
Universal Lossless Source Coding

with the Burrows Wheeler Transform�

Michelle E�ros

California Institute of Technology

Abstract

We here consider a theoretical evaluation of data compression algorithms
based on the Burrows Wheeler Transform (BWT). The main contributions
include a variety of very simple new techniques for BWT-based universal lossless
source coding on �nite-memory sources and a set of new rate of convergence
results for BWT-based source codes. The result is a theoretical validation and
quanti�cation of the earlier experimental observation that BWT-based lossless
source codes give performance better than that of Ziv-Lempel style codes and
almost as good as that of prediction by partial mapping (PPM) algorithms.

I Introduction

The Burrows Wheeler Transform (BWT) [1] is a slightly expansive reversible sequence
transformation currently receiving considerable attention from researchers interested
in practical lossless data compression. To date, the majority of the research devoted
to BWT-based compression algorithms has focused on experimental comparisons of
BWT-based algorithms with competing codes. Experimental results on algorithms
using this transformation (e.g., [2]) indicate lossless coding rates better than those
achieved by Ziv-Lempel codes (LZ'77 and LZ'78) but typically not quite as good as
those achieved by the prediction by partial mapping (PPM) schemes described in
works such as [3]. Further, BWT code implementation yields codes with complexity
comparable to that of the Ziv-Lempel codes, which are signi�cantly faster than algo-
rithms like PPM. To date, these comparisons have primarily involved experimental
studies of implementation speeds and achieved lossless description rates.

This work presents an information theoretic look at lossless source codes based
on the BWT. The key results of this analysis are: a rate of convergence result for
an existing universal BWT-based code for �nite-memory sources, introduction of
a variety of new universal BWT-type codes, an analysis of the rate of convergence
bounds for the coding performance of each new algorithm, and a comparison of BWT-
based codes to each other and to other universal coding algorithms. The result of
this comparison is a con�rmation and quanti�cation of the experimentally observed

�This material is based upon work partially supported by NSF CAREER Grant No. MIP-
9501977, a grant from the Powell Foundation, and donations through the Intel 2000 Technology for
Education Program.



results. On sequences of length n, the performance of the best BWT-based codes
converges to the optimal performance at a rate of O(log n=n) (within a constant factor
of the optimal performance) and the simplest universal BWT codes converge at rates

of O(
q
logn=n). These rates of convergence are better than the O(log logn= log n)

convergence [4] of LZ'77 or the O(1= logn) convergence [5, 6] of LZ'78.
The remainder of this work is organized as follows. Section II contains a vari-

ety of background material relevant to this work. Included in that section are: an
introduction to universal source coding, a description of the class of �nite-memory
sources (called FSMX sources) treated in this work, and a brief description of previ-
ous universal coding results for FSMX sources. Section III contains a description of
the BWT. In Section IV, we consider the statistical properties of BWT-transformed
data sequences from FSMX sources. In Section V, we describe a variety of extremely
simple new BWT-based lossless source codes, prove their universality, and derive
rate of convergence results. A theoretical analysis of an earlier approach to coding
BWT-transformed data sequences is also included. Complete details on the proofs of
Section V appear in [7]. The rate of convergence results for the algorithms introduced

here range from O(
q
logn=n) for the codes requiring the least memory and computa-

tion to O(log n=n) for a more complex BWT-based algorithm or a BWT-based code
with access to information about the length of the source's �nite memory. Thus
even the simplest BWT-based code gives a rate of convergence faster than either of
the Ziv-Lempel algorithms while the BWT code with the fastest rate of convergence
achieves { to within a constant factor { the optimal rate of convergence. A summary
of results and conclusions appears in Section VI.

II Background and De�nitions

A universal lossless source code is a sequence of source codes that asymptotically
achieves the optimal performance for every source in some broad class of possible
sources. Making this notion more precise requires some de�nitions.

