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We investigate the dynamic generation of capillary waves in two-dimensional, inviscid, and
irrotational water waves with surface tension. It is well known that short capillary waves appear in
the forward front of steep water waves. Although various experimental and analytical studies have
contributed to the understanding of this physical phenomenon, the precise mechanism that generates
the dynamic formation of capillary waves is still not well understood. Using a numerically stable
and spectrally accurate boundary integral method, we perform a systematic study of the time
evolution of breaking waves in the presence of surface tension. We find that the capillary waves
originate near the crest in a neighborhood, where both the curvature and its derivative are maximum.
For fixed but small surface tension, the maximum of curvature increases in time and the interface
develops an oscillatory train of capillary waves in the forward front of the crest. Our numerical
experiments also show that, as time increases, the interface tends to a possible formation of trapped
bubbles through self-intersection. On the other hand, for a fixed time, as the surface tension
coefficientt is reduced, both the capillary wavelength and its amplitude decreasenonlinearly. The
interface solutions approach thet50 profile. At the onset of the capillaries, the derivative of the
convection is comparable to that of the gravity term in the dynamic boundary condition and the
surface tension becomes appreciable with respect to these two terms. We find that, based on the
t50 wave, it is possible to estimate a threshold valuet0 such that ift<t0 then no capillary waves
arise. On the other hand, fort sufficiently large, breaking is inhibited and pure capillary motion is
observed. The limiting behavior is very similar to that in the classical KdV equation. We also
investigate the effect of viscosity on the generation of capillary waves. We find that the capillary
waves still persist as long as the viscosity is not significantly greater than surface tension. ©1999
American Institute of Physics.@S1070-6631~99!03005-6#
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I. INTRODUCTION

Nonlinear water wave motion is a very interesting e
ample of complex dynamics. An important event is the g
eration of capillary waves on the forward wave front.1–3

These capillary waves typically appear near the crest of
main wave where the local curvature is very large and
effect of surface tension becomes important. The underst
ing of these short waves is important in the remote sensin
sea surface because the fine structure associated with
wavelengths scatters electromagnetic radiation. Capil
waves are also believed to be a mechanism for extrac
energy from wind-generated waves and may be significan
wave breaking.1,2

The phenomenon of capillary waves generated by ste
steep gravity waves has been studied systematically
Longuet-Higgins in a series of papers,4–6 and by Crapper.7

Longuet-Higgins interprets the surface tension effect a
very unevenly concentrated pressure distribution on the
face, which combined with the effect of gravity, makes t
capillary ripples appear near the crest of a steep wave. U
a perturbation technique, Longuet-Higgins obtains theor
cal predictions for the capillary wavelength and amplitude
the approximation of steady Stokes waves. Longuet-Higg
and Dommermuth8 have also considered the time develo
ment of capillary waves, starting with the almost highe
Stokes wave as initial data. A different motion, gravity
1041070-6631/99/11(5)/1042/9/$15.00
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capillary waves of permanent form, has been investigated
Chen and Saffman9,10 and by Schwartz and Vanden
Broeck.11 They found that, in the maximum amplitude limi
the waves can self-intersect, forming trapped bubbles.

The effects of surface tension on breaking waves h
been addressed by Tulin,12 who used a boundary elemen
method developed by Wang, Yao, and Tulin.13 The remark-
able simulations presented by Tulin show clearly the appe
ance of a capillary jump, as defined by Longuet-Higgins14

near the wave crest. Here, as in Tulin’s simulations, we d
with surface tension effects on unsteady breaking waves
the surface of a potential fluid but focus on periodic da
only. By using a stable and spectrally accurate numer
method, we are able to compute not only up to the appe
ance of the capillary jump but also to follow the subsequ
development of a very large curvature at and near the
~the point where the capillaries seem to originate!. The high
accuracy of our method allows us to also capture in detail
small-scale structure produced by the capillaries.

