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Matrix Models for Circular Ensembles

Rowan Killip and Irina Nenciu

1 Introduction

In 1962, Dyson [6, 7, 8] introduced three ensembles of random unitary matrices with

a view to simplifying the study of energy-level behavior in complex quantum systems.

Earlier work in this direction, pioneered by Wigner, focused on ensembles of Hermitian

matrices.

The simplest of these three models is the unitary ensemble, which is just the

group U(n) of n × n unitary matrices together with its Haar measure. The induced prob-

ability measure on the eigenvalues is given by the Weyl integration formula (cf. [19, Sec-

tion VII.4]): for any symmetric function of the eigenvalues,

E(f) =
1

n!

∫2π

0

· · ·
∫2π

0

f
(
eiθ1 , . . . , eiθn

)∣∣∆(eiθ1 , . . . , eiθn
)∣∣2 dθ1

2π
· · · dθn

2π
, (1.1)

where ∆ denotes the Vandermonde determinant,

∆
(
z1, . . . , zn

)
=

∏
1≤j<k≤n

(
zk − zj

)
=

∣∣∣∣∣∣∣∣
1 · · · 1

...
...

zn−1
1 · · · zn−1

n

∣∣∣∣∣∣∣∣
. (1.2)

The orthogonal ensemble consists of symmetric n × n unitary matrices together

with the unique measure that is invariant under U �→ WTUW for all W ∈ U(n). Alter-

natively, if U is chosen according to the unitary ensemble, then UTU is distributed as a

random element from the orthogonal ensemble. The distribution of eigenvalues is given

by (1.1) but with |∆|2 replaced by |∆| and a new normalization constant.
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The symplectic ensemble is a little more complicated. Let Z denote the 2n × 2n

block-diagonal matrix




0 1

−1 0

. . .

0 1

−1 0




(1.3)

and define the dual of a matrix by UR = ZTUTZ. The symplectic ensemble consists of

self-dual unitary 2n × 2n matrices; the measure is that induced from U(2n) by the map

U �→ URU. (This is the unique measure invariant under V �→ WRVW for all W ∈ U(2n).)

The eigenvalues of such matrices are doubly degenerate and the pairs are distributed on

the circle as in (1.1) but now with |∆|2 replaced by |∆|4. Again, the normalization constant

needs to be changed.

Dyson also observed that these eigenvalue distributions correspond to the Gibbs

distribution for the classical Coulomb gas on the circle at three different temperatures.

We now elaborate.

Consider n identically charged particles confined to move on the unit circle in

the complex plane. Each interacts with the others through the usual Coulomb potential

− log |zi − zj|, which gives rise to the Hamiltonian

H
(
z1, . . . , zn

)
=

∑
1≤j<k≤n

− log
∣∣zj − zk

∣∣. (1.4)

(One may add a kinetic energy term; however, as we are interested only in the distribu-

tion of the particle positions, it has no effect.) This gives rise to the Gibbs measure (with

parameters n, the number of particles, and β, the inverse temperature)

E
β
n(f) =

1

(2π)nZn,β

∫
· · ·

∫
f
(
eiθ1 , . . . , eiθn

)
e−βH(eiθ1 ,...,eiθn )dθ1 · · ·dθn (1.5)

=
1

(2π)nZn,β

∫
· · ·

∫
f
(
eiθ1 , . . . , eiθn

)∣∣∆(eiθ1 , . . . , eiθn
)∣∣βdθ1 · · ·dθn (1.6)

for any symmetric function f. The partition function is given by

Zn,β =

Γ

(
1

2
βn + 1

)
[
Γ

(
1

2
β + 1

)]n (1.7)
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as conjectured by Dyson. This was proved by Gunson [13] and Wilson [20], though the

Good proof [12] is even better. We give another proof at the end of Section 4.

From the discussion above, we see that the orthogonal, unitary, and symplectic

ensembles correspond to the Coulomb gas at inverse temperatures β = 1, 2, and 4.

From the opposite perspective, one may say that Dyson provided matrix models

for the Coulomb gas at three different temperatures. Our first goal here is to present a

family of matrix models for all temperatures. These matrices will be sparse—approxi-

mately 4n nonzero entries—which suggests certain computational advantages. To state

the theorem, we need the following definition.

Definition 1.1. A complex random variable X, with values in the unit disk D, is Θν-

distributed (for ν > 1) if

E
{
f(X)

}
=

ν − 1

2π

∫ ∫
D

f(z)
(
1 − |z|2

)(ν−3)/2
d2z. (1.8)

For ν ≥ 2 an integer, this has the following geometric interpretation: if u is chosen from

the unit sphere Sν in R
ν+1 at random according to the usual surface measure, then u1 +

iu2 is Θν-distributed. (See Corollary A.2.)

As a continuation of this geometric picture, we will say that X is Θ1-distributed

if it is uniformly distributed on the unit circle in C.

We now describe the family of matrix models.

Theorem 1.2. Given β > 0, let αk ∼ Θβ(n−k−1)+1 be independent random variables for

0 ≤ k ≤ n − 1, ρk =
√

1 − |αk|2, and define

Ξk =

[
ᾱk ρk

ρk −αk

]
(1.9)

for 0 ≤ k ≤ n − 2, while Ξ−1 = [1] and Ξn−1 = [ᾱn−1] are 1 × 1 matrices. From these, form

the n × n block-diagonal matrices

L = diag
(
Ξ0, Ξ2, Ξ4, . . .

)
, M = diag

(
Ξ−1, Ξ1, Ξ3, . . .

)
. (1.10)

Both LM and ML give (sparse) matrix models for the Coulomb gas at inverse temperature

β. That is, their eigenvalues are distributed according to (1.6). �
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Remark 1.3. As each of the Ξk is unitary, so are L and M. (In the case of Ξn−1, we should

reiterate that αn−1 ∼ Θ1 is uniformly distributed on the unit circle.) As a result, the

eigenvalues of LM and ML lie on the unit circle. Note also that, since M conjugates one

to the other, LM and ML have the same eigenvalues.

In proving this theorem, we will be following the recent paper of Dumitriu and

Edelman [5] rather closely, while incorporating the nuances of the theory of polynomials

orthogonal on the unit circle. The matrices L and M that appear in the theorem have their

origin in the work of Cantero, Moral, and Velázquez [3]; this is discussed in Section 2.

Dumitriu and Edelman constructed tridiagonal matrix models for two of the

three standard examples of the Coulomb gas on the real line. A model for the third will

be constructed below.

The simplest way to obtain a normalizable Gibbs measure on the real line is to

add an external harmonic potential V(x) = x2/2. This gives rise to the probability mea-

sure

E(f) ∝
∫
· · ·

∫
f
(
x1, . . . , xn

)∣∣∆(x1, . . . , xn

)∣∣β ∏
j

e−V(xj)dx1 · · ·dxn (1.11)

on R
n. This is known as the Hermite ensemble because of its intimate connection to the

orthogonal polynomials of the same name, and when β = 1, 2, or 4 arises as the eigen-

value distribution in the classical Gaussian ensembles of random matrix theory. Du-

mitriu and Edelman showed that (1.11) is the distribution of eigenvalues for a symmetric

tridiagonal matrix with independent entries (modulo symmetry). The diagonal entries

have standard Gaussian distribution and the lower diagonal entries are 2−1/2 times a χ-

distributed random variable with the number of degrees of freedom equal to β times the

number of the row.

The second example treated by Dumitriu and Edelman is the Laguerre ensem-

ble. In statistical circles, this is known as the Wishart ensemble, special cases of which

arise in the empirical determination of the covariance matrix of a multivariate Gaussian

distribution. For this ensemble, one needs to modify the distribution given in (1.11) in

two ways: each particle xj is confined to lie in [0,∞) and is subject to the external po-

tential V(x) = −a log(x) + x, where a > −1 is a parameter. In [5], it is shown that if B

is a certain n × n matrix with independent χ-distributed entries on the main diagonal

and subdiagonal (the number of degrees of freedom depends on a, β, and the element in

question) and zeros everywhere else, then the eigenvalues of L = BBT follow this distri-

bution.

The third canonical form of the Coulomb gas on R is the Jacobi ensemble. The

distribution is as in (1.11), but now the particles are confined to lie within [−2, 2] and are
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subject to the external potential V(x) = −a log(2 − x) − b log(2 + x), where a, b > −1 are

parameters. This corresponds to the probability measure on [−2, 2]n that is proportional

to

∣∣∆(x1, . . . , xn

)∣∣β ∏
j

(
2 − xj

)a(
2 + xj

)b
dx1 · · ·dxn. (1.12)

The partition function (or normalization coefficient) was determined by Selberg [16].

This will be discussed in Section 6.

Dumitriu and Edelman did not give a matrix model for this ensemble, listing it

as an open problem. We present a tridiagonal matrix model in Theorem 1.5 below. The

independent parameters follow a beta distribution.

Definition 1.4. A real-valued random variable X is said to be beta-distributed with pa-

rameters s, t > 0, which we denote by X ∼ B(s, t), if

E
{
f(X)

}
=

21−s−tΓ(s + t)
Γ(s)Γ(t)

∫1

−1

f(x)(1 − x)s−1(1 + x)t−1dx. (1.13)

Note that B(ν/2, ν/2) is the distribution of the first component of a random vector

from the ν-sphere. (See Corollary A.2.)

Theorem 1.5. Given β > 0, let αk, 0 ≤ k ≤ 2n − 2, be distributed as follows:

αk ∼




B

(
2n − k − 2

4
β + a + 1,

2n − k − 2

4
β + b + 1

)
, k even,

B

(
2n − k − 3

4
β + a + b + 2,

2n − k − 1

4
β

)
, k odd.