Consider any class fP� : � 2 �g of stationary ergodic sources on �nite source
alphabet X . For each � 2 �, let H�(X

n) and H�(X ) be the nth-order entropy and
the entropy rate respectively of P�. Thus H�(X

n) =
P

xn2Xn [�P�(xn) logP�(xn)] and
H�(X ) = limn!1(1=n)H�(X

n) for each � 2 �. Given any variable-rate lossless source
coding strategy for coding n-sequences from X , for each xn = (x1; : : : ; xn) 2 X n, let
`(xn) be the description length achieved in the lossless description of xn. For each � 2
�, we use �n(�) to represent the expected redundancy associated with using the given
code to code samples from distribution P�. That is, �n(�) = E�`(X

n)=n�H�(X
n)=n

is the di�erence between the expected rate per symbol using the given blocklength-
n code and the optimal rate per symbol for coding n-vectors from P�. We call a
sequence of coding strategies a weakly minimax universal lossless source code on � if
�n(�)! 0 for each � 2 �. In [8], Rissanen demonstrates that for any class � of sources
parameterized by K real numbers, the optimal rate of convergence of (K=2) logn=n
is achievable to within O(1=n) for almost all � 2 �.

We here consider the problem of minimax universal lossless source coding for �nite-



memory sources. In particular, we consider a subset of the class of uni�lar, ergodic,
�nite-state-machine (FSM) sources. An FSM source is de�ned by a �nite alphabet
X , a �nite set of states S, jSj conditional probability measures p(xjs), x 2 X , s 2 S,
and a next-state function f mapping S � X into S. Given an FSM data source
and an initial state s0, the probability of string xn = x1; : : : ; xn 2 X n is de�ned as
P (xn) =

Qn
i=1 p(xijsi�1), where si = f(si�1; xi) for all 1 � i � n.

The class of FSMX sources is the subset of the class of FSM sources for which there
exists an integer L such that for every n � L, the state sn is uniquely determined by
xn�L+1; xn�L+2; : : : ; xn. For FSMX sources, the set S is de�ned by a minimum su�x
set of strings from X with the property that for every string s 2 S and every x 2 X
such that p(xjs) 6= 0, the string sx has exactly one su�x in S. We use the notation
suf(sx) to denote the su�x of the string formed by concatenating s 2 S and x 2 X .
Using this notation, the next-state function f(s; x) becomes f(s; x) = suf(sx) for all
s 2 S and x 2 X . Examples of FSMX sources, also called �nite-order FSM sources,
include Markov-k sources for any k � 0.

In [9], Rissanen proves the existence of universal source codes for binary FSM
sources with an unknown number jSj of states, achieving �n(�) = (jSj=2) logn=n +
O(1=n) for almost all �. The optimal algorithm traverses the entire data sequence
to determine its best estimate of S and then describes the data sequence using that
estimate. An alternative to Rissanen's algorithm with the same rate of convergence
on FSMX sources with known memory constraint L appears in [10]. The algorithm
computes and sequentially updates an on-line estimate of S during the coding process.

III The Burrows Wheeler Transform

The Burrows Wheeler Transform [1] is a reversible block-sorting transform that oper-
ates on a sequence of n data symbols to produce a permuted data sequence of the same
symbols and a single integer in f1; : : : ; ng. Let BWTn : X n ! X n�f1; : : : ; ng denote
the n-dimensional BWT function and BWT (�1)

n : X n � f1; : : : ; ng ! X n denote the
inverse of BWTn. We write (yn;m) = BWT (xn) and BWT (�1)(yn;m) = xn. The
notations BWTX and BWTIN denote the character and integer portions, respectively.

The forward BWT proceeds by forming all n cyclic shifts of the data string and
sorting those cyclic shifts lexicographically. The BWT output is the last character
of each of the (ordered) cyclic shifts followed by an integer describing the location of
the original data sequence in the ordered list. An example appears in Figure 1.1

Intuitively, the inverse BWT starts with the last column of the table of lexico-
graphically ordered cyclic shifts and builds up the rest of the table. By the table
construction, the �rst column of the table is simply an ordered copy of the last col-
umn of the table. Thus given the table's last column { that is the transform output {
we can immediately reconstruct the �rst column by alphabetizing the same sequence.

