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NEARLY-OPTIMAL SEQUENTIAL TESTS FOR
FINITELY MANY PARAMETER VALUES'

By GARY LORDEN

California Institute of Technology

Combinations of one-sided sequential probability ratio tests (SPRT’s)
are shown to be ‘“‘nearly optimal” for problems involving a finite number
of possible underlying distributions. Subject to error probability con-
straints, expected sample sizes (or weighted averages of them) are minimized
to within o(1) asymptotically. For sequential decision problems, simple
explicit procedures are proposed which ‘‘do exactly what a Bayes solution
would do”” with probability approaching one as the cost per observation,
¢, goes to zero. Exact computations for a binomial testing problem show
that efficiencies of about 97% are obtained in some ‘‘small-sample’’ cases.

1. Introduction. The central idea of the present investigation is that, just as
the SPRT is optimal and Bayes for testing 2 densities, combinations of one-sided
SPRT’s are “nearly optimal” and “nearly Bayes” for arbitrary testing problems
involving s = 2 densities. The theorems supporting this contention are asymp-
totic, of the type originated by Chernoff (1959), wherein one assumes a cost per
observation, ¢, which is made to go to zero. The present results, though limited
to the finite case, are considerably sharper than their precursors in Schwarz
(1962), Kiefer and Sacks (1963), Lorden (1967) and Wong (1968), all of which
are asymptotically unaffected by insertion of arbitrary constant factors in the
likelihood ratio inequalities defining the tests. In contrast with this, Theorems
1, 2, 3 and 4 below hinge on the asymptotic determination of the “right” critical
value for each of the likelihood ratios. The latter are based on the determina-
tion in Lemma 1 of numbers L(i, j) that yield optimal critical values for one-
sided SPRT’s in a Bayes context. As a consequence, for an arbitrary a priori
distribution a family of multiple-SPRT’s, {d(c)}, is specified and shown to attain
the Bayes risk to within o(c) (Theorem 1) and to “do exactly what a Bayes
solution, d*(c), would do” with probability approaching one as ¢ — 0 (Theo-
rem 3).

The most accurate asymptotic results previously obtained were those of Lorden
(1967) which showed that the rule “stop when the a posteriori risk is less than a
constant times ¢” is Bayes to within O(c) in a general context and that combi-
nations of SPRT’s achieve the same results in the present finite case. Chernoff’s
and Kiefer and Sacks’ investigations showed that the optimal Bayes risk itself is
of order ¢ log ¢, so that the present results improve the known efficiency of
asymptotically Bayes tests from 1 — O((log c=*)~") to 1 — o((log ¢™")7).
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Theorem 4 and its corollary are of a somewhat different (non-Bayes) character
and for the problem of choosing which one of s > 2 densities is true provide an
asymptotic generalization of the optimality property of the SPRT. A natural
procedure using a combination of (5) SPRT’s is shown to minimize the s expected
sample sizes to within o(1) as the error probabilities go to zero. This result is
in the same spirit as Wong (1968) and Lorden (1972), which were concerned
with pointwise minimization of expected sample sizes for testing a continuous
parameter 6 subject to specified upper bounds on error probabilities (tending to
zero). A result similar to those of the present paper appeared in Lorden (1976),
concerned with the problem of minimizing a single expected sample size subject
to two error probability bounds (which in some cases leads to minimization of
the maximum expected sample size, the so-called Kiefer-Weiss problem).

The sharpness of the present asymptotic results tends to instill the hope that
the procedures d(c), or variants of them, will turn out to have high efficiency in
practical, small-sample problems. A preliminary investigation was carried out
in a simple case of testing two values of the binomial parameter, p, with a third
value as “indifference point.” The performance of the ‘“pentagon-shaped” con-
tinuation regions of d(c) is compared with that of Bayes solutions, d*(c), in Sec-
tion 4. The results are encouraging.

Properties of the numbers L(i, j), which play a fundamental role in the present
investigation, are discussed in Section 3. Theorem 5 of that section and recent
work by Siegmund (1975) and Lai and Siegmund (1976) suggest that these num-
bers are also fundamental in analyzing the effect of ‘‘excess over the boundaries”
or “overshoot” in sequential analysis.

