PHYSICS OF FLUIDS VOLUME 11, NUMBER 5 MAY 1999

Dynamic generation of capillary waves

Hector D. Ceniceros and Thomas Y. Hou
Applied Mathematics, California Institute of Technology, Pasadena, California 91125

(Received 28 April 1998; accepted 27 January 1999

We investigate the dynamic generation of capillary waves in two-dimensional, inviscid, and
irrotational water waves with surface tension. It is well known that short capillary waves appear in
the forward front of steep water waves. Although various experimental and analytical studies have
contributed to the understanding of this physical phenomenon, the precise mechanism that generates
the dynamic formation of capillary waves is still not well understood. Using a numerically stable
and spectrally accurate boundary integral method, we perform a systematic study of the time
evolution of breaking waves in the presence of surface tension. We find that the capillary waves
originate near the crest in a neighborhood, where both the curvature and its derivative are maximum.
For fixed but small surface tension, the maximum of curvature increases in time and the interface
develops an oscillatory train of capillary waves in the forward front of the crest. Our numerical
experiments also show that, as time increases, the interface tends to a possible formation of trapped
bubbles through self-intersection. On the other hand, for a fixed time, as the surface tension
coefficientr is reduced, both the capillary wavelength and its amplitude decreagimearly The
interface solutions approach the=0 profile. At the onset of the capillaries, the derivative of the
convection is comparable to that of the gravity term in the dynamic boundary condition and the
surface tension becomes appreciable with respect to these two terms. We find that, based on the
7=0 wave, it is possible to estimate a threshold vatgisuch that ifr< 74 then no capillary waves

arise. On the other hand, fersufficiently large, breaking is inhibited and pure capillary motion is
observed. The limiting behavior is very similar to that in the classical KdV equation. We also
investigate the effect of viscosity on the generation of capillary waves. We find that the capillary
waves still persist as long as the viscosity is not significantly greater than surface tensia8990
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I. INTRODUCTION capillary waves of permanent form, has been investigated by
Chen and Saffman® and by Schwartz and Vanden-

Nonlinear water wave motion is a very interesting ex- 11 . : . L
ample of complex dynamics. An important event is the gen_Broeck. They found that, in the maximum amplitude limit,

eration of capillary waves on the forward wave front. the vTvr?vesﬁcan seflf—mt](carsect, forming trglpptla(q bubbles. h
These capillary waves typically appear near the crest of the e effects of surface tension on breaking waves have

main wave where the local curvature is very large and th@ ' J
effect of surface tension becomes important. The understanfi€thod developed by Wang, Yao, and Tutrhe remark-

ing of these short waves is important in the remote sensing dPlé simulations presented by Tulin show clearly the appear-
sea surface because the fine structure associated with shgftce Of a capillary jump, as defined by Il_ongu.et-ngd1‘hs,
wavelengths scatters electromagnetic radiation. Capillarj€2@r the wave crest. Here, as in Tulin’s simulations, we deal
waves are also believed to be a mechanism for extractingith surface tension effects on unsteady breaking waves on
energy from wind-generated waves and may be significant if€ surface of a potential fluid but focus on periodic data
wave breaking:? only. By using a stable and spectrally accurate numerical
The phenomenon of capillary waves generated by steadjiethod, we are able to compute not only up to the appear-
steep gravity waves has been studied systematically b§nce of the capillary jump but also to follow the subsequent
Longuet-Higgins in a series of papé‘r‘§, and by Crappef. development of a very large curvature at and near the toe
Longuet-Higgins interprets the surface tension effect as &he point where the capillaries seem to originafhe high
very unevenly concentrated pressure distribution on the succuracy of our method allows us to also capture in detail the
face, which combined with the effect of gravity, makes thesmall-scale structure produced by the capillaries.
capillary ripples appear near the crest of a steep wave. Using Our numerical method is based on a boundary integral
a perturbation technique, Longuet-Higgins obtains theoretiformulation. Since the pioneer work by Longuet-Higgins and
cal predictions for the capillary wavelength and amplitude inCokelet!® boundary integral methods have been popular in
the approximation of steady Stokes waves. Longuet-Higginsomputing this type of interfacial problems. However, these
and Dommermuthhave also considered the time develop-methods are known to be very sensitive to numerical
ment of capillary waves, starting with the almost highestinstabilities® The inclusion of surface tension effects makes
Stokes wave as initial data. A different motion, gravity— the discretizations even more sensitive, as was observed