Our numerical method is based on a boundary integ
formulation. Since the pioneer work by Longuet-Higgins a
Cokelet,15 boundary integral methods have been popular
computing this type of interfacial problems. However, the
methods are known to be very sensitive to numeri
instabilities.16 The inclusion of surface tension effects mak
the discretizations even more sensitive, as was obse
2 © 1999 American Institute of Physics
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early by Pullin.17 Some local average technique has be
used to suppress the numerical instability. This only del
the appearance of the instability, but does not comple
eliminate its source. The computations will break dow
eventually due to the instability. Other techniques such
redistribution and point insertion of vortices18 aimed to con-
trol the numerical instabilities introduce too much smoo
ing. This makes it difficult to capture the true small-sca
effects associated with surface tension. In addition, surf
tension imposes a severe time-step stability constraint~stiff-
ness! for explicit schemes. As a result of all these difficultie
there has been lack of detailed numerical investigation
unsteady breaking waves with surface tension.

Considerable progress has been achieved in the last
years in the analysis and design of robust boundary inte
methods. In Ref. 19, Beale, Hou, and Lowengrub have p
formed a systematic stability analysis of a boundary integ
method for two-dimensional~2-D! water waves. They found
that there is a compatibility between the choice of t
quadrature rule for the singular velocity integral and t
choice of the spatial derivative. This compatibility ensur
that a delicate balance of terms on the continuous leve
preserved on the discrete level. This balance is crucial
maintaining numerical stability. Based on this analysis, th
designed a boundary integral method for 2-D water wa
with and without surface tension and proved rigorously
convergence in a time continuous framework. Surface t
sion also introduces additional difficulty in the time discre
zation. High-order spatial derivatives and Lagrangian p
ticle clustering induce a severe time-step stability constra
Based on a reformulation using the equal arclength and
gent angle variables, an efficient implicit discretization w
proposed by Hou, Lowengrub, and Shelley,20 which removes
this severe time-step stability constraint. The method
been successfully applied to compute with high accurac
rich variety of complex long-time motion of vortex sheets21

The convergence of this method has been established by
niceros and Hou22 for a general two-fluid interface. The sta
bility of boundary integral methods for vortex sheets w
surface tension has also been investigated by Baker
Nachbin23 based on Fourier analysis near equilibrium so
tions.

In this paper, we perform a numerical study of breaki
waves using the nonstiff and spectrally accurate bound
integral method developed in Ref. 20. We find that the c
illary waves originate near the crest in a neighborhood wh
both the curvature and its derivative are maximum. For fix
but small surface tension, the maximum of curvature
creases in time and the interface develops a train of capil
waves in the forward front of the crest. Our numerical e
periments also show that the minimum distance between
jacent capillary crests appears to approach zero, sugge
the formation of trapped bubbles as observed by Koga
experiments of breaking waves.24 On the other hand, for a
fixed time, as the surface tension coefficientt is reduced,
both the capillary wavelength and its amplitude decre
nonlinearly. The corresponding waves approach thet50
profile. At the onset of the capillaries, the derivative of t
convection is comparable to that of the gravity term in t
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
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dynamic boundary condition and the surface tension
comes appreciable with respect to these two terms. We
that, based on thet50 wave, it is possible to estimate
threshold valuet0 such that ift<t0 then no capillary waves
arise. Fort sufficiently large, breaking is inhibited and pur
capillary motion is observed. The limiting behavior is ve
similar to that in the classical KdV equation.

We also consider how the viscosity may affect the ge
eration of capillary waves. To this end, we incorporate we
viscous effect into our boundary integral formulation using
boundary layer approach due to Lundgren and Mansou25

This amounts to modifying the dynamic boundary conditi
at the interface. Lundgren and Mansour observed that on
the terms introduced by the viscous layer correction indu
a strain that leads to severe point clustering and numer
instability. Our implicit scheme based on the equal arclen
and tangent angle formulation automatically eliminates t
difficulty. Our numerical study shows that the interface
smoother but that capillary waves can still appear in this c
provided the viscosity is sufficiently small.

The rest of the paper is organized as follows. In Sec
we present the equations of motion in a boundary integ
formulation for 2-D water waves. Our stable boundary in
gral method is given in Sec. III. This is followed by a d
scription of of the modified equations, which include th
weak viscous effects~Sec. IV!. The numerical experiment
are presented and discussed in Sec. V. The conclusions
given in Sec. VI.

II. THE EQUATIONS OF MOTION

We consider one layer of incompressible, irrotation
and inviscid fluid of infinite depth in two dimensions. Th
position of the fluid interface, at any instant, is given by t
complex variablez(a,t)5x(a,t)1 iy(a,t), with a a La-
grangian parameter. We further assume thatz(a)2a is 2p
periodic. Then, the complex velocityW5U2 iV at the inter-
face can be expressed in terms of a boundary integra
follows ~for a derivation see Refs. 26 and 19!:

W~a,t !5
g~a,t !