2. The general case. Independent and identically distributed random vari-
ables X,, X,, - - -, are observed sequentially, taking values in a measurable space
on which given probability measures, P,, - - -, P,, are distinct and mutually ab-
solutely continuous. Let f;, - - -, f, denote the respective densities of P,, - - -, P,
with respect to a dominating sigma-finite measure, e.g., P,. Each observation
costs ¢ (0 < ¢ < 1) and k terminal decisions (k > 2) are available. Let W(i, d)
denote the loss incurred when f; is true and decision d is chosen, fori =1, - - ., s,
d=1,...,k. Without loss of generality, assume that min, W(i, d) = 0 for all
i. Decision d is said to be a correct decision for f; if W(i, d) = 0. Thus, there
is at least one correct decision for each f;. To avoid trivialities, assume that
W(i, d) = W(i, d") for all i only if d = @’ and also that no decision is correct for
all f,.

Let E, denote expectation under P, i =1, ..., 5. Assume that

(1) E[log (f{(X)[f;(X)P < oo =1,
Thus the information numbers -
1(i, j) = E;log (f.(X))/f(X))) ihj=1,--+,s,

are finite.
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Define the likelihoods

ﬁ:n:ﬁ(Xl)"'ﬁ:(Xn) i=1,-~',s,fl=1,2,”~,
setting f,, = 1 for all i. Given an a priori distribution 2, assigning weights
(1), -+, A4(s) to fi, - - -, f,, define 2,, the a posteriori distribution after n obser-
vations, by
@) A = e i s,
2a5=14())fin

For any distribution, 2, on {f, - - -, f}, the risk of decision d is

(3) K, d) = Tie, AW, d) -

The stopping risk when 2 is the a priori or a posteriori distribution is
r(2) = min,4., 7(4, d) .

A test 6 consists of an extended stopping time, N, allowed to take the values
0,1, ..., and oo, and a measurable terminal decision rule, D; both may be
randomized. The integrated risk of the test § = (N, D) with respect to the a
priori distribution 4, and cost ¢ is
(A 0) = X1 A(NCEN + X5 W(i, d)Py(D = d)} .

For given 1, and ¢, the Bayes risk, r(4,), is the minimum integrated risk over all
tests. Fix 4,. Let {6*(c)} denote a family of Bayes solutions, i.e., tests attaining
the minimum integrated risk, for 0 < ¢ < 1. Assume that N*(c) stops as soon
as r(4,) is equal to the Bayes risk for 4, and D*(c) chooses a decision  attaining
min, r(4,, d).

Now consider the a posteriori space, the set of all 2 = (A(1), - - -, A(s)) prob-
abilities on {f}, - - -, f,}. Define the Bayes stopping region

St = {4[r(2) = (4} -

Then N*(c) is the infimum of n = 0 such that 1, ¢ §,*. Define the numbers

(4) L(i, j) = exp(= 2 17 P i(fin < fin) + Pilfin = fin)])
l:'éj: 1’ ceey S,
setting L(i,i)=1,i=1, ..., s, for convenience in the definition of d(c), (12).

Since P,(fin = fin) = P;(fin = fin)> L(i, j) = L(j, i). Like the information num-
bers, which lack this symmetry, the L(i, j)’s are positive for i = j. This fact is
a consequence of Spitzer’s identities (1956), as shown in the proof of Lemma 1.
Note also that L(i, j) < 1 for i  j, and the value 1 is attained only if the support
of f; and the support of f; are disjoint, so that the absolute continuity assumption
is violated. The significance of the L(i, j)’s defined in (4) is established by the
following lemma.

LemMma 1. Foru,v > 0, let

(5) R(u, v) = infy o [UE,N + vPy(N < o0)],
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where the infimum is taken over all extended stopping times taking values 0, 1, - . .,
and co.
The infimum is attained by

(6) T(%) = inf{n|n = 0, vf,, L(1, 2) < uf,,} .