(1.14)

Let α2n−1 = α−1 = −1 and define

bk+1 =
(
1 − α2k−1

)
α2k −

(
1 + α2k−1

)
α2k−2,

ak+1 =
{(

1 − α2k−1

)(
1 − α2

2k

)(
1 + α2k+1

)}1/2
(1.15)

for 0 ≤ k ≤ n − 1; then the eigenvalues of the tridiagonal matrix

J =




b1 a1

a1 b2
. . .

. . .
. . . an−1

an−1 bn




(1.16)

are distributed according to the Jacobi ensemble (1.12). �
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We know of two other papers which discuss the Jacobi ensemble in a manner

inspired by the work of Dumitriu and Edelman: [9, Section 4.2] and [15]. These results

are, however, of a rather different character; in particular, we contend that Theorem 1.5

is the true Jacobi ensemble analogue of the results of [5].

In Section 6, we show how the ideas developed in the earlier parts of this paper

lead to new derivations of the classical integrals of Aomoto [2] and Selberg [16]. The main

novelty of these proofs is their directness: they treat all values of β and n on an equal

footing. In particular, we do not prove the result for β an integer and then make recourse

to Carlson’s theorem. These remarks are also applicable to the proof of (1.7) given at the

end of Section 4.

2 Overview of the proofs and background material

We begin by examining the β = 2 case of Theorem 1.2, that is, Haar measure on the uni-

tary group.

Rather than studying the eigenvalues as the fundamental statistical object, we

will consider the spectral measure associated to U and the vector e1 = (1, 0, . . . , 0)T . It

will be denoted by dµ. As Haar measure is invariant under conjugation, any choice of

unit vector e1 leads to the same probability distribution on dµ.

The most natural coordinates for dµ are the eigenvalues eiθ1 , . . . , eiθn and the

mass that dµ gives to them: µ1 = µ({eiθ1 }), . . . , µn−1 = µ({eiθn−1 }). As
∫

dµ = 1, we omit

µn = µ({eiθn }). Note that we have chosen not to order the eigenvalues, which means that

the natural parameter space gives an n!-fold cover of the set of measures. We have al-

ready used this way of thinking a number of times, beginning with (1.1).

The above system of coordinates does not cover the possibility that U has degen-

erate eigenvalues. However, as the Weyl integration formula shows, the set of such U has

zero Haar measure; in fact, the density vanishes quadratically at these points. The rea-

son for this is worth repeating (cf. [19, Section VII.4]): the submanifold where two eigen-

values coincide has codimension three in U(n); one degree of freedom is lost from the

reduction of the number of eigenvalues and two more are lost in the reduction from two

orthogonal one-dimensional eigenspaces to a single two-dimensional eigenspace. One

should compare this to spherical polar coordinates in R
3, where r = 0 is a submanifold

of codimension three and, consequently, the density also vanishes to second order.

In Section 3, we will determine the probability distribution on dµ induced from

Haar measure on U(n), in the (θ, µ)-coordinates. Conjugation invariance of Haar measure

implies that the eigenvalues and masses are statistically independent; it is then easy to

see that the former are distributed as in (1.1) and (µ1, . . . , µn) is uniformly distributed on
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the simplex
∑

µj = 1. See Proposition 3.1. This implies that dµ gives nonzero weight to

each of the eigenvalues with probability one. As a consequence, we can always recover

the eigenvalues from dµ.

We will now introduce different coordinates (α0, . . . , αn−1) for dµ that arise in the

study of orthogonal polynomials on the unit circle.

The monomials 1, z, . . . , zn−1 form a basis for L2(dµ) and so, applying the Gram-

Schmidt procedure, we can construct an orthogonal basis of monic polynomials: Φj, 0 ≤
j < n, with Φj monic of degree j. We also define φj = Φj/‖Φj‖, which gives an orthonor-

mal basis.

There is a well-developed theory of such orthogonal polynomials, parts of which

will be important in what follows. For a proper discussion of this theory, see [11, 17] or

[18, Chapter XI].

The first important fact about the orthogonal polynomials is that they obey re-

currence relations

Φk+1(z) = zΦk(z) − ᾱkΦ∗
k(z), (2.1)

Φ∗
k+1(z) = Φ∗

k(z) − αkzΦk(z), (2.2)

where the αk are the recurrence coefficients and Φ∗
k denotes the reversed polynomial

Φk(z) =

k∑
l=0

clz
l =⇒ Φ∗

k(z) =

k∑
l=0

c̄k−lz
l. (2.3)

Equivalently, Φ∗
k(z) = zkΦk(z̄−1). These recurrence equations imply

∥∥Φk

∥∥
L2(dµ) =

k−1∏
l=0

ρl, where ρl =

√
1 −

∣∣αl

∣∣2, (2.4)

from which the recurrence relations for the orthonormal polynomials are easily derived.

The recurrence coefficients αk have been called by many names; we will follow

[17] where they were recently dubbed “Verblunsky parameters.” Each of α0, . . . , αn−2 lies

inside the unit disk D, while αn−1 lies on its boundary S1.

There is an alternate way of relating measures to their Verblunsky parameters,

namely, the Schur algorithm: if dµ is a probability measure, then we define its Schur
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function f : D → D by

f(z) =
1

z

F(z) − 1

F(z) + 1
, where F(z) =

∫
eiθ + z

eiθ − z
dµ
(
eiθ
)
. (2.5)

The Schur algorithm parameterizes analytic maps f : D → D̄ by finitely or infinitely many

parameters αk.

There are finitely many parameters if and only if f is a finite Blaschke product,

or, equivalently, if and only if dµ has finite support. More precisely, the support of dµ

consists of n points if and only if f is a Blaschke product of degree n. This is the case

when there are n Verblunsky parameters α0, . . . , αn−2 ∈ D and αn−1 ∈ S1. When there

are finitely many parameters, the last must always be unimodular. In fact, the final pa-

rameter is essentially equal to the product of the locations of the mass points of dµ; see

(B.7).

When dµ has infinite support, there are infinitely many Verblunsky parameters,

all of which lie in the unit disk.

Just as the Schur algorithm gives a bijection, so there is a bijection between mea-

sures dµ on S1 supported at n points and sequences of parameters α0, . . . , αn−2 ∈ D,

αn−1 ∈ S1. This justifies their use as coordinates for the measure dµ.

In Proposition 3.3, we determine the probability distribution on dµ (induced by

Haar measure on U(n)) in these new coordinates. Interestingly, the α’s turn out to be

statistically independent, with αk ∼ Θ2n−2k−1.

It is now but a few short steps to the β = 2 case of Theorem 1.2.

Consider the operator f(z) �→ zf(z) in L2(dµ). The spectral measure associated to

the vector f(z) ≡ 1 is simply dµ. To obtain a matrix model, we only need to choose a basis

in which to represent this operator. The most obvious choice is the basis of orthonormal

polynomials {φk}. This leads to a matrix whose entries can be expressed simply in terms

of the α’s. However, this matrix is not sparse: all entries above and including the subdi-

agonal are nonzero (with probability one). Such matrices are typically known as being in

Hessenberg form. In deference to this, we will denote the matrix by H. It plays an impor-

tant role in the determination of the distribution of the Verblunsky parameters, but does

not appear in Theorem 1.2.

The matrix LM described in Theorem 1.2 is f(z) �→ zf(z) in L2(dµ) in the orthonor-

mal basis formed from 1, z, z−1, . . . by applying the Gram-Schmidt procedure. That this

matrix can be expressed so simply in terms of the Verblunsky coefficients is a discov-

ery of Cantero, Moral, and Velázquez [3]. Related matters are discussed in Appendix B.

(The matrix ML is the same operator in the basis formed by applying the Gram-Schmidt

procedure to 1, z−1, z, . . . .)
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Thus far, we have only spoken about the unitary group, that is, about β = 2. In

this case, we have found a random ensemble of measures whose mass points are dis-

tributed as the particles in the Coulomb gas at inverse temperature β = 2. The key dis-

covery, however, was that the corresponding Verblunsky parameters turned out to be in-

dependent.

For general β, we wish to find an ensemble of measures so that the mass points

are distributed appropriately; we have complete freedom in choosing how the weights

are distributed. By the same token, we want the induced probability distribution on the

Verblunsky parameters to retain independence. We can then form the matrix set out in

Theorem 1.2 and its eigenvalues are guaranteed to follow the proper distribution.

The key to satisfying these desires is Lemma 4.1. It expresses the value of the

Toeplitz determinant associated to dµ in terms of the (θ, µ)-coordinates and in terms of

the Verblunsky parameters. Multiplying the probability distribution from the β = 2 case

by the appropriate power of the Toeplitz determinant gives Proposition 4.2, which is ex-

actly the resolution of the goals set forth in the previous paragraph.

As an offshoot of proving Theorem 1.2, we are able to determine the Jacobian for

the map from the (θ, µ)-coordinates to the Verblunsky parameters αk. That this is possi-

ble is a delightful idea of Dumitriu and Edelman [5]. (See Lemmas 4.3 and 4.4.)

Were we granted the Jacobian for this map, the paper could have been much

shorter—though we contend that the scenic route followed below is not without merit.

It is a natural quantity to calculate and the answer takes a rather simple form. This be-

hooves us to find a simple, direct derivation. Thus far, we have failed. We would be much

obliged to any reader who can resolve this matter.

The proof of Theorem 1.5 is very similar. Again, we begin by studying the prob-

lem for β = 2. The relevant group in this instance is not U(n), but rather SO(2n). Such ma-

trices have eigenvalues in complex conjugate pairs and the corresponding eigenvectors

are complex conjugates of one another. Consequently, the spectral measure associated to

e1 is symmetric with respect to complex conjugation. The most natural coordinates are

θj ∈ (0, π) and µj ∈ [0, 1], where

∫
f dµ =

n∑
j=1

1

2
µj

[
f
(
eiθj

)
+ f
(
e−iθj

)]
(2.6)

and
∑

µj = 1.