1070-6631/99/11(5)/1042/9/$15.00 1042 © 1999 American Institute of Physics

Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 5, May 1999 H. D. Ceniceros and T. Y. Hou 1043

early by Pullin!” Some local average technique has beerdynamic boundary condition and the surface tension be-
used to suppress the numerical instability. This only delaygomes appreciable with respect to these two terms. We find
the appearance of the instability, but does not completelyhat, based on the=0 wave, it is possible to estimate a
eliminate its source. The computations will break downthreshold valuery such that ifr< 7y then no capillary waves
eventually due to the instability. Other techniques such asrise. Forr sufficiently large, breaking is inhibited and pure
redistribution and point insertion of vorticdsaimed to con-  capillary motion is observed. The limiting behavior is very
trol the numerical instabilities introduce too much smooth-similar to that in the classical KdV equation.
ing. This makes it difficult to capture the true small-scale =~ We also consider how the viscosity may affect the gen-
effects associated with surface tension. In addition, surfaceration of capillary waves. To this end, we incorporate weak
tension imposes a severe time-step stability const(atift- viscous effect into our boundary integral formulation using a
ness for explicit schemes. As a result of all these difficulties, boundary layer approach due to Lundgren and Man&our.
there has been lack of detailed numerical investigation foif his amounts to modifying the dynamic boundary condition
unsteady breaking waves with surface tension. at the interface. Lundgren and Mansour observed that one of
Considerable progress has been achieved in the last fethe terms introduced by the viscous layer correction induces
years in the analysis and design of robust boundary integral strain that leads to severe point clustering and numerical
methods. In Ref. 19, Beale, Hou, and Lowengrub have perinstability. Our implicit scheme based on the equal arclength
formed a systematic stability analysis of a boundary integraind tangent angle formulation automatically eliminates this
method for two-dimensiondP-D) water waves. They found difficulty. Our numerical study shows that the interface is
that there is a compatibility between the choice of thesmoother but that capillary waves can still appear in this case
quadrature rule for the singular velocity integral and theprovided the viscosity is sufficiently small.
choice of the spatial derivative. This compatibility ensures ~ The rest of the paper is organized as follows. In Sec. Il
that a delicate balance of terms on the continuous level iwe present the equations of motion in a boundary integral
preserved on the discrete level. This balance is crucial foformulation for 2-D water waves. Our stable boundary inte-
maintaining numerical stability. Based on this analysis, theygral method is given in Sec. Ill. This is followed by a de-
designed a boundary integral method for 2-D water wavescription of of the modified equations, which include the
with and without surface tension and proved rigorously itsweak viscous effectéSec. IV). The numerical experiments
convergence in a time continuous framework. Surface tenare presented and discussed in Sec. V. The conclusions are
sion also introduces additional difficulty in the time discreti- given in Sec. VI.
zation. High-order spatial derivatives and Lagrangian par-
ticle clustering induce a severe time-step stability constrainty THE EQUATIONS OF MOTION
Based on a reformulation using the equal arclength and tan- ) ) . . _
gent angle variables, an efficient implicit discretization was ~ We consider one layer of incompressible, irrotational,
proposed by Hou, Lowengrub, and Shelfyyhich removes and inviscid fluid of infinite depth in two dimensions. The
this severe time-step stability constraint. The method haRosition of the fluid interface, at any instant, is given by the
been successfully applied to compute with high accuracy &omplex variablez(a,t) =x(a,t) +iy(a,t), with o a La-
rich variety of complex long-time motion of vortex sheéts. 9rangian parameter. We further assume #{af) — a is 27
The convergence of this method has been established by ceeriodic. Then, the complex velocity=U —iV at the inter-
niceros and Hoff for a general two-fluid interface. The sta- face can be expressed in terms of a boundary integral as
bility of boundary integral methods for vortex sheets with follows (for a derivation see Refs. 26 and)19