Proor. It is well known ([24], [15]) that the infimum in (5) is attained by
stopping at the first n > 0 (or co if there is no n) such that the “stopping risk”
is less than or equal to the “continuation risk,” i.e., such that

() Von = Ri(tf 1 Vf2n) »
where
Ri(u, v) = infy,, [uE,N + vPy(N < o0)].
Similarly, R,(u, v) is attained by stopping at the first n > 1 (or oo if there is no
n) such that (7) holds.
Since R,(u, v) = vR,(u/v, 1), division of (7) by vf,, yields the equivalent in-
equality

(8) 1 <R, <E[w, 1).

vf,

n

Now, the function R,(z, 1) is the attained infimum of linear increasing functions
of # and is therefore concave and increasing in 7. Since R(7, 1) = ¢ by virtue of
the restriction N > 1, evidently R,(#, 1) > 1forz > 1. For sufficiently small posi-
tive 7, consideration of a stopping time such that £, N < oo and P(N < o) < 1
(e.g., that of a one-sided SPRT) shows that R,(z, 1) < 1. By the continuity and
monotonicity there is therefore a unique ¢, € (0, 1] such that

(9) Rl(tl’ 1) =1 s
and (7) and (8) are equivalent to
(10) (< Y

' vf2n

It remains only to show that 7, = L(1, 2).
Now, R,(u, v) is attained by stopping at the first » such that (10) is satisfied.
It is also optimal to stop when strict inequality holds in (10). Hence,
Ri(1;, 1) = ELN + Py(N < o0),
where

N =inf{n|n =1, fi. > fo} -
By (9), this last implies

(11 PN = oo

Note that N is the time of first entry into (0, co) of the random walk S, =
log f,,/f.- Hence, Spitzer’s identities

PyS, =0 for n=1) =exp(— X7, n7 ' PyS, > 0)),
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(4.7) of [12], and
EN = 32 P(N > n) = exp(Xy,n7'Py(S, £ 0),

an immediate consequence of Corollary 2, page 330 of [12], yield 1, = L(1, 2),
which proves the lemma.

REMARK. Since the lemma is of independent interest, it should be noted that
the finite variance assumption, (1), is not needed, since only the mutual absolute
continuity of the measures P, and P, is required. In fact, the lemma is easily
shown to be true for any distinct probability measures P, and P,, the nonabso-
lutely continuous case being handled as follows. Let f; and f, be taken with
respect to P, 4+ P, let f,,/f,, = + co when the denominator is zero, and R,(+ oo,
v) = +oo. Evaluate PN = co) and E, N using Corollary 2, page 330 of [12]
(inequalities reversed), with ¢ equal to P,(f, > 0) and P,(f, > 0), respectively.
In both cases, the argument given above needs changing only if r < 1, in which
case {S, < 0} is conditioned on {f;, > 0} (resp. {f,, > 0}). The derivation of
(4.7) is followed to complete the evaluation of P,(N = o).

The tests d(c) are defined as follows. N(c) is the infimum of n > 0 such that
for some 7/ and 4

(12) L(NHW(J, d)L(i, j) < c,(i) for all ;.

D(c) chooses the smallest d attaining the stopping risk, 7(4,,,). To obtain a useful
alternative characterization of N(c), define the region S,(i, j, d) fori, j = 1, ..., s,
d=1, ..., k as the set of 2’s satisfying

(13) ADW (), )L, J) = eA() -

Then by (12) N(c) is the infimum of n = 0 such that 2, € S,, where

(14) Se = Uua N5 S5 5 d) -

That the stopping regions S,* and S, have a great deal in common is established
by the following result.

LEMMA 2.’ Under assumption (1) there exist Q, > Q, > 0 such that for all ¢ > 0

(15) {A]r(2) £ Q,c} C S, n §.*
and
(16) S, US* C {4]|rd) = Q,¢}.