1A variation of the BWT appends a unique \end-of-�le" (EOF) symbol to the end of the data
sequence xn. Inclusion of the EOF symbol removes the need to describe the row index n and bu�ers
the end of the string from its beginning, but simultaneously increases the alphabet size by one. We
here concentrate on the variation described in the text above.



Input: banana Output: (nnbaaa,4)
Step 1 Step 2 Step 3

1 b a n a n a a b a n a n n
2 a n a n a b a n a b a n n
3 n a n a b a a n a n a b b
4 a n a b a n b a n a n a a
5 n a b a n a n a b a n a a
6 a b a n a n n a n a b a a

Figure 1: The BWT of the sequence \banana". The original data sequence appears
in row 4 of the lexicographically ordered table (Step 2); the �nal column of that table
contains the sequence \nnbaaa". Hence BWT (banana) = (nnbaaa; 4).

Further, since each row is a cyclic shift of every other row, the last and �rst columns
together provide a list of all consecutive pairs of letters. An ordered list of these pairs
gives the �rst and second table columns. Repeating the above process for all triples,
quadruples, etc. sequentially reproduces all columns of the original data matrix. Fi-
nally, the transform index indicates the appropriate row of the completed table. An
example of the inverse BWT appears in Figure 2.

A memory- and complexity-e�cient implementation of the BWT is used in data
compression algorithms in [1] and later work derived from it. In each algorithm,
the data is �rst transformed using the BWT and then compressed using a lossless
source code. Typically, these algorithms capitalize on the BWT's tendency to group
together long strings of like characters, thereby producing a string that is more easily
compressed than the original data sequence. Yet of all of the columns in the table,
the last column has the least e�ect on the lexicographic ordering of the rows and
is thus, in some sense, the least ordered of the columns. It is therefore tempting to
suggest an alternative to the BWT that simply uses some other matrix column as the
transform output. Unfortunately, for general strings and sequence lengths, the last
column is the only column that yields a reversible transformation.

IV The BWT on FSMX Sources

Consider the properties of a string that has been time-reversed and then transformed
with the BWT. The resulting data sequence has the property that characters that
follow like strings { e.g., characters with a common pre�x { are grouped together.
Since FSMX sources have the property that characters with the same pre�x are drawn
from the same distribution, this reordering is extremely useful for data compression.

For any source sequence Xn = X1; X2; : : : ; Xn from alphabet X , let Y n = R(Xn)
and (Zn;M) = BWT (Y n) = BWT (R(Xn)), where Rn : X n ! X n is the time-
reversal operator. Thus Y n = (Y1; : : : ; Yn) = (Xn; : : : ; X1), and Zn and M are the
BWT data sequence and the row index respectively of the reversed data string.

The following de�nitions are useful for understanding the statistical properties



Input: (nnbaaa,4) Output: banana
1 2 3 4 5 6 7 8 9 10

n a� � �n na ab� � �n nab aba� � �n naba aban� � �n naban abanan
n a� � �n na an� � �n nan ana� � �n nana anab� � �n nanab anaban
b a� � �b ba an� � �b ban ana� � �b bana anan� � �b banan ananab
a b� � �a ab ba� � �a aba ban� � �a aban bana� � �a abana banana

a n� � �a an na� � �a ana nab� � �a anab naba� � �a anaba nabana
a n� � �a an na� � �a ana nan� � �a anan nana� � �a anana nanaba

Figure 2: The inverse BWT for the pair (nnbaaa,4). The output of the inverse BWT
is row BWTIN=4 of the �nal table. The inverse BWT may be sequentially decoded.