Once again, we use the Verblunsky coefficients as a second set of coordinates.

These are now real as a consequence of the complex conjugation symmetry of the mea-

sure. Indeed, a measure has this symmetry if and only if its Verblunsky coefficients are

real. From this and the foregoing discussion of the general case, we see that the last
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Verblunsky coefficient α2n−1 must be real and unimodular. In fact it must be −1 because

the product of the eigenvalues of a matrix from SO(2n) is equal to one; see (B.7). The re-

maining Verblunsky coefficients αk, 0 ≤ k ≤ 2n − 2, are free to range over (−1, 1).

By proceeding very much as before, we can construct certain ensembles of or-

thogonal matrices for which the spectral measure is distributed in a desirable fashion.

When the Verblunsky coefficients are real, both det(1 − U) and det(1 + U) have simple ex-

pressions in terms of these coefficients. As a result, we are able to add two new parame-

ters a and b to our family of distributions. This line of reasoning leads to Proposition 5.3.

Given a measure dµ on S1 that is symmetric with respect to complex conjugation,

one may define a measure on [−2, 2] by

∫
S1

f
(
z + z−1

)
dµ(z) =

∫2

−2

f(x)dν(x). (2.7)

In particular, if dµ is of the form (2.6), then we find

∫
f dν =

∑
f(xj)µj, where xj = 2 cos

(
θj

)
. (2.8)

In this way, we find that Proposition 5.3 relates an ensemble of probability measures

on [−2, 2] to a certain ensemble of Verblunsky coefficients. In fact, the locations of the

masses of dν are distributed as the points in the Jacobi ensemble (1.12) and are inde-

pendent of the masses.

Theorem 1.5 follows immediately from the fact that the matrix J represents

f(x) �→ xf(x) in L2(dν) with respect to the basis of orthonormal polynomials. The remain-

der of this section is devoted to explaining the origin of this fact.

Let Pk(x) denote the monic polynomials orthogonal with respect to dν and pk(x),

the corresponding orthonormal polynomials. These obey a three-term recurrence rela-

tion [18, Section 3.2]

xpk(x) = ak+1pk+1(x) + bk+1pk(x) + akpk−1(x), (2.9)

which explains the structure of the matrix J.

It is a famous observation of Szegő (see [18, Section 11.5]) that the polynomials

orthogonal with respect to dµ are intimately related to those orthogonal with respect to

dν. Specifically,

Pk

(
z + z−1

)
=

z−kΦ2k(z) + zkΦ2k

(
z−1
)

1 − α2k−1
(2.10)
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or, equivalently,

pk

(
z + z−1

)
=

z−kφ2k(z) + zkφ2k

(
z−1
)

√
2
(
1 − α2k−1

) . (2.11)

Attendant to this relation between the orthogonal polynomials is a relation between their

recurrence coefficients as in (1.15). These equations are known as the Geronimus rela-

tions. They are exactly equations (1.15) from the statement of Theorem 1.5. This shows

that the matrix J defined in that theorem really does represent multiplication by x in

L2(dν).

The connection between the orthogonal polynomials for dµ and dν suggests a re-

lation between the matrices LM of Theorem 1.2 and J of Theorem 1.5. This is investigated

in Appendix B; in particular, we are able to give a short proof of the Geronimus relations.

3 Distribution of dµ for U(n) and SO(2n)

Let e1 denote the standard unit vector (1, 0, . . . , 0)T . As described in the introduction, for

each U ∈ U(n), we consider the spectral measure associated to the pair (U, e1), that is,

the unique measure on S1 = {z ∈ C : |z| = 1} that obeys

〈
e1

∣∣Une1

〉
=

∫
zndµ(z) (3.1)

for all n ∈ Z. The first goal of this section is to determine the probability distribution of

dµ when U ∈ U(n) is chosen according to Haar measure. We will then prove the analo-

gous result for SO(2n). In each case, we give the distribution both in terms of the natural

parameters (the eigenvalues and associated masses) and in terms of the Verblunsky pa-

rameters.

Proposition 3.1. If U is chosen according to Haar measure on U(n), then the probability

measure on dµ is given by

(n − 1)!
n!(2π)n

∣∣∆(eiθ1 , . . . , eiθn
)∣∣2dθ1 · · ·dθndµ1 · · ·dµn−1, (3.2)

where 0 ≤ θj ≤ 2π and 0 ≤ µj ≤ 1 with
∑

µj ≤ 1. �

Proof. Conjugation invariance of Haar measure on U(n) implies that the distribution of

the eigenvectors is independent of that of the eigenvalues. The distribution of the eigen-

values is given by the Weyl integration formula (1.1), while the masses are simply the

square moduli of the top entries of the normalized eigenvectors.
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Of course, the normalized eigenvectors are only determined up to a phase factor.

If we choose this phase factor at random from the unit circle, then, by conjugation invari-

ance, the top entries of the eigenvectors are distributed as a random unit vector from C
n.

Therefore, by Corollary A.3, (µ1, . . . , µn) is uniformly distributed on the (n − 1)-simplex∑
µj = 1. �

The key to writing the probability measure on dµ in the Verblunsky coordinates

is the Householder algorithm [14, Section 6.4], which converts any matrix to one in Hes-

senberg form (i.e., with zeros below the subdiagonal) via unitary conjugation. The al-

gorithm proceeds iteratively, killing the undesirable elements in each column in turn,

working from left to right.

Consider a matrix A whose first k − 1 columns are zero below the subdiagonal.

We write Ak = [a1,k, . . . , an,k]T for the kth column of A and then define

v =
[
0, . . . , 0, α, ak+2,k, . . . , an,k

]T
, (3.3)

α = ak+1,k −
ak+1,k∣∣ak+1,k

∣∣
√∣∣ak+1,k

∣∣2 + · · · + ∣∣an,k

∣∣2. (3.4)

The reflection through the plane perpendicular to v is given by R = I−2(vv†/‖v‖2). It maps

Ak to Ak − v, which has zeros in the desired places. Moreover, the first k − 1 columns of

A are unchanged by left multiplication by R because they are orthogonal to v—indeed,

their only nonzero entries coincide with zeros in v. Similarly, right multiplication of any

matrix by R leaves its first k columns unchanged.

As R is a reflection, R−1 = R = R† and so we find that conjugating A by R gives

a new matrix whose first k columns agree with Hessenberg form (i.e., with zeros below

the subdiagonal). In this way, we have described one step of the usual Householder algo-

rithm. However, we wish to add one further conjugation so as to make the entries on the

subdiagonal nonnegative. To do this, we form DRARD†, where D differs from the identity

matrix by having (k + 1, k + 1)-entry e−iφ with φ chosen appropriately.

Starting with a unitary matrix U, we can apply the above algorithm to obtain a

unitarily equivalent matrix H in Hessenberg form with nonnegative subdiagonal. More-

over, the spectral measure for (H, e1) is the same as that for (U, e1)—namely, dµ—because

the vector e1 is fixed by all the unitary matrices by which U is conjugated.

In the introduction, we used H to denote the matrix representation of f(z) �→ zf(z)

on L2(dµ) in the basis of orthonormal polynomials. It is easily seen to be in Hessenberg

form and to have a nonnegative (indeed positive) subdiagonal. As one might hope from

the notation, these two matrices are the same (see also [4, Corollary 3.3]).
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Lemma 3.2. Suppose H is an n × n unitary matrix in Hessenberg form with nonnega-

tive subdiagonal and let dµ denote the spectral measure associated to the vector e1. If

the support of dµ consists of n points, then H represents f(z) �→ zf(z) in the basis of or-

thonormal polynomials. Consequently,

Hi+1,j+1 =
〈
φi

∣∣zφj

〉
=




−αi−1ᾱj

j−1∏
l=i

ρl, i < j + 1,

ρj−1, i = j + 1,

0, i > j + 1,

(3.5)

where ρj =
√

1 − |αj|2 and α−1 = −1. �

Proof. As dµ is the spectral measure for (H, e1) and as L2(dµ) has the same dimension

as the space on which the operator H acts, there must be an orthonormal basis f1, . . . , fn

for L2(dµ) with f1 ≡ 1 such that H represents f(z) �→ zf(z) in this basis. This is just the

spectral theorem combined with the fact that e1 must be cyclic (for, otherwise, L2(dµ)

would not have full dimension).

From the cyclicity argument, we also learn that H must have a strictly positive

subdiagonal.

To finish the proof of the first claim, we only need to show that fj(z) = φj−1(z);

that is, that the orthonormal basis in question is precisely that of the orthonormal poly-

nomials. Because H is in Hessenberg form with positive subdiagonal, the standard basis

vectors arise from applying the Gram-Schmidt procedure to e1, He1, . . . , Hn−1e1. Conse-

quently, the vectors fj must be the result of applying the same procedure to 1, z, . . . , zn−1;

that is, fj must be φj−1.

The first part of (3.5) merely reexpresses what we have just proved. The second

follows from the recursion relations and (2.4); however, the proof is not particularly en-

lightening and we refer the reader to [10] for details. �

We will now apply the Householder algorithm outlined earlier to a matrix chosen

at random from U(n). By the above lemma, this will allow us to determine the induced

distribution on the Verblunsky parameters associated to the spectral measure for (U, e1).