surface tension has also been investigated by Baker and y(a,t) 1 (2=
Nachbirf® based on Fourier analysis near equilibrium solu-  W(a,t)= 53—+ —f y(a' 1)
tions 2z, (a,t) 4w Jo
In this paper, we perform a numerical study of breaking 1
waves using the nonstiff and spectrally accurate boundary xcotz[z(a,t)—2(a' ) ]da’, (1)

integral method developed in Ref. 20. We find that the cap-

illary waves originate near the crest in a neighborhood wher&here the subscript denotes differentiation with respect to
both the curvature and its derivative are maximum. For fixedhat variable andy is the (unnormalizedl vortex sheet
but small surface tension, the maximum of curvature in-strength, which is linked to the velocity potentiglvia the
creases in time and the interface develops a train of capillariptegral equation

waves in the forward front of the crest. Our numerical ex- 1 z,(@) (2r

periments also show that the minimum distance between ad- ¢,(a)= > v(a)+ Re( yp f y(a')

jacent capillary crests appears to approach zero, suggesting 0

the formation of trapped bubbles as observed by Koga in 1

experiments of breaking wavés0n the other hand, for a Xcot5[z(a)—2z(a")]da’
fixed time, as the surface tension coefficients reduced,

both the capillary wavelength and its amplitude decreasélere we have dropped the time variable to simplify the no-
nonlinearly The corresponding waves approach the0 tation.

profile. At the onset of the capillaries, the derivative of the  The effect of surface tension introduces a jump in the
convection is comparable to that of the gravity term in thepressure across the interface. This jump is proportional to the

. 2
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local mean curvature. Since vacuum is assumed above the uN g,

water surface, the dynamic boundary condition takes the 0t=7+;(UT+ u”s), (6)

form of the Bernoulli equation, which, in Eulerian variables,

reads as whereUN=—|z,|~*Im{z, W} is the normal velocity at the
abl 1 interface. To have better control on the tangential motion of
— + = |W|?=—gy+ 7, the Lagrangian particles, we selddf such that the follow-
daj, 2 ing condition is satisfied:

whereg is the gravity acceleration antlis the surface ten- 1 (onm
sion coefficient. Here, the equations have been nondimen- a'(a,t)Z—f o(a' ,t)da'=0. (7)
sionalized on a periodicity length (so that the nondimen- 2m Jo
sional wavelength is)land a velocity scaley equal to the

. I It is easy to show that this condition is enforceduf* is
average ofy over one period. Note that/2 gives the veloc- y

ity at y=—oo. Thus, 7=7(7°\) and g=gr/72, where? O o' by
andg are the dimensional surface tension and gravity coef- A _— | .
ficients, respectively. The curvatukeis given by Ut=—-U"+ fo [0,UN—0,UNde’, ®)

N YaaXa™ XaaYa

= W where 6,UN is the spatial average over one period, as de-

fined in (7). Condition (7) gives a uniform distribution of
We define the velocityiv of the Lagrangian particles on particles on the interface. Sineeis now constant irx, semi-

the interface as implicit time discretizations become easy to implement.

With this choice ofU”, the evolution equation fow is the

. following ordinary differential equation:

~ z,
W=W+ ——UA,
|Za| d
g
where the asterisk stands for the complex conjugate. With gt —
this velocity, we still satisfy the kinematics and have free-
dom to selecU” to gain some control over the positioning
of the Lagrangian particles. Thus,

—9,UN. C)

Ill. THE NUMERICAL METHOD
A. A stable space discretization

0z ~
E(a,t):W*(a,t)- 3 Our discretization is based on the pseudospectral ap-
proximation for the space derivatives and some careful
The Bernoulli equation can be evaluated in this Lagrangiamiealiasing filtering. The singular velocity integral is approxi-

frame, by noting that mated by the alternate-point trapezoidal rule. This gives a
P p p spectrally accurate approximation.
ad :_¢ +Re{W*\7V}=—¢ +|W[2+UuAUT Numerical filtering is defined in Fourier space as fol-
[ z z .
whereUT=|z,| ! Re[z, W}. Hence, we obtain = 2
2| Refz W) (h=p(kh) iy, 10
J 1
A4 =3 |W|2+UAUT—gy+ k. (4)  where the overcaret stands for the discrete Fourier transform
at, andp is a non-negative even cutoff function such tp#éx)