2za~a,t !
1

1

4p i E0

2p

g~a8,t !

3cot
1

2
@z~a,t !2z~a8,t !#da8, ~1!

where the subscripta denotes differentiation with respect t
that variable andg is the ~unnormalized! vortex sheet
strength, which is linked to the velocity potentialf via the
integral equation

fa~a!5
1

2
g~a!1ReS za~a!

4p i E
0

2p

g~a8!

3cot
1

2
@z~a!2z~a8!#da8D . ~2!

Here we have dropped the time variable to simplify the n
tation.

The effect of surface tension introduces a jump in t
pressure across the interface. This jump is proportional to
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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local mean curvature. Since vacuum is assumed above
water surface, the dynamic boundary condition takes
form of the Bernoulli equation, which, in Eulerian variable
reads as

]f

]t U
z

1
1

2
uWu252gy1tk,

whereg is the gravity acceleration andt is the surface ten-
sion coefficient. Here, the equations have been nondim
sionalized on a periodicity lengthl ~so that the nondimen
sional wavelength is 1! and a velocity scaleḡ equal to the
average ofg over one period. Note thatḡ/2 gives the veloc-
ity at y52`. Thus, t5 t̃/(ḡ2l) and g5g̃l/ḡ2, where t̃
and g̃ are the dimensional surface tension and gravity co
ficients, respectively. The curvaturek is given by

k5
yaaxa2xaaya

~xa
21ya

2 !3/2 .

We define the velocityW̃ of the Lagrangian particles o
the interface as

W̃5W1
za*

uzau
UA,

where the asterisk stands for the complex conjugate. W
this velocity, we still satisfy the kinematics and have fre
dom to selectUA to gain some control over the positionin
of the Lagrangian particles. Thus,

]z

]t
~a,t !5W̃* ~a,t !. ~3!

The Bernoulli equation can be evaluated in this Lagrang
frame, by noting that

]f

]t U
a

5
]f

]t U
z

1Re$W* W̃%5
]f

]t U
z

1uWu21UAUT,

whereUT5uzau21 Re$za W%. Hence, we obtain

]f

]t U
a

5
1

2
uWu21UAUT2gy1tk. ~4!

Equations~1!–~4! determine the time evolution of th
interface. Note that it isfa , notf, that is needed to obtaing
and the velocity. The evolution equation forfa can be ob-
tained by differentiating the Bernoulli equation with respe
to a. Therefore, it is the competition betweentka and

( 1
2uWu21UAUT2gy)a that plays a role in the generation o

capillary waves.
A natural variable for the curvature is the tangent anglu

to the interface, that isza5seiu, wheres is the arclength
metric uzau. The curvature has a simple expression in th
variables:k5ua /s. Given~s,u!, the interface can be recon
structed up to a translation constant~for details see Refs. 22
and 20!.

One can easily derive the equations of motion for th
two new variables. They are given by

s t5~UT1UA!a2uaUN, ~5!
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
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s
~UT1UA!, ~6!

whereUN52uzau21 Im$za W% is the normal velocity at the
interface. To have better control on the tangential motion
the Lagrangian particles, we selectUA such that the follow-
ing condition is satisfied:

s~a,t !5
1

2p E
0

2p

s~a8,t !da8[s̄. ~7!

It is easy to show that this condition is enforced ifUA is
given by

UA52UT1E
0

a

@uaUN2uaUN#da8, ~8!

whereuaUN is the spatial average over one period, as
fined in ~7!. Condition ~7! gives a uniform distribution of
particles on the interface. Sinces is now constant ina, semi-
implicit time discretizations become easy to impleme
With this choice ofUA, the evolution equation fors is the
following ordinary differential equation:

ds

dt
52uaUN. ~9!

III. THE NUMERICAL METHOD

A. A stable space discretization

Our discretization is based on the pseudospectral
proximation for the space derivatives and some care
dealiasing filtering. The singular velocity integral is approx
mated by the alternate-point trapezoidal rule. This give
spectrally accurate approximation.

