
IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 3, MARCH 2001 119

Convergence of REM Flow Control at a Single Link
Qinghe Yin and Steven H. Low, Senior Member, IEEE

Abstract—Various TCP congestion control schemes can be
interpreted as approximately carrying out a certain basic algo-
rithm to maximize aggregate source utility, different schemes
corresponding to different choices of utility functions. The basic
algorithm consists of a link algorithm that updates a congestion
measure based on its traffic load, and a source algorithm that
adapts the source rate to congestion in its path. Though conver-
gent, this algorithm can lead to large equilibrium backlogs. This
problem can be eliminated by modifying the basic algorithm to
include backlog in the update of the congestion measure. This
letter proves that the modified algorithm converges when the
network can be modeled as a single bottleneck link. Moreover, in
equilibrium, the source rates are matched to link capacity while
the buffer is cleared.

Index Terms—Active queue management, congestion control,
convergence, REM, stability.

I. INTRODUCTION

WE HAVE proposed in [10] a duality model of flow con-
trol1 from which a basic algorithm is derived to maxi-

mize aggregate source utility. The significance of the model is
that TCP Reno [5], [12] and Vegas [3], with or without random
marking [4], [2], can all be interpreted within this model asap-
proximatelycarrying out the basic algorithm to maximize aggre-
gate utility, different schemes merely corresponding to different
choices of utility functions; see [9]2. The model thus provides a
convenient way to understand the stability, optimality and fair-
ness properties of these schemes, and more importantly, to ex-
plore their interaction. The basic algorithm consists of a link al-
gorithm that updates a congestion measure, called price, based
on its load, and a source algorithm that adapts the source rate to
congestion in its path. It is proved in [10] that it converges even
in an asynchronous environment provided the time intervals be-
tween updates are bounded.

Straightforward implementation of the basic algorithm can
lead to large equilibrium backlogs in the network; see Section II.
In [2] we correct this problem by including buffer occupancy
in price adjustment. The purpose of this paper is to prove that
the modified algorithm, called REM, still converges when the
network is modeled as a single (bottleneck) link. Moreover, in
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1We use “flow control” and “congestion control” interchangeably.
2Online. Available: http://netlab.caltech.edu

equilibrium, the source rates are matched to link capacity while
the buffer is cleared, as observed in extensive simulations in [2],
[1].

In Section II we review the duality model of flow control, and
describe the basic algorithm and REM. The convergence proof
for the basic algorithm relies on the fact that the dual objective
function (on the prices) serves as a Lyapunov function for the
algorithm so that its value monotonically decreases as the al-
gorithm proceeds. The addition of the buffer term in the price
adjustment destroys this monotonicity, and a different approach
is needed. In Section III we provide a convergence proof for the
single-link case.

Our proof does not generalize to the multilink case. However
if we model the algorithm as a continuous time system, then it
can be shown that it isgloballyasymptotically stable in a multi-
link network, i.e., starting from any initial value, the rates con-
verge to the unique optimal point; see [11]. A local convergence
proof for a discrete time multilink network is presented in [1].

II. PRELIMINARIES

We briefly review the model, the basic algorithm, and REM
developed in [10], [2].

A. Single-Link Model

Consider a network that is modeled as a single (bottleneck)
link of capacity . It is shared by a set of sources. Source

attains a utility of when it transmits at rate that
satisfies . We assume are strictly
concave increasing and twice differentiable.

Our objective (the primal problem) is to choose source rates
, so as to

(1)

subject to (2)

Constraint (2) says that the aggregate source rate does not ex-
ceed the capacity. This flow control problem is posed in [6] and
solved in [7], [8] using a penalty function approach. The basic
algorithm is a gradient projection algorithm to solve the dual
problem.

B. Basic Algorithm

Associated with the link is a (scalar) dual variablewe call
price. The basic algorithm is given by the following iteration:

(3)
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(4)

where and
. Here denote the

inverse functions of the marginal utility; they exist and are
strictly decreasing because are strictly concave increasing.

It is proved in [10] that under the basic algorithm (3) and
(4), , the unique optimal source rate for the
primal problem, provided that the step size is sufficiently
small.

C. REM

A straightforward implementation of the basic algorithm can
lead to large backlog and delay. Indeed, the buffer occupancy

at the link at time evolves according to3

Comparing with (3), we see that backlogs are related to prices by
. The backlog can be quite large in equilibrium

since is typically small.
To correct this situation, we modify in [2] the price adjust-

ment (3) to

(5)

where is a small constant. Hence the price is increased
when the backlog or the rate is large compared with the capacity,
and is reduced otherwise. We will refer to the algorithm defined
by (4) and (5) as REM.

III. CONVERGENCE

We now prove that REM matches rate and clears buffer. To
avoid triviality, we assume .

Theorem 1: Suppose are strictly concave increasing,
twice differentiable, and

. If is a sequence generated by REM (4)
and (5), then , provided that is sufficiently small.
Moreover .

We will first prove convergence with a single source and then
show that multiple sources are equivalent to a single source with
an appropriate utility function.

A. Proof: Single Source

Suppose that there is only one source with utility function
. Obviously, in this case the optimal source rate is

and the optimal link price is . Setting

we show that and .
The key observation is that

(6)

3This is an approximation as it assumes the input rate at linkl equals the
aggregate source rate

To see this, notice that and
is decreasing. Then . Therefore,

where . This implies (6).
If at some time we have and then we

have and hence, in addition to (6), we have
for all . Thus exits and

it can be shown that it is.
If at some time we have and then

This, together with (6), implies that is a decreasing se-
quence, so that exists. Then either
and [because of (6)] at some , which is then
the case discussed above, or for all . In the latter
case, we have . Thus

We point out that we must have . If , since
when , there exists , for all , we have

. Therefore, for ,

which yields when . This contradicts
.

Lastly suppose that and at some . Then

Then at some time , we will have , which
is then covered by the two cases discussed above. Otherwise,
the link price will approach infinity and , for all

, a contradiction.
We have thus shown that in the single-link single-source case,

the input rate under REM approaches the link capacity and the
buffer size approaches zero.

B. Proof: Multiple Sources

Assume that there are sources sharing the same link
and the utility function of source is . We convert the
problem into the single-source case.

We define a function for as follows. Recall
that given price , source chooses the rate
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Define

Then is nonincreasing. Let

Since we have , it is easy to see that, for ,
is strictly decreasing and hence the inverse function ex-

ists. Use to denote the inverse function. Forsatisfying
, define

Then is strictly increasing, twice differentiable with exception
of at most points, and . Obviously, the primal
problem is equivalent to maximize subject to the condition

. This in turn is equivalent to the case of a single source
with utility function .

IV. CONCLUDING REMARK

We have not found a precise proof for the multilink case. With
a single link, once the rate , then either or

. In the multilink case we lose this monotonicity so that
the method no longer applies. In [11], an elegant Lyapunov ar-
gument is given that proves theglobalconvergence of the algo-

rithm, modeled as a continuous time system, in a multilink net-
work. In [1], we present a local convergence proof for a discrete
time multilink network. These proofs confirm our empirical ex-
perience that REM matches rate and clears buffer, as observed
in [2].
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