Proor. The choice Q, = 1/s suffices for (15) by the following argument. If
r(2) = r(4, d) for a given d, then for all j the left-hand side of (12) is at most r(2)
by virtue of (3) and the fact that the L(i, j)’s are < 1. Now, if r(2) < ¢/s, then
(12) holds for all j provided that A(i) = 1/s, which must be true for some i =
1, ..., s. Hence, r(4) < c¢/s implies 1€ S,. A sufficient condition for 2¢ S,* is
that r(2) < c since taking observations always yields risk =c¢. This proves (15)
for Q1 = I/S
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To prove (16), let L > 0 denote the minimum of L@, jyoveri,j=1,...,s.
If 2¢S,, then for some i and 4 (13) holds for all j, and replacing L(i, j) by the
lower bound, L, and summing over j yields

r(4,d) - L < sci(i) < sc,

whence r(2) < sL~'c. By Lemma 2.2 of Lorden (1967) there is an M* > 0 such
that 1€ S.* only if r() < M*c. Hence, Q, = max (M*, sL~") suffices for (16)
and the lemma is proved.

For p > 1, define
17) Ai(p) = {22y Z pAi + 1),i =1, ..., s — 1}.
More generally, for a permutation 7 on {1, ..., s} define

A (o) = ([ Aw(D) = pA(=(i + )i =1, o, s — 1)
and let
A(p) = Ux An(p) *

Let d, denote the decision that minimizes (W(1, d), - - -, W(s, d)) lexicograph-

ically, i.e., d, minimizes x*W(1, d) + 7 W(2,d) + .- 4+ xW(s, d) for large x.

Let j, denote the smallest j such that W(j, d,) > 0, noting that 1 < j, < 5. Let
W be the ratio of the largest W(i, d) over all i and d to the smallest difference

between any two distinct values of W(i,dyoveri=1,...,5,d=1, ..., k. It
follows from (3) and (17) that
(18) r(2) = r(2,d) < ming,, r(2,d)  for e A(sW)

and a fortiori for A ¢ A4,(p), p > sW.

Let W and W denote the largest and smallest, respectively, of the positive
values of W(j, d)L(i, j) over all i, j and d. A fact that will prove to be very
useful in the sequel is

(19) S, N AWW =81, j,d) n A (WW™) for all «c.

The left-hand side of (19) contains the right-hand side because whenever 1 e
A, (Ww-1) and (13) holds for 1, j, and d,, it still holds with any other j in place
of ji: for j < j, because W(j, d,) = 0, and for j > j, because

HDW( LA, ) < W)V < AW < 2G)W (s d)L(, J1)
The reverse inclusion in (19) follows from the fact that for all / and d
(20) S(i, j(d), d) 0 AWW™) © S(1, ji, dy) n A(WWY),
where j(d) is the smallest j such that W(j, d) > 0. It suffices to consider i — 1
in (20), since changing from (i), i # 1, to (1) on the right-hand side of (13)
introduces a factor of at least WW~*, which amply compensates for the change
from L(i, j) to L(1, j) on the left-hand side. Fix i = 1, then. By the definition
of d, and j,, j(d) < j, and, if j(d) = j;, then W{(j,, d) = W(j,, d,), in which case
(20) is clear from (13). In case j(d) < j,, then (20) holds because the factor of
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at least WW-1 picked up by switching from a(j(d)) to (j) in (13) amply com-
pensates for switching from W(j(d), d)L(1, j(d)) to W(j,, d\)L(1, j,).

The following lemmas are the keys to the proof of Theorem 1.

LEMMA 3. Define B(c) = A(exp((log ¢c7*)¥)) n {A|r(2) < Q,c}. Fix A, and let
M(c) denote the stopping time min (N(c), N*(c)). Asc—0,

Py(Ay, € B(c)) — 1 i=1,..-,5.
LEMMA 4. Define Bi(c) = A,(exp((log c™)¥)) n {A|r(4) < Q,c}. Let
(21) R(u, v) = infy o [uE,N + vP; (N < )], u,v>0.
Set W, = W(j,, d). Asc— 0,
(22) r(2, 0%()) = R(eA(1), A()W5) + o(c)
and
(23) r (2 3(¢)) = R(ex(1), A(j)Wy) + o(c)

uniformly for 4 € B(c).