Proposition 3.3. Let dµ be the spectral measure for (U, e1) with U chosen at random from

U(n) according to Haar measure. In terms of the Verblunsky parameters α0, . . . , αn−2 and

αn−1 = eiφ, this probability distribution is given by

1

2

(n − 1)!
πn

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)n−2−k

d2α0 · · ·d2αn−2dφ. (3.6)

That is, the Verblunsky parameters are independent and αj ∼ Θ2n−2j−1. �
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Proof. The key to applying the Householder algorithm to a random element U ∈ U(n) is

the following realization of Haar measure. Choose the first column at random from the

unit sphere, then choose the second column from the unit sphere of vectors orthogonal to

the first, then the third column, and so forth. In this way, one could say that the columns

of U form a random orthonormal basis for C
n. (That this is indeed Haar measure is a

simple consequence of invariance under left multiplication by unitary matrices.)

The first column of U is a random vector from the unit sphere. After left multipli-

cation by the appropriate reflection R, the new first column takes the form [ᾱ0, b, 0, . . . , 0]T ,

where ᾱ0 is the original (1, 1)-entry of U and so Θ2n−1-distributed, while b has modulus

ρ0 and arbitrary argument. Subsequent left multiplication by D converts the first column

to [ᾱ0, ρ0, 0, . . . , 0]T , as it will remain. The other columns are still orthogonal to the first;

indeed, they form a random orthonormal basis for the orthogonal complement of the first

column.

Right multiplication by RD† leaves the first column untouched while orthogo-

nally intermixing the other columns. Of course, this means that they remain a random

orthonormal basis for the orthogonal complement of the first column. (Recall that Haar

measure is also invariant under right multiplication by a unitary.)

For the subsequent columns, the procedure is similar. We skip ahead to dealing

with the kth column.

From the unitarity of the matrix H from Lemma 3.2,

X =




ρ0ρ1ρ2 · · · ρk−2

−α0ρ1ρ2 · · · ρk−2

−α1ρ2 · · · ρk−2

...

−αk−3ρk−2

−αk−2

0

...

0




(3.7)

is a unit vector orthogonal to the first k−1 columns. As the kth column is a random vector

orthogonal to the first k−1 columns, its inner product with X is distributed as the top en-

try of a random vector from the (2n−2k+1)-sphere and is independent of α0, . . . , αk−2. We

call this inner product ᾱk−1, noting that this implies that αk−1 is Θ2n−2k+1-distributed

as stated in the proposition.
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We now multiply the matrix at hand from the left by the appropriate reflection

and rotation to bring the kth column into the desired form. Neither of these operations

alters the top k rows and so the inner product of the kth column with X is unchanged. But

now the kth column is uniquely determined; it must be ᾱk−1X + ρk−1ek+1, just as in (3.5).

Lastly, we should multiply on the right by RD†, but this leaves the first k columns

unchanged while orthogonally intermixing the other columns. In this way, we obtain a

matrix whose first k columns conform to the structure of H, while the remaining columns

form a random basis for the orthogonal complement of the span of those k columns.

In this way, we can proceed inductively until we reach the last column. It is

obliged to be a random orthonormal basis for the one-dimensional space orthogonal to

the preceding n − 1 columns and hence a random unimodular multiple, say ᾱn−1, of X.

This is why the last Verblunsky parameter is Θ1-distributed.

We have now conjugated U to a matrix in the form of (3.5) with parameters dis-

tributed as stated in the proposition. The vector e1 is unchanged under the action of each

of the conjugating matrices and, consequently, these are precisely the Verblunsky param-

eters of dµ. �

We now turn to the study of Haar measure on SO(2n). The proofs follow those

given above pretty closely.

Proposition 3.4. If U is chosen at random from SO(2n) according to Haar measure, then

the spectral measure dµ associated to (U, e1) is distributed as

(n − 1)!
2n−1n!

∣∣∆(2 cos θ1, . . . , 2 cos θn

)∣∣2 dθ1

π
· · · dθn

π
dµ1 · · ·dµn−1, (3.8)

where θj and µj are the coordinates given in (2.6). �

Proof. By the Weyl integration formula for SO(2n), the marginal distribution of the ei-

genvalues is as above. (See [19, Section VII.9].)

If the eigenvalues are prescribed, say e±iθ1 , . . . , e±iθn , then the conditional distri-

bution of U is given by taking a fixed matrix with this spectrum and conjugating it by a

random element from SO(2n). The natural choice for this fixed matrix is block-diagonal:

U0 = diag

([
cos

(
θ1

)
sin

(
θ1

)
− sin

(
θ1

)
cos

(
θ1

)
]

, . . . ,

[
cos

(
θn

)
sin

(
θn

)
− sin

(
θn

)
cos

(
θn

)
])

. (3.9)

From this, we see that the dµ is the spectral measure for U0 and a random vector from

the (2n − 1)-sphere. The proposition then follows by diagonalizing U0 and applying

Corollary A.3. �
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Proposition 3.5. Let U be chosen from SO(2n) according to Haar measure and let dµ de-

note the spectral measure for (U, e1). In terms of the Verblunsky parameters, the proba-

bility distribution on dµ is

(n − 1)!
πn

2n−2∏
k=0

(
1 − α2

k

)(2n−k−3)/2
dα0 · · ·dα2n−2 (3.10)

with α2n−1 = −1. That is, the Verblunsky parameters are independent and

αk ∼ B

(
2n − k − 1

2
,
2n − k − 1

2

)
. (3.11)

�

Proof. While we may use the Householder algorithm as set out above, the fact that we

are now dealing with real-valued matrices allows the following simplification: the vector

defining the reflection is as in (3.3), but now with

α = ak+1,k −

√
a2

k+1,k + · · · + a2
2n,k (3.12)

instead of (3.4). This permits us to forgo the conjugation by D.

Haar measure on SO(2n) can be realized by choosing the first column as a random

vector from the unit sphere in R
2n, then the second as a random vector orthogonal to the

first, and so forth. However, the fact that the matrix has determinant one means that the

first 2n − 1 columns completely determine the last. One may say that the columns of U

form a random positively oriented basis for R
2n.

Proceeding as in the proof of Proposition 3.3, we see that αk−1 is defined as the

inner product of a specific vector X with a random unit vector from the (2n − k − 2)-

sphere of vectors orthogonal to the first k − 1 columns. It follows from Corollary A.2 that

αk−1 ∼ B((2n − k − 2)/2, (2n − k − 2)/2) as stated above.

The last column of H, and hence α2n−1, is uniquely determined by the fact that

det(H) = 1. It is just a matter of using (3.5) to determine which value of α2n−1 makes this

determinant one; moreover, by continuity of the determinant, it suffices to consider the

case where all other α’s are zero. This gives

1 = det(H) = −α−1α2n−1 sign(σ) = −α2n−1, (3.13)

where σ is the cyclic permutation j �→ j + 1 mod 2n, which is odd.

Lastly, we should justify the normalization coefficient given in (3.10); what ap-

pears there is very much simpler than one would expect from (1.13). This simplification
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is based on the duplication formula for the Γ function:
√

πΓ(2t) = 22t−1Γ(t)Γ(t + 1/2).

Specifically, beginning with (1.13),

∫1

−1

(
1 − α2

)t−1
dα =

21−2tΓ(2t)
Γ(t)2

=

Γ

(
t +

1

2

)
√

πΓ(t)
, (3.14)

which causes the product of normalization coefficients to telescope:

2n−2∏
k=0

Γ

(
2n − k

2

)
√

πΓ

(
2n − k − 1

2

) = π1/2−n Γ(n)

Γ

(
1

2

) =
(n − 1)!

πn
, (3.15)

as given in (3.10). �

4 The proof of Theorem 1.2

Let dµ be the measure on S1 given by

∫
f dµ =

n∑
j=1

µjf
(
eiθj

)
(4.1)

with θj ∈ [0, 2π) distinct and
∑

µj = 1. As discussed in the introduction, this measure is

uniquely determined by its Verblunsky parameters α0, . . . , αn−2 ∈ D and αn−1 = eiφ ∈ S1.

It is difficult to find functions of dµ that admit simple expressions in terms of

both θj, µj and the Verblunsky parameters. One such quantity is the determinant of the

associated Toeplitz matrix; this is the subject of the next lemma.

Lemma 4.1. If dµ is a probability measure of the form given in (4.1) and α0, . . . , αn−1 its

Verblunsky coefficients, then

∣∣∆(z1, . . . , zn

)∣∣2 n∏
j=1

µj =

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)n−k−1

. (4.2)

�

Proof. Let ck =
∑n

j=1 µjz
k
j denote the moments of dµ. We will prove that both sides of

(4.2) are equal to the determinant of the n × n Toeplitz matrix associated to dµ:

T =




c0 c−1 · · · c1−n

c1 c0 · · · c2−n

...
...

. . .
...

cn−1 cn−2 · · · c0


 . (4.3)
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If we define A and M by

A =




1 1 · · · 1

z1 z2 · · · zn

...
...

. . .
...

zn−1
1 zn−1

2 · · · zn−1
n


 , M =




µ1 0 · · · 0

0 µ2 · · · 0

...
...

. . .
...

0 0 · · · µn


 , (4.4)

then T = AMA†. Consequently,

det(T) =
∣∣det(A)

∣∣2 det(M) =
∣∣∆(z1, . . . , zn

)∣∣2 n∏
j=1

µj. (4.5)

We will now show that the right-hand side of (4.2) is equal to det(T). To this end,

let

B =




Φ0

(
z1

)
Φ0

(
z2

) · · · Φ0

(
zn

)
Φ1

(
z1

)
Φ1

(
z2

) · · · Φ1

(
zn

)
...

...
. . .

...