of Zn when Xn is drawn from an FSMX source. Given a random vector Un =
(U1; U2; : : : ; Un) and any integer 1 � C � n, we call Un C-piecewise independent

and identically distributed (C-p.i.i.d.) if there exists some collection fp1; p2; : : : ; pCg
of distributions on X such that for any xn 2 X n there exists an integer transition
pattern T (xn) = (T1; T2; : : : ; TC+1), 1 = T1 < T2 < T3 � � � � < TC+1 = n + 1, such

that Pr(Un = xn) =
QC
j=1

QTj+1�1
i=Tj

pj(xi). Thus Un C-p.i.i.d. implies that Un looks
like a concatenation of C iid strings. Notice, however, that the elements of Un need
not actually be independent since, for example, the transition indices need not be
independent. We therefore make a distinction between sources that are p.i.i.d. and
sources that are independent and piecewise identically distributed (i.p.i.d.), where a
string is C-i.p.i.d. if it is C-p.i.i.d. and its elements are independent.

Lemma 1 For any sequence length n and any Xn drawn according to an arbitrary

FSMX distribution with minimum su�x set S and initial state s0, the string Zn =
BWTX (R(Xn)) is C-p.i.i.d. with C � jSj.

Thus the BWT of the time-reversed data string looks like a list of iid samples with
a number of parameter changes less than the number of states in the FSMX source.
This property is achieved by the BWT on any FSMX source independent of the su�x
set S and plays a crucial role in the success of BWT-based source codes.

V Universal Coding on Finite Memory Sources

All but one of the combinations of the BWT and a lossless source code considered in
this section are new, as are all of the rate of convergence results. The remaining algo-
rithm, treated �rst, is a variation on the BWT-based lossless source code in common
use for practical coding. Each code describes the integer and ordered string parts of
a BWT using independent lossless source codes. We reverse all data strings prior to
transformation by the BWT to group characters with common pre�xes together.

Let X1; X2; : : : be drawn according to an FSMX source. Each of the algorithms
considered uses dlogne bits to describe the random variable BWTIN(R(Xn)). The
algorithms di�er in their methods for describing BWTX (R(Xn)). Since all of the



algorithms code Zn rather than coding Xn directly, none of the algorithms is a se-
quential code. That is, each algorithm requires access to the complete vector Xn

before coding even the �rst symbol X1. Nonetheless, the BWT is extremely compu-
tationally e�cient, and most of the algorithms considered use very low complexity
sequential coding of the BWT output Zn. The algorithms are proven to be universal
for FSMX sources and most do not require a priori knowledge of the memory con-
straint L (as in [10]) or state space S. We here focus on �n(�) = E�`(X

n)=n�H�(X )
rather than �n(�). Note that �n(�) = �n(�) +O(1=n) for FSMX sources.

Most of the algorithms make use of arithmetic codes with the Krichevsky and
Tro�mov [11] probability model. The resulting codes are extremely e�cient in mem-
ory and computation, requiring only jX j counters. The description length on an ar-

bitrary string xn is bounded as `(xn) � nH(�̂(xn)) + jX j�1
2

logn+ c, where H(�̂(Xn))
is the entropy associated with a memoryless source P�̂(Xn) matching the single-letter
empirical distribution of xn.
A Move-to-Front Code { The Baseline Source Code

We begin by analyzing a variation on the practical BWT-based codes described
in works like [2, 12, 13]. The algorithm uses an integer code requiring no more than
log� j+ c bits to describe integer j [14], where log� j = (log j)++(log log j)++ : : : (x+

gives x if x is de�ned and nonnegative and 0 otherwise) and log� j + c � (log j)+ +
(log log j)+ + 2(log log log j)+ + 7. Following the argument of Elias [15], initialize a
memory system with some ordered list containing one copy of each letter in X and
then code each symbol Zk by describing the interval since the last appearance of
Zk. While this algorithm is not universal when performed on alphabet X , it can be
universal if performed on extensions Xm of X with m ! 1, as discussed in [16] for
Markov-k sources.2 The proof used here takes a di�erent approach from the typicality
arguments of [16] in order to derive rate of convergence results.