Numerical filtering is defined in Fourier space as fo
lows:

~ f p! k̂5r~kh! f̂ k , ~10!

where the overcaret stands for the discrete Fourier transf
andr is a non-negative even cutoff function such thatr(x)
51 for uxu<lp with 0,l,1 and decays smoothly to zer
at x56p. Hereh52p/N with N even. Denoting bySh the
spectral derivative operator and setting Dh f i5Shf i

p , we have
the following discretization:

ds

dt
52

1

N (
j 51

N

Shu jU j
N , ~11!

du i

dt
5

1

s i
@Sh Ui

N1Dh u i~Ui
T1Ui

A!#, ~12!

df i

dt
5

t

s i
Dh u i

p1
1

2
uWi u21Ui

AUi
T2g Im$zi%. ~13!

Given s andu i , we can reconstructzi ~for details, see Ref.
20!. The velocity is computed using the spectrally accur
alternate-point trapezoidal rule for the periodic kernel:
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Wi5
g i

2s i
e2 iu i

p
1

1

4p i (
j 52N/211

~ j 2 i !odd

N/2

g j cot
1

2
~zi

p2zj
p!2h.

~14!

At every time step the vortex sheet strengthg is obtained by
solving, via fixed point iteration, the following discrete int
gral equation:

Dh f i5
1

2
g i

1ReS s ie
iu i

p

4p i (
j 52N/211

~ j 2 i !odd

N/2

g j cot
1

2
~zi

p2zj
p!2hD .

~15!

It has been shown in Ref. 3 that the Neumann series c
verges globally. As remarked before, Dh f i is evolved in
time by applying Dh to Eq. ~13!.

Finally, the tangential and normal velocities are co
puted fromWi as follows:

Ui
T5Re$eiu i

p
Wi%; Ui

N52Im$eiu i
p
Wi%, ~16!

Ui
A52Ui

T1Inth S Dh uUN2
1

N (
j 51

N

Dh u jU j
ND i . ~17!

Here Inth stands for the pseudospectral approximation to
tegration with the zeroth mode set to zero.

Following the lines of the proof given in Ref. 6, it can b
shown that this discretization yields a convergent spec
method for sufficiently smooth solutions.27

B. An efficient time discretization

To achieve an efficient time discretization without t
high-order time-step constraint introduced by the surface
sion, we perform a small-scale decomposition as done
Hou, Lowengrub, and Shelley20 to separate the terms con
tributing to the stiffness in the equations of motion.

The dominant small-scale terms are the curvature in
Bernoulli equation and the derivative of the normal veloc
in the evolution equation foru. It can be shown that20

Ui
N5

1

2s
Hh g i1Rh g i ,

where

Hh f i5
1

2p (
j 52N/211

~ j 2 i !odd

N/2

f j cot
1

2
~a i2a j !2h ~18!

is a discrete version of the Hilbert transform for period
functions and Rh g i is a smoother term. Also, from the inte
gral equation forg i we have that, to leading orderg i

;2 Dh f i . Therefore, the discrete evolution equations c
be written as

du i

dt
5

1

s2 HhSh
2 f i

p1Pi , ~19!
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
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df i

dt
5

t

s
Dh u i

p1Qi , ~20!

wherePi andQi are lower-order terms at small spatial sca
and can be treated explicitly in time. We have also used
fact thats is constant ina.

With this decomposition, semi-implicit time integratio
methods are straightforward and easy to implement. The
plicit terms can be inverted fast in Fourier space. Here,
employ the fourth-order multistep implicit/explicit schem
developed by Ascher, Ruuth, and Wetton.28

IV. WEAK VISCOUS EFFECTS

In this section we present the modified equations to
corporate weak viscous effects into our boundary integ
formulation for water waves. The basic idea from Lundgr
and Mansour25 is the assumption that viscous effects f
free-surface problems are confined to thin weak vorti
boundary layers. The viscous correction can be expres
completely in terms of the interior potential flow as a mod
fication to the boundary conditions. Here we only give t
equations. Their derivation can be obtained following Re
29 and 25.