Φn−1

(
z1

)
Φn−1

(
z2

) · · · Φn−1

(
zn

)


 , (4.6)

which has the same determinant as A because each can be reduced to the other by el-

ementary row operations. From the orthogonality property of the {Φj}, it follows that

BMB† is the diagonal matrix whose entries are the squares of the L2(dµ)-norms of Φ0,Φ1,

. . . ,Φn−1. Therefore, by (2.4),

det(T) = det
(
BMB†) =

n−1∏
k=0

∥∥Φk

∥∥2

L2(dµ) =

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)n−k−1

, (4.7)

just as was required. �

Both expressions for the Toeplitz determinant are well known; indeed, the argu-

ment presented above and its Hankel-matrix analogue play a central role in random ma-

trix theory.

We are now ready to state and prove the main result of this section. Please note

that neither measure given below is normalized; however, they do have the same normal-

ization coefficient. It is calculated in Lemma 4.4 where it is used to give an independent

proof of (1.7).
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Proposition 4.2. The following formulae express the same measure on the manifold of

probability distributions on S1 supported at n points:

21−n

n!

∣∣∆(eiθ1 , . . . , eiθn
)∣∣β n∏

j=1

µ
β/2−1
j dθ1 · · ·dθndµ1 · · ·dµn−1 (4.8)

in the (θ, µ)-coordinates of (4.1), and

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)(β/2)(n−k−1)−1

d2α0 · · ·d2αn−2dφ (4.9)

in terms of the Verblunsky parameters. �

Proof. When β = 2, this follows immediately from Propositions 3.1 and 3.3. To obtain the

general-β version of (4.8) from the β = 2 version, one has to multiply by

∣∣∆(eiθ1 , . . . , eiθn
)∣∣β−2

n∏
j=1

µ
β/2−1
j , (4.10)

while the same transformation of β in (4.9) is effected by multiplying by

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)(β/2−1)(n−k−1)
. (4.11)

But (4.10) and (4.11) are equal; they are either side of (4.2) raised to the power β/2 − 1.

�

Proof of Theorem 1.2. Theorem 1.2 is an immediate corollary of Proposition 4.2 and re-

sults from [3]: the Verblunsky parameters of the spectral measure for (LM, e1) are pre-

cisely the α’s that appear in the definition of L and M. Consequently, if the Verblunsky

parameters are distributed according to (4.9), then the eigenvalues are distributed as in

(1.6). �

It is fair to suggest that studying the unitary group is a rather roundabout way

of proving the above proposition. We simply do not know a better way. The natural sug-

gestion is to first calculate the Jacobian for the map from the (θ, µ)-coordinates to the

Verblunsky parameters and to proceed from there. While we can determine this Jaco-

bian a posteriori by employing a cunning idea of Dumitriu and Edelman, we do not have

a direct derivation.

The idea of Dumitriu and Edelman can be summarized as follows.
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Lemma 4.3. Suppose φ : O1 → O2 is an N-fold cover of O2 by O1, both of which are open

subsets of R
n. If the measure f(x)dnx is the symmetric pullback of the measure g(y)dny,

with both f and g positive, then the Jacobian of φ is given by

∣∣φ ′(x)
∣∣ =

Nf(x)
g ◦ φ(x)

(4.12)

for any x ∈ O1. �

Proof. For every x ∈ O1,

f(x)dnx = φ∗
(

1

N
g(y)dny

)
=

1

N
[g ◦ φ](x)

∣∣φ ′(x)
∣∣dnx, (4.13)

which proves the lemma. �

Proposition 4.2 allows us to apply this lemma to the current situation. The map

of (θ, µ) to the Verblunsky parameters is an n!-fold cover, and so we obtain

∣∣∣∣∂(α,φ)
∂(θ, µ)

∣∣∣∣ = 21−n

∣∣∆(eiθ1 , . . . , eiθn
)∣∣2

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)n−k−2

= 21−n

n−2∏
k=0

(
1 −

∣∣αk

∣∣2)
n∏

j=0

µj

,

(4.14)

where one should regard the Verblunsky parameters as functions of the θ’s and µ’s. The

formulae above correspond to applying Proposition 4.2 with β = 2 and β = 0, respec-

tively. Of course, one can also use other values of β, but the resulting formulae are related

to one another by Lemma 4.1.

Earlier, we promised to determine the (common) normalization coefficient for the

measures (4.8) and (4.9). We also promised to give a new derivation of the partition func-

tion (1.7) for the Coulomb gas. We will now settle these obligations.

Lemma 4.4. The integral of (4.9) is

∫
· · ·

∫ n−2∏
k=0

(
1 −

∣∣αk

∣∣2)(β/2)(n−k−1)−1

d2α0 · · ·d2αn−2dφ =
(2π)n

βn−1(n − 1)!
, (4.15)
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while

∫
· · ·

∫ ∣∣∆(eiθ1 , . . . , eiθn
)∣∣β dθ1

2π
· · · dθn

2π
=

Γ

(
1

2
βn + 1

)
[
Γ

(
1

2
β + 1

)]n , (4.16)

in agreement with (1.6) and (1.7). �

Proof. Each of the integrals in (4.15) is rendered trivial by switching to polar coordi-

nates:

∫ (
1 − |z|2

)(t/2)−1
d2z = 2πt−1. (4.17)

It is this integral that gives the normalization coefficient in the definition of the Θ distri-

butions; (cf. (1.8)).

The proof of (4.16) begins with the evaluation of the Dirichlet integral

∫
�

n∏
j=1

µ
β/2−1
j dµ1 · · ·dµn−1 =

Γ

(
β

2

)n

Γ

(
nβ

2

) , (4.18)

which is derived in the proof of Lemma A.4; see (A.16). As the two measures in Proposi-

tion 4.2 have the same total mass, the integral of (4.8) is given by (4.15). Combining this

with the Dirichlet integral above leads us to

∫
· · ·

∫ ∣∣∆(eiθ1 , . . . , eiθn
)∣∣β dθ1

2π
· · · dθn

2π

=
n!

21−n

1

βn−1(n − 1)!

Γ

(
nβ

2

)

Γ

(
β

2

)n =

Γ

(
nβ

2
+ 1

)

Γ

(
β

2
+ 1

)n ,

(4.19)

which is exactly (1.7). �

5 The proof of Theorem 1.5

As explained in Section 2, Theorem 1.5 is an immediate corollary of Proposition 5.3 and

the Geronimus relations. As a result, the primary purpose of this section is to prove this

proposition.

Throughout this section, dµ will denote a probability measure of the form given

in (2.6). In particular, it is symmetric with respect to complex conjugation and the last
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Verblunsky parameter α2n−1 is equal to −1. We will also use the notation xj = 2 cos(θj)

repeatedly.

In addition to Lemma 4.1, the following two lemmas are required.

Lemma 5.1. If xj = 2 cos(θj), 1 ≤ j ≤ n, then

∣∣∆(e±iθ1 , e±iθ2 , . . . , e±iθn
)∣∣ =

∣∣∆(x1, x2, . . . , xn

)∣∣2 n∏
l=1

∣∣2 sin
(
θl

)∣∣, (5.1)

where the left-hand side is shorthand for the Vandermonde of the 2n quantities eiθ1 ,

e−iθ1 , . . . , eiθn , e−iθn . �

Proof. By expanding the Vandermonde as in (1.2),

∣∣∆(e±iθ1 , e±iθ2 , . . . , e±iθn
)∣∣

=

n∏
l=1

∣∣eiθl − e−iθl
∣∣∏

j<k

∣∣eiθj − eiθk
∣∣2∣∣eiθj − e−iθk

∣∣2

=

n∏
l=1

∣∣2 sin
(
θl

)∣∣∏
j<k

[
2 cos

(
θj

)
− 2 cos

(
θk

)]2
,

(5.2)

as required. In the last step we used that

∣∣(z − w)(z − w̄)
∣∣ =

∣∣(z − w)(1 − z̄w̄)
∣∣ =

∣∣(z + z̄) − (w + w̄)
∣∣ (5.3)

for any pair of points z, w on the unit circle. �

Lemma 5.2. Let dµ be a measure on the unit circle of the form given in (2.6) and let Φk

denote the corresponding monic orthogonal polynomials. Then

∏
j

(
2 − xj

)
= Φ2n(1) =

2n−1∏
k=0

(
1 − αk

)
= 2

2n−2∏
k=0

(
1 − αk

)
, (5.4)

∏
j

(
2 + xj

)
= Φ2n(−1) =

2n−1∏
k=0

(
1 + (−1)kαk

)
= 2

2n−2∏
k=0

(
1 + (−1)kαk

)
, (5.5)

where xj = 2 cos(θj) and αk denote the Verblunsky parameters of dµ. �
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Proof. As Φ2n is orthogonal to each of 1, z, . . . , z2n−1, which forms a basis for L2(dµ), its

zeros must be e±iθ1 , . . . , e±iθn . Consequently, for any x ∈ R,

Φ2n(x) =
∏

j

∣∣x − eiθj
∣∣2 =

∏
j

[
x2 − 2x cos

(
θj

)
+ 1
]
, (5.6)

which gives the first equality in each of (5.4) and (5.5).

Because all Verblunsky parameters are real, the coefficients of the orthogonal

polynomials are also real. This implies Φ∗
k(z) = zkΦk(z−1), and so, for z = ±1, the recur-

rence equation (2.1) becomes Φk+1(z) = (z − αkzk)Φk(z). Each of the second equalities

stated in the lemma now follows by the obvious induction. The third equalities simply

express α2n−1 = −1. �

The following proposition is the SO(2n) analogue of Proposition 4.2 and so the

main ingredient of the proof of Theorem 1.5.

Proposition 5.3. Consider the following measure on [−2, 2]n ×
:

2−κ

n!