Theorem 1 Given an FSMX source with unknown state space S and memory con-

straint L <1, the Elias interval code of the BWT of the reversed data string achieves

redundancy �n(�) � log�H(X )+ c+O(log n=n) bits per symbol for all � in the given

class. Applying the same code to alphabet Xm, m ! 1 gives a universal code with

redundancy bounded as

�n(�) � log log n

logn
+O

0
@ log logn

logn

!2
1
A

bits per symbol for all � in the given class.

While the baseline code redundancy does not converge to zero, the code is very simple,
and for practical n-values the constant to which the redundancy converges seems to
be quite benign. In contrast, the extension code yields a redundancy approaching

2The result of [16] is correct, but the argument is misleading. The alphabet size is discarded
as �nite in Theorem 2 (m = 1), which is then applied to alphabet Xm with m ! 1 to prove
universality in Theorem 3.



zero, but the code is memory- and complexity-ine�cient. Theorems 2 and 3 use no
alphabet extensions and extremely simple and memory-e�cient source codes.
Known State Space S or Memory Constraint L

Consider an FSMX source X1; X2; : : : with known state space S. By Lemma 1,
BWTX (R(Xn)) is jSj-p.i.i.d., and for each j 2 f1; : : : ; jSj � 1g, the boundary Tj+1
between distribution pj and distribution pj+1 is immediately apparent at the encoder
{ which has access to all of the information contained in the BWT table. As a
result, universal coding performance can be achieved by explicitly describing these
boundary points to the decoder and then independently encoding the subsequences
divided by these boundary points with an arbitrary universal source code. For any
FSMX source with jSj states, we describe jSj � 1 transition points, each of value
between 1 and n. Thus the rate associated with describing the boundary points to
the decoder is no greater than (jSj � 1)dlogne.3 The total description length of the
scheme equals jSjdlogne bits to describe BWTIN(R(Xn)) and the jSj � 1 transition
points plus the rate used in describing the data given the transition points. We apply
the Krichevsky-Tro�mov code to describe the data given the transition points.

Theorem 2 Given an FSMX source with known state space S, the arithmetic code

that independently uses the Krichevsky-Tro�mov distribution on each substring of the

BWT of the reversed data string is strongly minimax universal with redundancy

�n(�) � jSj(jX j+ 1)

2

logn

n
+O

�
1

n

�

bits per symbol for all � in the given class. When the state space S is unknown, but L
is known, coding as if jSj were equal to jX jL gives �n(�) � (jX jL(jX j+1)=2) logn=n+
O(1=n) bits per symbol for all � in the given class.

The rate of convergence described in Theorem 2 di�ers from Rissanen's optimal
rate of convergence by a constant factor of (jX j + 1)=(jX j � 1). For very small jX j
(e.g., a binary source), this factor grows as large as 3. (We restrict our attention to
nontrivial examples, requiring jX j � 2.) This factor shrinks to 1 for large alphabets,
and thus can be made arbitrarily small (at the cost of a higher complexity) by coding
vector extensions of the original alphabet. Most of the redundancy increase comes
from the boundary point descriptions while the rest is the cost of describing the
appropriate row in the BWT decoding table. This extra redundancy likely results
from the fact that while our string is p.i.i.d., the symbols are not independent. In
particular, the parameters are jointly distributed, and this fact is not exploited either
here or in any of the algorithms considered in this work. Unfortunately algorithms
that take this redundancy into account seem to be quite complex. We therefore favor
the above approach, which, while non-optimal in its rate of convergence lies within a
constant factor of the optimum and is achieved without the use of large dictionaries
of probability coe�cients like those found in most universal codes.

3We can actually do better. More sophisticated (but also more complex) codes would exploit
the relationships between these boundary points, which are not independent. We here stick to the
simplest approach.