The modified evolution equations are

zt* 5W1
za*

uzau ~UA2 iuN!; uN52
ca

uzau
, ~21!

c t52
2c

uzau
Re$zaWa%2

2n

uzau
Im$zaWa%2uNUA, ~22!

f t5tk1 1
2uWu21UTUA2gy1uNUN

1
2c

uzau
Im$zaWa%1

2n

uzau
Re$zaWa%, ~23!

whereW is again the complex velocity given by~1!, c is the
streamfunction, andn is the viscosity coefficient~nondimen-
sionalized with length scalel and velocity scaleḡ). These
equations are an asymptotic approximation to orderO(n3/2)

FIG. 1. Breaking wave profiles fort50.001 at timest50, 0.30, and 0.45.
HereN52048 andDt5531025.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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or to third order in the vortical layer widthd5O(An). To
recast the equations in the~s,u! variables, we just need to
change the normal velocity touN1UN.

V. NUMERICAL EXPERIMENTS

A. Inviscid waves

We begin our numerical experiments with a simulati
using the method~11!–~17!. The computations are fo
1-periodic interfaces; this was done by a simple scaling
the 2p-periodic case. All the simulations presented here
the following initial data:

z~a,0!5a10.1i cos~2pa!, ~24!

g~a,0!52110.1 sin~2pa!. ~25!

Note that the vortex sheet strengthg has a nonzero mea
(ḡ521). This gives the wave an impulse that eventua
cause it to overturn. Here,ḡ/2 gives the velocity aty
52`. We have computed previously with other initial co
ditions (ḡ50) and finite depth in Ref. 27, where we als
found that the capillary waves appear once the interf
steepens up and is about to overturn. However, since fi
depth computations are considerably more expensive
those for deep water, we cannot achieve the high resolu
needed to compute the subsequent development of the
illary waves and their detailed structure, as we are able
show in the deep water computations presented below.

We takeg510 and vary the surface tension coefficient
throughout the experiments. Our first simulation is fort
50.001. In Fig. 1, we present the interface profile at tim
t50, 0.30, and 0.45, computed usingN52048 andDt55
31025. The interface becomes vertical att50.30 and a cap-

FIG. 2. ~a! A close-up of the interface att50.45 and~b! the curvature
plotted against the Lagrangian parametera for t50.001, N52048, and
Dt5531025.

FIG. 3. Curvature versusa at t50.26. ~a! t50.001 and~b! t→0.
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
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illary wave appears soon after the wave begins to overtu
Figure 2~a! gives a close-up of a neighborhood of the cres
time t50.45. The curvature for that region is plotted in Fi
2~b!, where a capillary wave train is clearly observed.

Although the interface appears very smooth att50.30,
the onset of the capillary waves occurs before that time, a
plot of the curvature att50.26 shows@Fig. 3~a!#. Note that
there is a spike ata50.45, right after the wave tip (a
50.43). Figure 3~b! shows that such a spike is not present
the caset50, where the curvature is smoother ata50.43
but larger at the tip, as expected. Near the time of onse

the capillaries~about t50.25) the convection term (1
2uWu2

1UAUT)a is comparable to the gravity term2gya , as Fig.
4~a! demonstrates. Note that the effect of surface tensio
already visible in the convection term in the form of an i
verted spike at the toe (a50.43). Figure 4~b! compares
these two terms at a subsequent time (t50.35).

A closer look at the interface profiles neart50.45 @Fig.
5~a!# shows that the capillary trough gets narrower, sugge
ing a possible formation of a trapped bubble through s
intersection of the interface. The minimum distance betwe
adjacent parts of the interface near the ‘‘edge’’ of the cap
lary wave is decreasing in time@Fig. 5~b!#. On the other
hand, the tangent angleu becomes nearly discontinuous wit

FIG. 4. A comparison of (
1
2uWu21UAUT)a ~solid line! and 2gya ~dotted

line! for t50.001 at~a! t50.25 and~b! t50.35.

FIG. 5. Caset50.001,N52048, andDt5531025. ~a! Close-ups of the
interface att50.44, 0.445, and 0.45~left to right!. ~b! The minimum dis-
tance between opposite sides of the interface near the edge.~c! Tangent
angleu vs a at t50.45. ~d! The maximum ofuku versus time.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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a jump size close top, as in a cusp@Fig. 5~c!#. We remark
that both the curvature and its derivative have maxima~in
absolute value! in a small neighborhood about the edge.
that region, the curvature continues to grow in time, as it
be seen in Fig. 5~d!.