∣∣∆(x1, . . . , xn

)∣∣β n∏
j=1

µ
β/2−1
j

n∏
j=1

[(
2 − xj

)a(
2 + xj

)b]
dx1 · · ·dxndµ1 · · ·dµn−1,

(5.7)

where κ = (n − 1)(β/2) + a + b + 1. Under (2.6) and the change of variables xj = 2 cos θj,

this gives a measure on dµ (which is not normalized). Transferring this measure to the

Verblunsky parameters gives

2n−2∏
k=0

(
1−α2

k

)β(2n−k−1)/4−1
2n−2∏
k=0

(
1−αk

)a+1−β/4(
1 + (−1)kαk

)b+1−β/4
dα0 · · ·dα2n−2

(5.8)

and α2n−1 ≡ 1. After normalization, this measure corresponds to choosing the Verblun-

sky parameters independently with distribution given by (1.14). The definition of B(s, t)

is given in (1.13). �

Proof. From Lemmas 5.1 and 4.1, we may deduce that

∣∣∆(x1, x2, . . . , xn

)∣∣2 n∏
l=1

∣∣2 sin
(
θl

)∣∣ =
∣∣∆(e±iθ1 , e±iθ2 , . . . , e±iθn

)∣∣

= 2n
2n−2∏
k=0

(
1 − α2

k

)(2n−k−1)/2
n∏

j=1

µ−1
j .

(5.9)
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By forming the square root of the product of (5.4) and (5.5), we can rewrite the product

of |2 sin θl| in terms of the Verblunsky parameters:

n∏
l=1

∣∣2 sin
(
θl

)∣∣ = 2

2n−2∏
k=0

(
1 − αk

)1/2(
1 + (−1)kαk

)1/2
. (5.10)

Substituting this into (5.9) above and doing a little rearranging of terms lead us to

21−n
∣∣∆(x1, x2, . . . , xn

)∣∣2 n∏
j=1

µj =

2n−2∏
k=0

(
1 − α2

k

)(2n−k−1)/2

2n−2∏
k=0

(
1 − αk

)1/2(
1 + (−1)kαk

)1/2

. (5.11)

We will return to this equation in a moment.

For β = 2 and a = b = −1/2, the proposition is an immediate corollary of Propo-

sitions 3.4 and 3.5 together with (5.10). The latter arises as the Jacobian of the change of

variables from θj to xj = 2 cos(θj).

Changing a and b amounts to multiplying this result by the appropriate powers

of (5.4) and (5.5), respectively. To see that the two measures are equivalent for β �= 2, it

suffices to multiply by (5.11) raised to the β/2 − 1 power. �

Combining this proposition with Lemma 4.3 permits us to determine the Jaco-

bian of the map from the (θ, µ)-coordinates to the Verblunsky parameters. From β = 2,

a = b = −1/2, we obtain

∣∣∣∣ ∂(α)
∂(θ, µ)

∣∣∣∣ =
21−n

∣∣∆(x1, . . . , xn

)∣∣2
2n−2∏
k=0

(
1 − α2

k

)(2n−k−3)/2

. (5.12)

We do not have a direct derivation of this fact.

6 The Selberg and Aomoto integrals

In [16], Selberg evaluated the following integral:

∫1

0

· · ·
∫1

0

∣∣∆(u1, . . . , un

)∣∣2z
n∏

j=1

ux−1
j

(
1 − uj

)y−1
du1 · · ·dun, (6.1)

which subsequently turned out to be important in random matrix theory. We will present

a new derivation of his result in a manner analogous to the proof of Lemma 4.4.
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We begin with the evaluation of the (common) integral of the measures given in

Proposition 5.3. In the case of the second measure, this gives rise to a product of beta

integrals (cf. (1.13)) from which we obtain the answer

2n−2∏
k=0

k even

Γ

(
2n − k − 2

4
β + a + 1

)
Γ

(
2n − k − 2

4
β + b + 1

)

Γ

(
2n − k − 2

2
β + a + b + 2

) 2(2n−k−2)(β/2)+a+b+1

×
2n−3∏
k=1
k odd

Γ

(
2n − k − 3

4
β + a + b + 2

)
Γ

(
2n − k − 1

4
β

)

Γ

(
2n − k − 2

2
β + a + b + 2

) 2(2n−k−2)(β/2)+a+b+1.

(6.2)

To aid in the eventual comparison with Selberg [16], we will switch to his parameters:

x = a + 1, y = b + 1, z =
1

2
β. (6.3)

We also wish to make the following simplifications. The products of the powers of 2 can

be combined since they are the same for odd and even k, where we can easily sum the

resulting arithmetic progression in the exponents. Similarly, we combine the products

of the denominators into a single product and make the substitution p = 2n − k − 2. In

the even-k numerators, we will make the substitution r = (2n − k − 2)/2 and in the odd-k

numerators, the substitution s = (2n − k − 3)/2. Combining these, we find that (6.2) is

equal to

2σ ×

n−1∏
r=0

Γ(rz + x)Γ(rz + y)
n−2∏
s=0

Γ(sz + x + y)Γ
(
(s + 1)z

)
2n−2∏
p=0

Γ(pz + x + y)

, (6.4)

where σ = [(n − 1)z + x + y − 1](2n − 1). Note that there is a cancellation between the

Γ(sz + x + y) terms in the numerator and the corresponding terms in the denominator.

This essentially completes the determination of the total mass of the measures

in Proposition 5.3. After the transformation xj = 4uj − 2, the former of these is the tensor

product of the measure in (6.1) with a measure in the µj coordinates. This leads us to

evaluate

2−κ

n!

∫
· · ·

∫ n∏
j=1

µz−1
j dµ1 · · ·dµn−1 =

2−κ

n!

Γ(z)n

Γ(nz)
=

2−κz1−nΓ(z + 1)n

(n − 1)!Γ(nz + 1)
, (6.5)
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where κ = (n − 1)z + x + y − 1. Moreover, taking the ratio (6.4)/(6.5) and making the

cancellation mentioned above, we obtain

∫
· · ·

∫ ∣∣∆(x1, . . . , xn

)∣∣2z
n∏

j=1

[(
2 − xj

)x−1(
2 + xj

)y−1
]
dx1 · · ·dxn

= 2σ+κ ×

n−1∏
r=0

Γ(rz + x)Γ(rz + y)
n−2∏
s=0

(s + 1)zΓ
(
(s + 1)z

)

Γ(z + 1)n

2n−2∏
p=n−1

Γ(pz + x + y)

Γ(nz + 1).

(6.6)

Notice that the term zn−1(n − 1)! from (6.5) was split up inside the product over s. To

simplify, we use ξΓ(ξ) = Γ(ξ + 1) inside the product over s and notice that the final factor

Γ(nz+1) just corresponds to s = n−1. In this way, all products run over the same number

of terms and can be combined. Therefore, we reach the final conclusion

∫
· · ·

∫ ∣∣∆(x1, . . . , xn

)∣∣2z
n∏

j=1

[(
2 − xj

)x−1(
2 + xj

)y−1
]
dx1 · · ·dxn

= 2τ
n−1∏
r=0

Γ(rz + x)Γ(rz + y)Γ
(
(r + 1)z

)
Γ(z + 1)Γ

(
(n + r − 1)z + x + y

) ,
(6.7)

where τ = σ+κ = 2n[(n−1)z+x+y−1]. This is in perfect agreement with Selberg’s paper:

the values of (6.1) and (6.6) differ by a factor of 2τ as a result of the change of variables

xj = 4uj − 2; the measure is homogeneous of order τ/2.

We now turn to our second topic: the Aomoto integral.

In [2], Aomoto determined the average value of
∏

(x − xj) when the points xj are

distributed according to the Jacobi ensemble (1.12). Theorem 1.5 shows that this is

equivalent to evaluating the average of the characteristic polynomial for a certain en-

semble of Jacobi matrices. In this way, Proposition 6.1 below reproduces Aomoto’s re-

sult.

The answer is given in terms of the classical Jacobi polynomials: in the notation

of [1],

4nn!

(a + b + n + 1)n
P(a,b)

n

(
1

2
x

)
(6.8)
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are the monic polynomials that are orthogonal with respect to the measure

∫
f dµ =

Γ(a + b + 2)
4a+b+1Γ(a + 1)Γ(b + 1)

∫2

−2

f(x)(2 − x)a(2 + x)bdx. (6.9)

Here, (z)n = Γ(z + n)/Γ(z) is the Pochhammer symbol. The recurrence coefficients for the

corresponding system of orthonormal polynomials are (cf. (2.9))

bn+1 =
2
(
b2 − a2

)
(2n + a + b)(2n + a + b + 2)

,

a2
n+1 =

16(n + 1)(n + a + b + 1)(n + a + 1)(n + b + 1)
(2n + a + b + 1)(2n + a + b + 2)2(2n + a + b + 3)

.

(6.10)

Proposition 6.1. Let J be the Jacobi matrix whose entries b1, a1, . . . , bn are distributed

as in Theorem 1.5. Then

E
[

det(x − J)
]

=
4nn!

(ã + b̃ + n + 1)n

P(ã,b̃)
n

(
1

2
x

)
, (6.11)

where ã = 2(a + 1)/β − 1 and b̃ = 2(b + 1)/β − 1. �

Proof. We will show that both sides of (6.11) are related to the same monic orthogonal

polynomial on the unit circle. We begin with the left-hand side.

Let α0, . . . , α2n−2 be distributed as in (1.14), let dµ denote the corresponding mea-

sure on S1, and let dν denote the measure on [−2, 2] induced by (B.10).