REMARK. Analogs of (22) and (23) hold, of course, for 1€ B(c). In Lemma
4, o(c) and 0*(c) denote the procedures based on the a priori distribution 4. The
statement and proof of Theorem I are given next, with the proofs of Lemmas
3 and 4 deferred until afterward.

THEOREM 1. Suppose (1) holds and an a priori distribution, A, is given. Then
(24) 7,(4y, 0(¢)) — r(4y 0%(c)) = o(c) as ¢—0.

Proor. Assume without loss of generality that (i) > Ofori =1, ..., s. Fix
c. Both d(c) and 0*(c) are stationary with respect to the sequence of a posteriori
distributions in the sense that they stop as soon as 4, falls in their respective
stopping regions, S, and S,*. Thus, since N(c) = M(c) = min (N(c), N*(c)), con-
ditioning on M(c) and 1,,,,, yields

74 9(¢)) = cE[M(c) | A] + E[.(Auer» 9(¢)) | 4] »

where E[-|4,] denotes 7, 4,(/))E[+]. On the right-hand side of this relation d(c)
is understood to be “starting all over again” with 2,,,, as a priori distribution,
by virtue of the stationarity. A similar ‘relation holds for 0*(c) and subtraction
of the two relations leads to

(25) 14 0()) — 1(Ao, 0%(¢)) = E[r(Ayier» 0(€)) — FoAarier 6%()) | 4] -
There is a constant Q > 0 such that
(26) ry(2, 6(c)) — r(4, 0%(c)) < Qc forall 42 and c.

To prove (26), consider the test 6(Q, ¢) with stopping region S, = {1|r(1) < Q,c}
and terminal decision rule like d(c)’s. By Lemma 2, S, c S,, whence the sam-
pling cost of d(c) is no larger than that of §(Q,c). The integrated risk of error
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for d(c) equals the E[ |4,]-expectation of the stopping risk, which is at most Q,¢
by Lemma 2. Therefore,

ry(2, 6(c)) — r,(4, 6(Q;¢)) < Q¢ forall 2 and c.
By Theorem 2.1 of Lorden (1967), there is a constant M > 0 such that
r(4, 6(Q;¢)) — r(4, 6*(c)) = Mc  forall 2 and c,

which, together with the preceding relation, proves (26) with O = Q, + M.
Now, the difference of a posteriori risks

Te(Aacers 9(€)) — ooy 9%(€))

appearing in the right-hand member of relation (25) is in any event at most Q¢
by (26) and is bounded above by o(c) uniformly on the event {4,,, € B(c)} by
(22) and (23) and their analogs for 2 ¢ B(c) — B,(c). Since this event has prob-
ability approaching one under every P, by Lemma 3, the right-hand side of (25)
is 0(c) as ¢ — 0 and the theorem is proved.

Proor oF LEMMA 3. It is necessary first to establish that

ﬂgu = lim N7

27 lim
@7) : log ¢*

¢—0
= min, (Min;, ;450 /({, j))™' in P-probability.

First consider N(c) and note that

(28) P(N(c) = ming, ;4= N(c; i, d)) — 1 as ¢—0,

where
N(c; i,d) = inf{n|n = 0, 2, € N3=, S.(4, j, d)} .

This is based first of all on the fact that the P,-probability of {2, € S,(i’, i, &) for
some n} tends to zero if i/ s i and W(i, d’) > 0, by Wald’s error probability
bound. Thus, only d’s such that W(i, d) = 0 need be considered. Now (28)
follows since the P,-probability of {1,e M, S,(7,j, d) for some i’ = i before
2, € N; S.(i, j, d)} tends to zero because N(c) — oo (clearly) and the last time, n,
that 4,(")/L(¥', j) > A,(i)/L(i, ) for some j has a finite (nondefective) distribu-
tion under P,.