Now, for a fixed time (t50.45) we compute the capil
lary wavelengthlt and the amplitudeat as the surface ten
sion coefficientt is decreased~Fig. 6!. The capillary wave-
length lt is defined as the the distance between the
largest values ofuku. These are the crosses shown in Fig.
where close-ups of the capillary region corresponding to
ferent t’s are presented. The behavior in time oflt andat

for t50.001 is given in Fig. 8. While the capillary wave
lengthlt has a relatively small change over the time inter
@0.40, 0.45#, the capillary amplitudeat increases more rap
idly. Nevertheless,at remains fairly small, even att50.45.

Although it is difficult to obtain a scaling forlt andat ,
it is clear from Fig. 6 that both quantities decrease non
early ast decreases. Therefore, we can expect that the
iting solutions converge strongly to thet50 profile for a
fixed time. This indeed appears to be the case, as observ
Fig. 9, where the surface tension coefficientt is decreased
even further. We observe the convergence of the corresp
ing interface profiles to that corresponding to the zero s
face tension profile at the fixed timet50.45.

FIG. 6. Interface close-ups att50.45 for~a! t50.001,~b! t5531024, ~c!
t52.531024, ~d! t51.2531024. The distance between the crosses islt .

FIG. 7. The computed capillary wavelengthlt and the amplitudeat . ~a! lt

vs t. ~b! at vs t.
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Decreasingt delays the onset of the capillary waves u
til the derivative of the curvature is large enough to exc
the surface tension term. More precisely, from the zero s
face tension interface we can estimate a boundt0 such that
t0ka will be negligible compared to the derivative of th
convection and gravity terms in Bernoulli’s equation. T
comparison plots for these terms are shown in Fig. 10 for
particular initial data ~24!–~25! at t50.5. At this time,
maxukau52.53104. Therefore, if we taket51/(maxukau)
5431025, the termtka would be order 1 and about 0.8%
of the other competing term@Fig. 10~b!#. Although no cap-
illaries are observed for sucht in the wave profile, the cur-
vature neart50.5 has signs of their presence. We find n
merically that if t<t05131026, then both the interface
and its curvature remain smooth and no capillary waves
observed. Such values oft would give a dispersive termtka

less than 0.03% of the maximum value of the derivative
the convection and gravity terms.

On the other extreme ift is sufficiently large, then the
capillary effects dominate and the wave does not overturn
typical behavior is shown in Fig. 11 fort50.5 for long
times.

The intermediate caset50.1 is also very interesting
~Fig. 12!. Now, the front does not overturn but forms a bul

FIG. 8. Fort50.001,~a! the capillary wavelengthlt versus time and~b!
the capillary amplitudeat versus time.

FIG. 9. A comparison of the zero surface tension interface profile with
corresponding ones for decreasingt at t50.45. ~a! t52.531024. ~b! t
51.2531024. ~c! t56.2531025. ~d! t53.12531025.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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that interacts with the capillary waves. Dispersion becom
strong att50.85 and the delicate competition among co
vection, gravity, and surface tension appears to eventu
lead to the formation of a trapped bubble~Fig. 13!.

B. Analogy with the KdV equation

Probably the simplest model that has both nonlinear c
vection and dispersion is the classical KdV equation,

ut1uux5euxxx . ~26!

To illustrate the similarities between the small dispers
solutions to this equation and that of the capillaries on
breaking wave, let us consider the initial datau0(x)
5sin 2px in the interval@0, 1#. For e50, a shock will be
formed at the breaking timetb51/2p, but the solution
u(t,x;e50) is smooth fort,tb .

For small but nonzeroe, an oscillatory train may appea
in the bottom of the forward face of the front. This is illu
trated in Fig. 14 in the first two plots of the left column. Th

FIG. 10. ~a! A derivative of the curvature, maxukau52.53104. ~b! A deriva-
tive of the convection and gravity terms. Both plots correspond to the z
surface tension wave att50.5, N51024, andDt51.2531024.

FIG. 11. Interface profiles at times 1.5–2.0 fort50.5. The computation is
performed withN51024 andDt51.2531024.
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
s
-
lly

-

n
a

third derivative of the corresponding solution appears in
right column of this figure. The solutions are plotted at t
time t50.15,tb and were computed using a semi-implic
spectral discretization withN51024 points andDt51.25
31024.