=1 for |x|<\a with 0<A <1 and decays smoothly to zero
atx==* . Hereh=2x/N with N even. Denoting by, the
spectral derivative operator and settingf=S,fP, we have
the following discretization:

Equations(1)—(4) determine the time evolution of the
interface. Note that it igh,, , not ¢, that is needed to obtaip
and the velocity. The evolution equation fér, can be ob-
tained by differentiating the Bernoulli equation with respect
to a. Therefore, it is the competition betweern<, and do 1 N
(3W|2+U”UT—-gy), that plays a role in the generation of i = SYAVLS (11
capillary waves. t Ni=

A natural variable for the curvature is the tangent artjle
to the interface, that ig,=o€'’, whereo is the arclength %: i[Sh UN+D;, 6,(UT+UM] (12
metric |z,|. The curvature has a simple expression in these dt ;i ' n F
variables:x=6,/c0. Given(a,6), the interface can be recon-
structed up to a translation constdfdr details see Refs. 22 doi _ th o+ 1|Wi|2+ UiAUiT_g Im{z} (13)

g 2 '

and 20. dt

One can easily derive the equations of motion for theseG_ q for detail Ref
two new variables. They are given by iven ¢ and 6;, we can reconstrua; (for details, see Ref.

20). The velocity is computed using the spectrally accurate
o=(UT+U" ,—6,UN, (5)  alternate-point trapezoidal rule for the periodic kernel:

Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 5, May 1999 H. D. Ceniceros and T. Y. Hou 1045

N/2 o
_Tgipy L ot (2P 2P ﬁ:ID P+ 0. 20
Wi=5,e '+4wij:_%2+1y1mt2(zi zP)2h. gt = o Dn o+ Qi (20)

j—i)odd .
(=he (14 whereP; andQ; are lower-order terms at small spatial scales
_ _ and can be treated explicitly in time. We have also used the
At every time step the vortex sheet strengtfs obtained by  fa¢t thato is constant in.

solving, vig fixed point iteration, the following discrete inte- With this decomposition, semi-implicit time integration
gral equation: methods are straightforward and easy to implement. The im-
1 plicit terms can be inverted fast in Fourier space. Here, we
D di== i employ the fourth-order multistep implicit/explicit scheme
2 developed by Ascher, Ruuth, and Wett3n.
i oP N/2
g€’ 1
+R — > ycot5(-2P)2h|. IV. WEAK VISCOUS EFFECTS
4mi - No+1 2 !
(j—i)odd In this section we present the modified equations to in-

(15 corporate weak viscous effects into our boundary integral

) ) formulation for water waves. The basic idea from Lundgren

It has been shown in Ref. 3 that the Neumann series conghy Mmansolf® is the assumption that viscous effects for
verges globally. As remarked before;, ; is evolved in  geq_surface problems are confined to thin weak vortical

time by applying [ to Eq. (13). - boundary layers. The viscous correction can be expressed
Finally, the tangential and normal velocities are com-compjetely in terms of the interior potential flow as a modi-
puted fromW; as follows: fication to the boundary conditions. Here we only give the
UT—Rele aipw_}_ UN= — Im{e 0ipW_} (16) equations. Their derivation can be obtained following Refs.
i~ i i~ iy 29 and 25.
LN The modified evolution equations are
UA=—U[+Int, | D,OUN——> DpoUN]i. (1 *
i i h h Njgl h Y] ( 7) Zf=W+|§—a|(UA_iUN); uN:_|lZp_“|' (21)
Here Int, stands for the pseudospectral approximation to in-
tegration with the zeroth mode set to zero. de=— z—wRe[z W, — 2"“{2 W} — uNyA (22)
Following the lines of the proof given in Ref. 6, it can be ‘ |Z4] ez o ’

shown that this discretization yields a convergent spectral _ T2 11T A Ny N
> ; =7k+3W|*+U'U”—gy+u™U
method for sufficiently smooth solutioRs. =it W] 9y