When the memory constraint L is known but the minimal state space S is un-
known, the above strategy gives a rate of convergence that di�ers from the optimal
by at most a factor of jX jL(jX j + 1)=(jSj(jX � 1j)). Thus the algorithm has the
disadvantage of a larger constant in front of the redundancy bound. Note, however,
that the code requires no more memory or computation when S is unknown than
when S is known since the algorithm requires the tracking of only one distribution
at a time. This property is not shared by the (PPM-style) code that takes the same
approach in the original sequence domain rather than the BWT domain.
Unknown State Space S and Memory Constraint L

While the above code is conceptually simple and achieves a good rate of conver-
gence, it is impractical in its assumption of knowledge of either the FSMX states or
the memory constraint L. We focus on several extremely simple alternatives.
A Finite Memory Code

While it is possible for the encoder to attempt to estimate S and then describe
the resulting T (Zn), such codes are often quite complex. Notice, however, that the
number of transition points is �nite and independent of the sequence length n. We
therefore encode the data using the Krichevsky-Tro�mov coder but keeping the mem-
ory of the code �nite. That is, for a sequence of length n and some maximum memory
length w(n), we use the Krichevsky-Tro�mov code dn=w(n)e times: Once on symbols

Z
w(n)
1 = Z1; : : : ; Zw(n), next on symbols Z

2w(n)
w(n)+1 = Zw(n)+1; : : : ; Z2w(n), and so on un-

til the entire data sequence is coded. The \window" length w(n) must be carefully
chosen to grow as a function of n (so that the per-symbol redundancy on each length
w(n) sequence goes to zero) but not too quickly (so that the fraction of windows in
which we �nd two or more distributions in the p.i.i.d. string is small). Theorem 3
bounds the redundancy for the optimal window length w(n).

Theorem 3 Given an FSMX source with unknown state space S and memory con-

straint L < 1, the arithmetic code that uses, on each substring of the BWT of the

reversed data string, the Krichevsky-Tro�mov distribution with a �xed-length �nite

memory is strongly minimax universal with redundancy

�n(�) �
q
(jSj � 1)(jX j � 1) log jX j

s
logn

n
+O

 
log lognp
n log n

!

bits per symbol for all � in the given class if the choice of w(n) is allowed to depend

on the jSj. For the more general problem, where jSj is unknown and therefore cannot

be used in the choice of a window length, �n(�) � O
�q

logn=n
�
.

The FSMX source model and the resulting analysis do not take into account several
fortuitous characteristics of the above described algorithm. In particular, for many
sources, such as text, neighboring distributions in the BWT output will often have
very similar statistics due to their similar pre�xes. Thus even in regions overlapping
more than one distribution, the performance of this code is expected to be quite good.

An alternative to the above �nite-memory approach would be a sliding window
approach. The sliding window code uses the same arithmetic coding structure but
always bases its probability estimate on the past w(n) samples.



More Sophisticated Source Codes

While this work focuses primarily on extremely simple universal source coding with
the BWT, we here brie
y introduce a variety of other, more complex approaches to
coding BWT-transformed data sets and give bounds on their performances.

In [17], Merhav introduces a universal lossless code for sources with piecewise-
constant parameters. Applying Merhav's code to BWT-transformed data sequences
yields a total redundancy of (jSj+1) logn=n+jSj(jX j�1) log n=(2n)+O(1=n). Unfor-
tunately, when jSj is unknown, Merhav's algorithm can become extremely complex
since it involves weighting over all possible transition patterns and the number of
transitions patterns to be considered grows exponentially in the sequence length [18].

In [18], Willems describes two techniques for coding binary i.p.i.d. data sequences.
The �rst algorithm, a quadratic complexity code, achieves the same rate of conver-
gence as Merhav's code. The second, a linear complexity code, achieves a rate of
convergence at most a factor of 1.5 higher. Both complexity bounds are independent
of jSj. Using these algorithms in our BWT source codes results in universal codes
with rates of convergence (jSj + 1) logn=n + jSj(jX j � 1) logn=(2n) + O(1=n) and
(3jSj=2 + 1) logn=n+ jSj(jX j � 1) logn=(2n) +O(1=n), respectively.