The characteristic polynomial of J is equal to Pn(x), the nth monic orthogonal

polynomial associated to the measure dν; indeed, the principal k × k minor of x − J is

equal to Pk. (By expanding along the last row, one can see that these minor determinants

obey the same recurrence relation as the orthogonal polynomials.) Combining this with

(2.10) gives

det
((

z + z−1
)

− J
)

=
z−nΦ2n(z) + znΦ2n

(
z−1
)

2
. (6.12)

As Φk is independent of αk (it depends only on α0, . . . , αk−1), the recurrence rela-

tions (2.1) and (2.2) yield

EΦk+1(z) = zEΦk(z) − EᾱkEΦ∗
k(z),

EΦ∗
k+1(z) = EΦ∗

k(z) − zEαkEΦk(z).
(6.13)
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Hence,EΦk are the monic orthogonal polynomials associated to the averaged Verblunsky

parameters:

E
(
αk

)
=




2b − 2a

(2n − k − 2)β + 2a + 2b + 4
, k even,

β − 2a − 2b − 4

(2n − k − 2)β + 2a + 2b + 4
, k odd.

(6.14)

(Note that if X ∼ B(s, t), then E(X) = (t − s)/(t + s).)

Applying the Geronimus relations to these averaged Verblunsky coefficients does

not produce the recursion coefficients associated to the Jacobi polynomials. However, by

Proposition B.2, EΦ2n is also the monic orthogonal polynomial of degree 2n associated

to the “reversed” coefficients: α̃k = Eα2n−2−k, 0 ≤ k ≤ 2n − 2, and α̃2n−1 = −1. Under the

Geronimus relations, these coefficients give rise to

b̃k+1 =
2
(
b̃2 − ã2

)
(2k + ã + b̃)(2k + ã + b̃ + 2)

,

ã2
k+1 =

16(k + 1)(k + ã + b̃ + 1)(k + ã + 1)(k + b̃ + 1)
(2k + ã + b̃ + 1)(2k + ã + b̃ + 2)2(2k + ã + b̃ + 3)

,

(6.15)

where ã = 2(a + 1)/β − 1 and b̃ = 2(b + 1)/β − 1. By comparison with (6.10), we find

1

2
E

{
z−nΦ2n(z) + znΦ2n

(
z−1
)}

=
4nn!

(ã + b̃ + n + 1)n

P(ã,b̃)
n

(
1

2
x

)
. (6.16)

Equation (6.11) now follows from (6.12). �

Appendices

A The surface measure on Sn

This appendix presents some elementary results used in the text and is provided solely

for the reader’s convenience.

Let dσ̃ denote the usual surface measure on Sn and let dσ denote the correspond-

ing normalized probability measure on Sn. We will write D
n for the n-disk: D

n = {x ∈
R

n : |x| < 1}.

Lemma A.1. If f : R
n+1 → C, then

∫
Sn

f(x)dσ̃(x) =
∑
±

∫
Dn

f
(
x1, . . . , xn,±

√
1 − |x|2

) dnx√
1 − |x|2

. (A.1)

�
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Proof. The map φ : (x1, . . . , xn) �→ (x1, . . . , xn,
√

1 − |x|2) is a diffeomorphism onto the

open upper hemisphere. The corresponding Gram matrix is

Gi,j =

〈
∂φ

∂xi

∣∣∣∣ ∂φ

∂xj

〉
= δi,j +

|x|2

1 − |x|2
xi

|x|

xj

|x|
, (A.2)

which is a rank one perturbation of the identity matrix. Therefore,

det[G] = 1 +
|x|2

1 − |x|2
=

1

1 − |x|2
, (A.3)

from which the lemma follows immediately. �

We wish to determine the distributions of certain probability measures induced

from the normalized surface measure on Sn. These follow easily from this lemma.

Corollary A.2. For the projection of the n-sphere into its first coordinate,

∫
Sn

f
(
x1

)
dσ(x) =

21−nΓ(n)

Γ

(
n

2

)2

∫1

−1

f(t)
(
1 − t2

)(n−2)/2
dt, (A.4)

that is, x1 is B(n/2, n/2)-distributed. Projection onto the first two coordinates gives

∫
Sn

f
(
x1 + ix2

)
dσ(x) =

n − 1

2π

∫
D

f(z)
(
1 − |z|2

)(n−3)/2
d2z, (A.5)

which implies that x1 + ix2 is Θn-distributed. �

Proof. Both formulae follow from the more general statement that, for 1 ≤ k < n,

∫
Sn

f
(
x1, . . . , xk

)
dσ(x) ∝

∫
Dk

f
(
x1, . . . , xk

)(
1 − |x|2

)(n−k−1)/2
dx1 · · ·dxk, (A.6)

where the proportionality constant depends on k, but not the function f. The value of the

normalization constant can then be determined by substituting f ≡ 1.

An inductive proof of the more general statement follows easily from

∫s

−s

(
s2 − x2

k+1

)(n−k−2)/2
dxk+1 ∝ sn−k−1, (A.7)

where one takes s = (1 − x2
1 − · · · − x2

k)1/2. �

Corollary A.3. If the vector (x1, y1, . . . , xn, yn) is chosen at random from the (2n − 1)-

sphere according to normalized surface measure, then

(
µ1, . . . , µn

)
=
(
x2

1 + y2
1, . . . , x2

n + y2
n

)
(A.8)
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is uniformly distributed on the (n − 1)-simplex
∑

µj = 1. That is,

Ef
(
µ1, . . . , µn

)
= (n − 1)!

∫
�

f
(
s1, . . . , sn−1, 1 − s1 − · · · − sn−1

)
ds1 · · ·dsn−1, (A.9)

where 
 = {(s1, . . . , sn−1) : 0 ≤ s1 + · · · + sn−1 ≤ 1}. �

Proof. By Lemma A.1, we only need to compute

∑
±

∫
D2n−1

f
(
x1, y1, . . . , xn,±yn

)dx1dy1 · · ·dxn

yn
, (A.10)

where yn =

√
1 − (x2

1 + y2
1 + · · · + x2

n).

We change variables by

xj = cos
(
φj

)√
sj, 1 ≤ j ≤ n − 1,

yj = sin
(
φj

)√
sj, 1 ≤ j ≤ n − 1,

xn = cos
(
φn

)(
1 −

n−1∑
k=1

sk

)1/2

,

(A.11)

for which the Jacobian is y−1
n dx1dy1 · · ·dxn = ds1ds2 · · ·dsn−1dφ1 · · ·dφn. Hence, up to

proportionality constants that depend only on n,

Ef
(
µ1, . . . , µn

) ∝ ∫
�

f
(
s1, . . . , sn−1, 1 − s1 − · · · − sn−1

)
ds1 · · ·dsn−1. (A.12)

The determination of the normalization constant is an easy calculation. A more

general result will appear in the proof of Lemma A.4. �

Lemma A.4. For (µ1, . . . , µn) uniformly distributed on the (n − 1)-simplex
∑

µj = 1 and

p1, . . . , pn real numbers greater than −1,

E

{ ∏
µ

pj

j

}
=

(n − 1)!Γ
(
p1 + 1

) · · · Γ(pn + 1
)

Γ
(
p1 + · · · + pn + n

) . (A.13)
�

Proof. This is sometimes known as Dirichlet’s integral; our method of proof is a standard

one. We begin with the product integral

n∏
j=1

∫∞
0

s
pj

j e−sjdsj =

n∏
j=1

Γ
(
pj + 1

)
(A.14)
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and change variables to r =
∑

sj and µj = sj/r. The Jacobian is given by rn−1drdµ1 · · ·
dµn−1 = ds1 · · ·dsn which leads us to

n∏
j=1

Γ
(
pj + 1

)
=

∫
�

∫∞
0

∏ (
rµj

)pj
e−rrn−1drdµ1 · · ·dµn−1

= Γ
(
p1 + · · · + pn + n

) ∫
�

∏
µ

pj

j dµ1 · · ·dµn−1.

(A.15)

By taking p1 = · · · = pn = 0, we recover the normalization constant of the µj-

integral given in Corollary A.3. Moreover,

E

{∏
µ

pj

j

}
= (n − 1)!

∫
�

∏
µ

pj

j dµ1 · · ·dµn−1

=
(n − 1)!Γ

(
p1 + 1

) · · · Γ(pn + 1
)

Γ
(
p1 + · · · + pn + n

) ,

(A.16)

as promised. �

B The CMV matrix and Geronimus relations

The purpose of this appendix is to describe some results in the theory of orthogonal poly-

nomials on the unit circle that were used in the main text; we also wish to show how

easily they can be derived from the perspective of Cantero, Moral, and Velázquez [3]. We

begin with an outline of that work.

Applying the Gram–Schmidt procedure to 1, z, z−1, z2, z−2, . . . in L2(dµ) produces

the orthonormal basis

χk(z) =




z−k/2φ∗
k(z), k even,

z(1−k)/2φk(z), k odd,
(B.1)

where k ≥ 0. As in the introduction, φk denotes the kth orthonormal polynomial and φ∗
k

its reversal (cf. (2.3)). If we apply the procedure to 1, z−1, z, z−2, z2, . . . instead, then we

obtain a second orthonormal basis

Xk(z) = χk(1/z̄) =




z−k/2φk(z), k even,

z(−1−k)/2φ∗
k(z), k odd.

(B.2)

It is natural to compute the matrix representation of f(z) �→ zf(z) in L2(dµ) with

respect to these bases. This was done in a rather cunning way. The matrices with entries

Li+1,j+1 =
〈
χi(z)

∣∣zXj(z)
〉
, Mi+1,j+1 =

〈
Xi(z)

∣∣χj(z)
〉

(B.3)
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are block-diagonal; indeed,

L = diag
(
Ξ0, Ξ2, Ξ4, . . .

)
, M = diag

(
Ξ−1, Ξ1, Ξ3, . . .