B. An efficient time discretization + |22_"//| Im{z, W} + é_V| Re{z,W,}, (23
To achieve an efficient time discretization without the ¢ “
high-order time-step constraint introduced by the surface terivhereWis again the complex velocity given ), ¢ is the
sion, we perform a small-scale decomposition as done bgtreamfunction, and is the viscosity coefficientnondimen-
Hou, Lowengrub, and Shell&to separate the terms con- Sionalized with length scale and velocity scaley). These
tributing to the stiffness in the equations of motion. equations are an asymptotic approximation to ox@ér*"?)
The dominant small-scale terms are the curvature in the
Bernoulli equation and the derivative of the normal velocity
in the evolution equation foé. It can be shown that

1
Ul=-—Hy%+Ra i,

20
[ 01 02 03 04 05 06 07 08 09 1
where 1=0.30
Hp f ! NEIZ f t1 2h 18
o R j cot5 (@ @;) (18
(j—i)odd
. . . . . . 0{2 0!4 0{6 0‘8 1I
is a discrete version of the Hilbert transform for periodic t=0.45

functions and Ry; is a smoother term. Also, from the inte- o1
gral equation fory; we have that, to leading ordey;

~2 Dy, ¢;. Therefore, the discrete evolution equations can °f
be written as

% — 12 Hhsﬁ §b|p+ P;, (19) FIG. 1. Breaking wave profiles for=0.001 at timeg=0, 0.30, and 0.45.
o

HereN=2048 andAt=5x10"5.
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FIG. 2. (@ A close-up of the interface at=0.45 and(b) the curvature g5 4 A comparison of %|W|2+UAUT)H (solid line) and —gy,, (dotted
plotted against the Lagrangian parametefor =0.001, N=2048, and line) for 7=0.001 at(a) t=0.25 and(b) t=0.35
At=5x10"°, ' ' o

illary wave appears soon after the wave begins to overturn.
Figure 2a) gives a close-up of a neighborhood of the crest at
time t=0.45. The curvature for that region is plotted in Fig.
2(b), where a capillary wave train is clearly observed.
V. NUMERICAL EXPERIMENTS Although the interface appears very smoothat0.30,

: the onset of the capillary waves occurs before that time, as a
A. Inviscid waves plot of the curvature at=0.26 showqFig. 3a)]. Note that
We begin our numerical experiments with a simula’[ionti"érisl)S I?igiegkeﬂa)agh?)v?/ffﬁa’[lggéha;tirpi}(r:aeisvzlatl)\{[eprttlazgnt in
using the method(11)—(17). The computations are for |~/ ;

9 (1)~17) P Lhe caser=0, where the curvature is smoother @t 0.43

1-periodic interfaces; this was done by a simple scaling o . t the ti ted. N the ti f t of
the 2m-periodic case. All the simulations presented here us ut larger at the tip, as expected. INear the time of onset o

or to third order in the vortical layer widtid=O(+/v). To
recast the equations in the,6) variables, we just need to
change the normal velocity "+ UV,

the following initial data: the capillaries(aboutt=0.25) the convection term3(w|?
. +UAUT), is comparable to the gravity termgy, , as Fig.
Z(@,0)=a+0.1 cod2ma), (24 4(a) demonstrates. Note that the effect of surface tension is
y(a,00=—1+0.1sin2ma). (25)  already visible in the convection term in the form of an in-

verted spike at the toea(=0.43). Figure 4b) compares
Note that the vortex sheet strengtthas a nonzero mean inese two terms at a subsequent tirhe 0.35).

(y=—1). This gives the wave an impulse that eventually A closer look at the interface profiles near 0.45[Fig.
cause it to overturn. Herey/2 gives the velocity aty  5(g)] shows that the capillary trough gets narrower, suggest-
= —o. We have computed previously with other initial con- jng a possible formation of a trapped bubble through self-
ditions (y=0) and finite depth in Ref. 27, where we also jntersection of the interface. The minimum distance between
found that the capillary waves appear once the interfacggjacent parts of the interface near the “edge” of the capil-
steepens up and is about to overturn. However, since f|n|t[9ary wave is decreasing in timgFig. 5b)]. On the other

depth computations are considerably more expensive thagang, the tangent angtebecomes nearly discontinuous with
those for deep water, we cannot achieve the high resolution

