics.3 Liu et al. suggest that patchiness is an important
feature in protein-protein interactions25 and can give rise to
slow relaxation dynamics at high densities,26 leading to a
delay in the crystal formation. In these scenarios, the cluster
intermediates observed in the work of Vekilov et al. would
be some long-lived amorphous dense regions in the protein
solution. However, if that is the case, it is difficult to envi-
sion a two-barrier scenario for nucleation, which necessarily
implies a free energy minimum between two barriers.

Although our results appear to exclude electrostatic in-
teraction as the explanation behind the intermediate dense-
liquid clusters in protein crystallization, the behavior pre-
dicted in this paper should be relevant and observable for
many weakly charged macromolecular and colloidal sys-
tems, based on our estimates of the parameter ranges for this
type of behavior. It is therefore desirable to refine and extend
this initial study using more realistic models and more so-
phisticated approaches. For example, the use of molecular
density functional theory that properly accounts for the ex-
cluded volume, short-range attractions, as well as electro-
static effects beyond the simple Poisson-Boltzmann ap-
proach, avoids the capillary approximations and also allows
the inclusion of a crystalline phase.

At the phenomenological level, our model shares many
common features with several systems that exhibit both mac-
roscopic phase separation and aggregation into finite-size
clusters, such as diblock copolymer-homopolymer
mixtures,27 and solutions of amphiphilic copolymers.28 For
example, Wu and co-workers have reported stable aggregates
with aggregation number ranging from 10 to several thou-
sands �depending on temperature and concentration� in aque-
ous solutions of the nonionic hydrophobically modified poly
�N-isopropylacrylamide�, between single-chain globules and
macroscopic precipitation.29,30 It is quite probable that these
mesoglobules can also exist in a metastable state relative to

the dilute single-globule solution phase and macroscopically
condensed phase, in which case condensation will occur
through a two-step mechanism similar to the one proposed in
our work.

Another interesting phenomenon that is hinted at by our
results but cannot be addressed due to our use of the single
cluster picture is the relationship between microphase sepa-
ration and macroscopic condensation. In particular, the exis-
tence of a metastable microphase separated state and its ef-
fects on the nucleation of a bulk dense liquid phase from a
dilute solution phase appear to be a problem worthy of in-
vestigation.
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APPENDIX A: BORN SOLVATION ENERGY

The free energy change for transferring an ion with
charge q and radius a from a medium with dielectric constant
� to a medium with dielectric �0 is

−
q2

8�a�0
� 1

�0
−

1

�
� .

Thus the difference in chemical potential between an ion in
dielectric medium one versus an ion in dielectric medium
two is given by

��* = �1 − �2

= −
q2

8�a�0
� 1

�2
−

1

�1
� = −

q2

8�a�0�2
� �2

�1
− 1� . �A1�

In our case, �1 /�2 is always less than one. Therefore, ��* is
always positive and it is energetically unfavorable for the
coions and counterions to enter the lower dielectric medium
within the cluster.

APPENDIX B: FREE ENERGY EXPRESSIONS FOR
DIFFERING DIELECTRIC CONSTANTS

Defining the Bjerrum length using the dielectric constant
of the solvent, �2, the free energy expression for a cluster
with dielectric constant �1 within a reservoir with dielectric
constant �2 is

W�e� = − kT

0

�

r2dr�1

2
�1 + � �1

�2
− 1�	�Rc − r������2

+ � lB



�2

�1 + �e−���*
− 1�	�Rc − r��cosh���r��

− 4��0lB
3��r�	�Rc − r�� . �B1�

The corresponding Poisson-Boltzmann equation is
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− �1 + � �1

�2
− 1�	�Rc − r���2� + � lB



�2

��1 + �e−���*
− 1�	�Rc − r��sinh���r��

= 4��0lB
3	�Rc − r� . �B2�

APPENDIX C: FREE ENERGY OF A BULK
LIQUID

In the limit of cluster size approaching infinity, � is con-
stant �=sinh−1�4��0b3�
 / lB�2e−���*

��, and the free energy of
electrostatic interaction becomes

wbulk
�e�

m
= − kT� lB



�2R1

3

3
�e−���*�1 + �4��0lB

3� 


lB
�2

e���*�2

− 4��0lB
3� 


lB
�2

sinh−1�4��0lB
3� 


lB
�2

e−���*�� .
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