)
, (B.4)

where Ξ−1 = [1] and

Ξk =

[
ᾱk ρk

ρk −αk

]
. (B.5)

The representation of f(z) �→ zf(z) in the χj basis is just LM, which is the CMV matrix of

the title of this appendix, and in the Xj basis, it is ML.

If dµ is supported at finitely many points, say m, then αm−1 will be unimodular

and hence Ξm−1 is diagonal. We replace Ξm−1 by the 1 × 1 matrix that is its top left entry

ᾱm−1, and discard all Ξk with k ≥ m. In this way, we find that L and M are naturally m×m

block-diagonal matrices.

In a couple of places we noted that the spectral measure for any U ∈ SO(2n) has

the last Verblunsky parameter equal to −1. The CMV matrix allows us to give a particu-

larly short proof of this fact.

Lemma B.1. Let dµ be a probability measure of the form

∫
f dµ =

∑
j

µjf
(
zj

)
, (B.6)

where z1, . . . , zm are distinct points on the unit circle. If αm−1 denotes the final Verblun-

sky parameter associated to this measure, then

m∏
j=1

zj = (−1)m−1ᾱm−1. (B.7)
�

Proof. As one might guess, (B.7) just represents two ways of calculating the determinant

of the CMV matrix: the left-hand side is the product of the eigenvalues; the right-hand

side is the product of the determinants of L and M. Note that det(Ξk) = −1 for 0 ≤ k < m,

while det(Ξm−1) = ᾱm−1. �

Next we prove a result used in the derivation of the Aomoto integral.

Proposition B.2. Given a finite system of Verblunsky parameters αk ∈ D, 0 ≤ k ≤ m − 2,

and αm−1 = eiφ, define a second system by α̃k = −eiφᾱm−2−k, 0 ≤ k ≤ m − 2, and α̃m−1 =

eiφ. Then the monic orthogonal polynomials of degree m associated to these two systems

are the same. �
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Proof. If L and M are the matrices associated to the α’s and Φm is the monic orthogo-

nal polynomial of degree m, then det(z − LM) = Φm(z). This is because both are monic

polynomials vanishing at the eigenvalues of LM.

Similarly, we have det(z − L̃M̃) = Φ̃m(z) for the α̃’s. Hence, the proposition will

follow once we show that LM and L̃M̃ are conjugate. We will give full details when m is

even and a few remarks on the changes necessary when m is odd.

Conjugating LM by




0 · · · 0 1

0 · · · 1 0

...
. . .

...
...

1 · · · 0 0


 (B.8)

is equivalent to reversing the order of the rows and columns in each factor. As m is even,

both L and M retain their structure. The transformation on L amounts to replacing αk by

−ᾱm−2−k; for M, we have the additional change that the (1, 1)-entry becomes e−iφ and the

(m,m)-entry 1.

To convert M to its proper structure (with 1 in the first position), we perform the

transformations L �→ U†LV and M �→ V†MU, where

U = diag
(
eiφ, 1, eiφ, 1, . . .

)
, V = diag

(
1, eiφ, 1, eiφ, . . .

)
. (B.9)

In this way, we obtain the matrices L̃ and M̃, which shows that L̃M̃ is conjugate to the

original LM.

When m is odd, reversing the order of the rows and columns converts L to a ma-

trix whose structure resembles that of M, while M is converted to an L-like matrix. Pro-

ceeding as above shows that LM is conjugate to M̃L̃, and hence to L̃M̃. �

We now consider the case where the measure dµ is symmetric with respect to

complex conjugation, or what is equivalent, where all Verblunsky parameters are real. It

is a famous observation of Szegő (see [18, Section 11.5]) that the polynomials orthogonal

with respect to this measure are intimately related to the polynomials orthogonal with

respect to the measure dν on [−2, 2] defined by

∫
S1

f
(
z + z−1

)
dµ(z) =

∫2

−2

f(x)dν(x). (B.10)
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As described in Section 2, the recurrence coefficients for these systems of orthog-

onal polynomials are related by Geronimus relations

bk+1 =
(
1 − α2k−1

)
α2k −

(
1 + α2k−1

)
α2k−2,

ak+1 =
{(

1 − α2k−1

)(
1 − α2

2k

)(
1 + α2k+1

)}1/2
.

(B.11)

We will now present a short proof of these formulae. As an offshoot of our method, we

also recover relations to the recurrence coefficients for (4 − x2)dν(x) and (2 ± x)dν. The

former appears in the proposition below and the latter in the remark that follows it.

Proposition B.3. Let αk be the system of real Verblunsky parameters associated to a

symmetric measure dµ and let L and M denote the matrices of (B.4). Then LM + ML is

unitarily equivalent to the direct sum of two Jacobi matrices

J =




b1 a1 0

a1 b2
. . .

0
. . .

. . .


 , J̃ =




b̃1 ã1 0

ã1 b̃2
. . .

0
. . .

. . .


 , (B.12)

where ak and bk are as in (B.11) and

b̃k+1 =
(
1 − α2k+1

)
α2k −

(
1 + α2k+1

)
α2k+2, (B.13)

ãk+1 =
{(

1 + α2k+1

)(
1 − α2

2k+2

)(
1 − α2k+3

)}1/2
. (B.14)

Moreover, the spectral measure for (J, e1) is precisely the dν of (B.10). The spectral mea-

sure for (J̃, e1) is

1

2(1 − α2
0)(1 − α1)

(4 − x2)dν(x). (B.15)
�

Proof. Let S denote the following unitary block matrix:

S = diag
(
[1], S1, S3, . . .

)
, where Sk =

1√
2

[
−
√

1 − αk

√
1 + αk√

1 + αk

√
1 − αk

]
, (B.16)

which is easily seen to diagonalize M. Indeed, S†MS = diag(+1, −1, +1, −1, . . . ). We will

denote this matrix by R.
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The matrix LM+ML is unitarily equivalent to A = S†(LM+ML)S = S†LSR+RS†LS,

which we will show is the direct sum of two Jacobi matrices. We begin by showing that

even-odd and odd-even entries of A vanish, from which it follows that A is the direct sum

of its even-even and odd-odd submatrices.

Left multiplication by R changes the sign of the entries in each even-numbered

row, while right multiplication by R reverses the sign of each even-numbered column.

In this way, RB + BR has the stated direct sum structure for any matrix B and hence, in

particular, for B = S†LS.

It remains only to calculate the nonzero entries of A. As S and L are both tridiag-

onal, A must be heptadiagonal and so the direct sum of tridiagonal matrices. Moreover,

A is symmetric (because L is), so there are only four categories of entries to calculate: the

odd/even diagonals and the odd/even off-diagonals. We begin with the diagonals

A2k+1,2k+1 =
[√

1 + α2k−1

√
1 − α2k−1

] [−α2k−2 0

0 α2k

][√
1 + α2k−1√
1 − α2k−1

]

=
(
1 − α2k−1

)
α2k −

(
1 + α2k−1

)
α2k−2,

A2k,2k = −
[
−
√

1 − α2k−1

√
1 + α2k−1

] [−α2k−2 0

0 α2k

][
−
√

1 − α2k−1√
1 + α2k−1

]

=
(
1 − α2k−1

)
α2k−2 −

(
1 + α2k−1

)
α2k.

(B.17)

Note that the factor of 2 resulting from A being the sum of two terms is cancelled by the

factors of 2−1/2 coming from S and S†. The calculation of the off-diagonal terms proceeds

in a similar fashion:

A2k+1,2k+3 =
[√

1 + α2k−1

√
1 − α2k−1

] [ 0 0

ρ2k 0

][√
1 + α2k+1√
1 − α2k+1

]

=

√(
1 − α2k−1

)(
1 − α2

2k

)(
1 + α2k+1

)
,

A2k,2k+2 = −
[
−
√

1 − α2k−1

√
1 + α2k−1

] [ 0 0

ρ2k 0

][
−
√

1 − α2k+1√
1 + α2k+1

]

=

√(
1 + α2k−1

)(
1 − α2

2k

)(
1 − α2k+1

)
.

(B.18)

That dν is the spectral measure for (J, e1) is an immediate consequence of the

spectral theorem, LM+ML = LM+(LM)−1, and the fact that S leaves the vector [1, 0, . . . , 0]

invariant.

Tracing back through the definitions, we find that the spectral measure for (J̃, e1)

is equal to that for the operator f(z) �→ (z + z−1)f(z) in L2(dµ) and the vector
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f(z) =

(
1 + α1

2

)1/2

χ2(z) −

(
1 − α1

2

)1/2

χ1(z)

=

(
1 + α1

2

)1/2

z−1φ∗
2(z) −

(
1 − α1

2

)1/2

φ1(z).

(B.19)

From the relations (2.1), (2.2), and (2.4), we find ρ1φ∗
2(z) = φ∗

1(z) − α1zφ1(z), ρ0φ1(z) =

z − α0, and ρ0φ∗
1(z) = 1 − α0z. These simplify the formula considerably:

f(z) =
z−1 − z

ρ0

√
2
(
1 − α1

) . (B.20)

The expression for the spectral measure for (J̃, e1) now follows from the simple calcula-

tion |z−1 − z|2 = 4 − (z + z−1)2. �

Remark B.4. In the above proof, we conjugated LM + ML by the unitary matrix which

diagonalizes M. One may use the matrix diag(S0, S2, . . . ), which diagonalizes L, instead.

This also conjugates LM + ML to the direct sum of two Jacobi matrices. In this way, we

learn that the recurrence coefficients for

1

2(1 ± α0)
(2 ± x)dν(x) (B.21)

are given by

bk+1 = ±(1 ∓ α2k

)
α2k+1 ∓ (1 ± α2k

)
α2k−1,

ak+1 =
{(

1 ∓ α2k

)(
1 − α2

2k+1

)(
1 ± α2k+2

)}1/2
.

(B.22)
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