needed to compute the subsequent development of the cap-

illary waves and their detailed structure, as we are able to @ X107 ®
show in the deep water computations presented below. 0.07 18
We takeg= 10 and vary the surface tension coefficient  ooss 16
throughout the experiments. Our first simulation is for 0.08 14
=0.001. In Fig. 1, we present the interface profile at times *°*° 12
t=0, 0.30, and 0.45, computed usitg=2048 andAt=5 0045 1
X 10" °. The interface becomes verticaltat 0.30 and a cap- 0.04 08
048 049 0.5 0.51 0.52 0.44 0.445 0.45
(© (d)
(@ (b} 1 2500
20 20
10 10 2000
° 0 1500
-10 -10
1000
-20 -20
-30 -30 o 0.5 1 %4 0.42 0.44 0.46
o 0 FIG. 5. Caser=0.001,N=2048, andAt=5x10"°. (a) Close-ups of the
oz o4z o8 o8 1 0oz o024 o5 o8 1 interface att=0.44, 0.445, and 0.48eft to right). (b) The minimum dis-
tance between opposite sides of the interface near the édg&angent
FIG. 3. Curvature versug att=0.26.(a) 7=0.001 andb) 7—0. angled vs a att=0.45.(d) The maximum ofl«| versus time.
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(@) (b) @ x10° ®
0.1 0.1 0.02 4
0.08 0.08 0.018 83
3
0.06 0.06 0.016
<" «25
0.04 0.04 0.014
2
0.02 0.02 0.012 15
044 046 048 05 052 054 044 046 048 05 052 054
0.01 1
(C) (d) o4 0.42 0.43 044 0.45 0.41 0.42 043 0.44 045
0.1 0.1 t t
0.08 0.08 FIG. 8. Forr=0.001,(a) the capillary wavelength . versus time andb)
the capillary amplitude . versus time.
0.0 0.0
0.04 0.04 . .
Decreasingr delays the onset of the capillary waves un-

00 oue o048 05 o052 osa %41 o046 o048 05 o052 054 til the derivative of the curvature is large enough to excite
the surface tension term. More precisely, from the zero sur-
face tension interface we can estimate a bownduch that
Tok, WIll be negligible compared to the derivative of the
convection and gravity terms in Bernoulli's equation. The
comparison plots for these terms are shown in Fig. 10 for the
particular initial data(24)—(25) at t=0.5. At this time,

FIG. 6. Interface close-ups &t 0.45 for(a) =0.001,(b) =5x1074, (¢
7=2.5X10"%, (d) 7=1.25x10 *. The distance between the crosses js

a jump size close ter, as in a cusgFig. 5(c)]. We remark
that both the curvature and its derivative have maxiina .
{ maxx,|=2.5x10% Therefore, if we taker=1/(ma}x,|)

bsolute valugi Il neighborhood about the edge. |
absolute valugin a small neighborhood about the edge n=4><10‘5, the termr«, would be order 1 and about 0.8%

that region, the curvature continues to grow in time, as it can . .
be seegn in Fig. &) g of the other competing terfFig. 10b)]. Although no cap-

Now, for a fixed time {=0.45) we compute the capil- illaries are observed for suchin the wave profile, the cur-

lary wavelength\ . and the amplituda . as the surface ten- vatu.re I?e?rf:tqf Zas _S'f?flgfg h?g prebsetﬂcter; V\(etﬁr;d nu-
sion coefficientr is decreasedFig. 6). The capillary wave- merically that I 7= o= » (hen bo € Intérface

length A is defined as the the distance between the twd"md its curvature remain smooth and no capillary waves are
. : ) )
largest values ofx|. These are the crosses shown in Fig. 7 observed. Such values oivould give a dispersive term,

where close-ups of the capillary region corresponding to gif/ess than 0.03% of the maximum value of the derivative of

ferent 7's are presented. The behavior in timeXof anda, the convection and gravity terms.