As e tends to zero, both the wavelength and the am
tude of these oscillations decrease monotonically and the
lution u(t,x;e) converges strongly tou(t,x;0) for t,tb . On
the other hand, ife,e05131028 then no signs of oscilla-
tions appear in the solution or its third derivative. Again, t
onset of the oscillations is determined by the balance
tween convection and dispersion. An estimate fore0 may be
obtained by considering the maximum ofuuxxx(t,x,0)u. In
this case, 1/maxuuxxx(t,x,0)u;531028. Although with such a
value for e no oscillations appear in the solution, the thi
derivatives has some signs of dispersion. Takinge051
31028 makes the dispersive term effectively negligib
~plots in the bottom row in Fig. 14!. Clearly, the behavior of
the small dispersion solutions of the KdV equation is ve
similar to the more complex motion of breaking water wav
with small surface tension.

ro

FIG. 12. Interface profiles at times 1.5–2.0 fort50.1. The computation
performed withN51024 andDt51.2531024.

FIG. 13. ~a! An interface at time 0.896 fort50.1. ~b! Close-up.N51024
andDt51.2531024.
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C. Weak viscous effects

We illustrate the weak viscous effects by two numeri
examples of a breaking wave. The weak viscous effec
modeled by the equations presented in Sec. IV. Both
amples use the same initial data and gravity coefficien
before. In the first example, we include both surface tens
and the weak viscosity contribution. We takev50.0005 and
t50.001. A sequence of the wave profiles is shown in F
15. For this set of parameters, the viscous effects domi
the surface tension. There are no signs of capillary waves
a closer look at the profile and curvature shows in Fig.
The curvature varies smoothly and its maximum is o
about 10% of that corresponding ton50 and with t
50.001.

However, capillary waves are observed for a smaller v
cosity coefficient~Fig. 17!. Again, the capillary wave can b
seen more clearly as the oscillations in the curvature co

FIG. 14. The plots on the left show the solutionu(x) of the KdV equation
for different e at t50.15. The plots on the right show their correspondi
uxxx .

FIG. 15. Wave profiles forn50.0005 andt50.001 at timest50.46, 0.50,
and 0.5. HereN51024 andDt51.2531024.
Downloaded 03 Mar 2007 to 131.215.225.9. Redistribution subject to AIP
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sponding to the forward side of the wave@Fig. 17~b!#. The
simulation also suggests the formation of a trapped bubbl
finite time.

VI. CONCLUSIONS

We have shown through highly accurate numeri
simulations the dynamic generation of capillary waves on
surface of breaking water waves. The capillaries origin
near the wave crest in a neighborhood where both the cu
ture and its derivative are maximum. It is the derivative
the curvature, competing with convection and gravity term
that plays a role in the onset of the capillaries. This is sim
to the onset of dispersive waves in the classical KdV eq
tion before the formation of a shock.

Our numerical experiments also show that both the c
illary wavelength and its amplitude decreasenonlinearly as
the surface tension coefficientt tends to zero and, therefore
the wave profiles converge strongly to thet50 wave profile
for a fixed time. Moreover, based on the zero surface tens
wave, an estimated valuet0 can be found such that no cap
illaries are observed ift,t0 for the given initial data.

The robust and efficient numerical method we used,
lowed us to consider a wide range of surface tension coe
cients. Smooth capillary dominant behavior was observed
large values oft, while intermediate and small values appe
to eventually lead to the formation of trapped bubbles, wh
constitutes a topological singularity of the interface.

Weak viscous effects were also incorporated into o
boundary integral method. The numerical examples p

FIG. 16. ~a! Interface at timet50.51 for n50.0005 andt50.0001. ~b!
Curvature at the same time. HereN51024 andDt51.2531024.

FIG. 17. ~a! A close-up of the interface at timet50.48 for n50.0001 and
t50.0001.~b! Curvature at the same time. HereN51024 andDt51.25
31024.
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sented here showed that the wave profile is smoother
capillary waves may still appear if the viscosity coefficient
sufficiently small.

We remark finally, that although the curvature near
capillary edge appears to grow monotonically in time,
higher resolution study is needed to determine whether it~or
its derivative! will blow up in finite time and if so at what
rate. It would also be very interesting to study further t
possible topological singularity associated with trapp
bubbles, as it is believed to precede a turbulent wave bre
ing, as suggested by the experiments of Duncanet al.1
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