VI Conclusions

The BWT lends itself to a wide variety of universal lossless source codes for FSMX
sources. As the BWT requires processing of an entire data sequence, BWT-based
codes are not sequential, but often employ sequential coding of the transformed data
sequences. The resulting codes yield good theoretical and practical coding perfor-
mance. The speci�c algorithms introduced here yield rates of convergence between
those of Ziv-Lempel codes and those of PPM codes, potentially with very low com-
plexity. Further, even on FSMX sources for which the number jSj of states is large, the
codes discussed do not require the enormous dictionaries of conditional probabilities
associated with many algorithms yielding comparable performance.
Acknowledgments Thanks go to Dmitre Linde and Jeremy Kahn for their input.

References

[1] M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algo-
rithm. Technical Report SRC 124, Digital Systems Research Center, Palo Alto,
CA, May 1994.

[2] J. G. Cleary, W. J. Teahan, and I. H. Witten. Unbounded length contexts
for PPM. In Proceedings of the Data Compression Conference, pages 52{61,
Snowbird, UT, March 1995. IEEE Computer Society.

[3] J. G. Cleary and I. H. Witten. Data compression using adaptive coding and
partial string matching. IEEE Transactions on Communications, 32(4):396{402,
April 1984.



[4] A. D. Wyner and A. J. Wyner. Improved redundancy of a version of the Lempel-
Ziv algorithm. IEEE Transactions on Information Theory, IT-41(3):723{732,
May 1995.

[5] G. Louchard and W. Szpankowski. On the average redundancy rate of the
Lempel-Ziv code. IEEE Transactions on Information Theory, IT-43(1):1{8, Jan-
uary 1997.

[6] S. A. Savari. Redundancy of the Lempel-Ziv incremental parsing rule. IEEE

Transactions on Information Theory, IT-43(1):9{21, January 1997.

[7] M. E�ros. Universal Burrows-Wheeler source coding. 1998. In preparation.

[8] J. Rissanen. Universal coding, information, prediction, and estimation. IEEE

Transactions on Information Theory, 30(4):629{636, July 1984.

[9] J. Rissanen. Complexity of strings in the class of Markov processes. IEEE

Transactions on Information Theory, IT-32(4):526{532, July 1986.

[10] M. Weinberger, A. Lempel, and J. Ziv. A sequential algorithm for the universal
coding of �nite memory sources. IEEE Transactions on Information Theory,
IT-38(3):1002{1014, May 1992.

[11] R.E. Krichevsky and V.K. Tro�mov. The performance of universal encoding.
IEEE Transactions on Information Theory, IT-27(2):199{207, 1981.

[12] Z. Arnavut and S. S. Magliveras. Lexical permutation sorting algorithm. The

Computer Journal, 40(5):292{295, 1997.

[13] N. J. Larsson. The context trees of block sorting compression. In Proceedings of

the Data Compression Conference, pages 189{198, Snowbird, UT, March 1998.
IEEE.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.

[15] P. Elias. Interval and recency rank source coding: two on line adaptive variable-
length schemes. IEEE Transactions on Information Theory, IT-33(1):3{10, Jan-
uary 1987.

[16] M. Arimura and H. Yamamoto. Asymptotic optimality of the block sorting
data compression algorithm. IEICE Trans. Fundamentals, E81-A(10):2117{2122,
October 1998.

[17] N. Merhav. On the minimum description length principle for sources with
piecewise constant parameters. IEEE Transactions on Information Theory, IT-
39(6):1962{1967, November 1993.

[18] F. M. J. Willems. Coding for a binary independent piecewise-identically-
distributed source. IEEE Transactions on Information Theory, IT-42(6):2210{
2217, November 1996.