for 7=0.001 is given in Fig. 8. While the capillary wave- _On the other extreme it is sufficiently large, then the
length\ ; has a relatively small change over the time intervaltcap'“al%e:ecfts d_oml?]ate ar_ld Lh_e Wlai/ef do_eg r510]'5 ov:arturn. A
[0.40, 0.4, the capillary amplitude, increases more rap- YPICal DENAVION IS shown in F1g. or=0.5 for long

idly. Neverthelessa, remains fairly small, even at=0.45. t|me_?h int diat —01is al int "
Although it is difficult to obtain a scaling fax . anda,, € Intermediate case=0.1 1S also very Interestng

it is clear from Fig. 6 that both quantities decrease nonIin-(F'g' 12). Now, the front does not overturn but forms a bulge

early ast decreases. Therefore, we can expect that the lim-
iting solutions converge strongly to the=0 profile for a

X : . . @ ®
fixed time. This indeed appears to be the case, as observed i oz
Fig. 9, where the surface tension coefficienis decreased 01 01
even further. We observe the convergence of the correspondy g 0.08
ing interface profiles to that corresponding to the zero sur- o.0s 0.08
face tension profile at the fixed time= 0.45. 0.04 0.04
0.02 0.02
0 0

@ 3 © 0.4 0.45 0.5 0.55 0.4 0.45 0.5 0.55
0.014 4><10

0012 35 (©) (d)
a 0.12 0.12
0.01 vs 0.1 0.1
0.008 - 0.08 0.08

< «©
0.006 . 0.06 0.06
0.004 ? 0.04 0.04
0.02 0.02
0.002 05 0 0
0o 02 0.4 06 08 1 Oo 0.2 0.4 06 0.8 1 0.4 0.45 0.5 0.55 04 0.45 0.5 0.55

FIG. 9. A comparison of the zero surface tension interface profile with the
FIG. 7. The computed capillary wavelengthand the amplitude.,. (& X , corresponding ones for decreasimgat t=0.45. (8) 7=2.5x10%. (b) 7

vs 7. (b) a, vs 7. =1.25x10"%. (c) 7=6.25x107°. (d) 7=3.125x10 5.
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FIG. 10. (a) A derivative of the curvature, mé,|=2.5x 10°. (b) A deriva-
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FIG. 12. Interface profiles at times 1.5-2.0 fer0.1. The computation
performed withN=1024 andAt=1.25x 10" 4.

tive of the convection and gravity terms. Both plots correspond to the zero

surface tension wave at 0.5, N=1024, andAt=1.25< 104,

third derivative of the corresponding solution appears in the

that interacts with the capillary waves. Dispersion becomegight column of this figure. The solutions are plotted at the
strong att=0.85 and the delicate competition among con-time t=0.15<t, and were computed using a semi-implicit
vection, gravity, and surface tension appears to eventualljPectral discretization withN=1024 points andAt=1.25

lead to the formation of a trapped bublifg. 13.

B. Analogy with the KdV equation

Probably the simplest model that has both nonlinear con

vection and dispersion is the classical KdV equation,

U+ UUy= €Uyyy. (26)

To illustrate the similarities between the small dispersion
solutions to this equation and that of the capillaries on g

breaking wave, let us consider the initial datg(x)
=sin 27X in the interval[0, 1]. For e=0, a shock will be
formed at the breaking timé,=1/27, but the solution
u(t,x;e=0) is smooth fort<t,.

For small but nonzere, an oscillatory train may appear
in the bottom of the forward face of the front. This is illus-
trated in Fig. 14 in the first two plots of the left column. The

t=15 t=16

05 05
o /—\/—\/ o — ]
-05 -0.5
-05 0 05 1 -05 0 05 1
t=1.7 t=18
05 05
0 m 0 \/\/\
-05 -05
05 05 1 05 05 1
t=1.9 t=2.0
05 05
L o~ T~ ]
-05 -05
05 0 05 1 05 0 05 1

FIG. 11. Interface profiles at times 1.5—-2.0 for 0.5. The computation is
performed withN= 1024 andAt=1.25x10™4.

X104,

As € tends to zero, both the wavelength and the ampli-
tude of these oscillations decrease monotonically and the so-
lution u(t,x; €) converges strongly ta(t,x;0) fort<t,. On
the other hand, ik<e,=1x10"8 then no signs of oscilla-
tions appear in the solution or its third derivative. Again, the
onset of the oscillations is determined by the balance be-
tween convection and dispersion. An estimatedpmay be
obtained by considering the maximum [af,,,(t,x,0)|. In
his case, 1/mgu,,(t,x,0)|~5x10"8. Although with such a
value for € no oscillations appear in the solution, the third
derivatives has some signs of dispersion. Takig 1
x 108 makes the dispersive term effectively negligible
(plots in the bottom row in Fig. 24 Clearly, the behavior of
the small dispersion solutions of the KdV equation is very
similar to the more complex motion of breaking water waves
with small surface tension.

(@)

02 B

-0.02

-0.04

-0.06

0.1

0.2

0.3

-0.08

L L L
0 0.05 0.15 0.25

FIG. 13. (a) An interface at time 0.896 for=0.1. (b) Close-up.N=1024
andAt=1.25x10“.
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FIG. 16. (a) Interface at timet=0.51 for »=0.0005 andr=0.0001.(b)
02 04 0.6_8 08 045 05 055 06 065 . _ —4
e=0and 1x 10 <108 Curvature at the same time. Heke=1024 andAt=1.25x10"°,

=}
o
i

05

05 sponding to the forward side of the walf€ig. 17b)]. The

-1 simulation also suggests the formation of a trapped bubble in
[d] 02 04 06 08 04 045 05 055 06 065 flnlte t|me

FIG. 14. The plots on the left show the solutiofx) of the KdV equation
for different e at t=0.15. The plots on the right show their corresponding

Uxx - VI. CONCLUSIONS

We have shown through highly accurate numerical
simulations the dynamic generation of capillary waves on the
surface of breaking water waves. The capillaries originate

We illustrate the weak viscous effects by two numericalnear the wave crest in a neighborhood where both the curva-
examples of a breaking wave. The weak viscous effect isure and its derivative are maximum. It is the derivative of
modeled by the equations presented in Sec. IV. Both exthe curvature, competing with convection and gravity terms,
amples use the same initial data and gravity coefficient aghat plays a role in the onset of the capillaries. This is similar
before. In the first example, we include both surface tensiorno the onset of dispersive waves in the classical KdV equa-
and the weak viscosity contribution. We take 0.0005 and  tion before the formation of a shock.
7=0.001. A sequence of the wave profiles is shown in Fig.  Our numerical experiments also show that both the cap-
15. For this set of parameters, the viscous effects dominatélary wavelength and its amplitude decreasenlinearly as
the surface tension. There are no signs of capillary waves, ale surface tension coefficientends to zero and, therefore,

a closer look at the profile and curvature shows in Fig. 16the wave profiles converge strongly to the 0 wave profile
The curvature varies smoothly and its maximum is onlyfor a fixed time. Moreover, based on the zero surface tension
about 10% of that corresponding to=0 and with 7 wave, an estimated valug can be found such that no cap-
=0.001. illaries are observed if< 7, for the given initial data.

However, capillary waves are observed for a smaller vis-  The robust and efficient numerical method we used, al-
cosity coefficient(Fig. 17). Again, the capillary wave can be lowed us to consider a wide range of surface tension coeffi-
seen more clearly as the oscillations in the curvature correcients. Smooth capillary dominant behavior was observed for

large values ofr, while intermediate and small values appear
to eventually lead to the formation of trapped bubbles, which
1046 constitutes a topological singularity of the interface.

C. Weak viscous effects

Weak viscous effects were also incorporated into our
boundary integral method. The numerical examples pre-
=050 ’ (@ ®©)
o1l T T T T m 0.1 1200
1000
0.08
or ) 800
0.08 600
Yy ‘ . . .
02 04 0.6 08 1
=051 0.04 400
04F T T T T 7
200
ok § 0
0 -200
046 048 0.5 0.52 054 056 05 0.55 06
o 02 0.4 06 08 1

FIG. 17. (a) A close-up of the interface at timte=0.48 for »=0.0001 and
FIG. 15. Wave profiles for=0.0005 andr=0.001 at timeg=0.46, 0.50, 7=0.0001.(b) Curvature at the same time. Heke=1024 andAt=1.25
and 0.5. HerdN=1024 andAt=1.25x 104, X1074.
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