To prove (27), fix d such that W(i,d) = 0. For j such that W(j, d) > 0 let
N,(c) denote the first time 2, ¢ S,(i, j, d) and N,(c) denote the last time 4, ¢
S,(i, j, d). Rewriting (12) in terms of log ( f,,/f;.) leads to

Nij(e) _ 1
loge™  I(i, j)
by a well-known result for random walks (Chung (1969), page 127). Further-

more, 1 4+ N;(c) — N;(c) is nonnegative and bounded above by the smallest n
such that

(29) lim in P-probability

¢—0

inf,., SR log (f(X)If(X) 2 0,
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which has the same (nondefective) distribution for all ¢. Therefore, (29) holds
for N,(c) also and, since

maxi:W(j,d)>0 ]_Vf(c) é N(C; i’ d) é 1 + maxf:W(j,d)>0 Nj(c) 4
it follows that

N(c; i, d)

lim, log ¢!

= (min;,, ;450 I(, j))™* in P-probability.
Using (28), (27) follows for N(c). (Note that d’s such that W(i, d) > 0 play no
role in (27) since I(i, i) = 0.) To establish (27) for N*(c), observe that N(cQ,/Q,) <
N*(c) £ N(cQ,/Q,) by Lemma 2.

Since r(4,,,) < Q,c by Lemma 2, it suffices for Lemma 3 to show that

(30) Pi(|10g 'IM(c)(j) - log ZM(c)(jl)l = (log c_l)é) —0

as ¢ — 0, for arbitrary j = j/, one of which may equali. First consider the case
where I(i, j) — I(i, j') = 7 > 0. Let T, denote the last time that log (1,(/)/2.(J")) +
4nn is positive, which is finite a.s. (P;) by the strong law of large numbers. Let-
ting I(i) = 2 max; I(i, j), an easy calculation shows that if log ¢~ > (21(i)/7)!,
then the probability in (30) is at most P,(M(c) < max (7,, I(i)~* log ¢*)), which
goes to zero by (27).

The case 7 < 0 is similar and in the case » = 0, i.e., I(i, j) = I(i, j'), (30) is
proved as follows. By the central limit theorem for randomly stopped sums
([3], page 197), 10g (A6, (J)/Aue(J'))/(log c*) converges in distribution under
P, to a nondegenerate normal law with mean zero by virtue of (27) and the
distinctness of f; and f;,. This completes the proof of Lemma 3.

ProOF oF LEMMA 4. Assume that exp((log c=")¥) > sW, so that (18) applies and
(31) r(d) = r(A, d) < Q,c¢.

It suffices to prove (22) with “>" and (23) with “<,” since r,(4, 6*(c)) < r,(4,
d(c)) by the optimality of d*(c).
For the proof of “=" in (22), define the (possibly infinite) stopping time

(32) N:inf{n|ngl,fjn§7 oW __ . forjzz,.‘.,s}‘

QL + W)
Since 2 € A,(sW), calculation shows A(1) > W/(1 + W) and, hence, if N < oo
SO o ) oW 1 g

Ay fmo AL T o +W) ) Q]
so that (31) implies r(25, d)) < Q,c. It follows using Lemma 2 that N*(c) < N.
Define another extended stopping time
(33) N'(c) = N*(c) if D*(c) =d,,
=N if D*(c) # d,,
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noting that N'(c) < N, and also define the event

(34) V, = {]V < oo and max,; max,y log Jin < i(log c‘l)i} .

in
Note that, unlike N*(c) and D*(c), N and ¥, do not depend on 1. Now, using
primes to denote complements,

(35) V! n{N< oo} | @ as ¢|O0,

since the likelihood ratios are finite for every n. Furthermore, on V,, 2,¢
Ay(exp((log ¢1)})) for all n < N and for N*(c) in particular. Therefore, by (18)
(36) V.c {D*(c) =4}

for A € By(c), provided that exp (3(log ¢=')¥) > sW, which is assumed now and for
the remainder of the proof. Using (33) and (36),

(37) P;(N'(¢) < o0) = P;(D*(¢) = dy) + P;,({N < oo} 0 V)
=P (D*(c) = dy) + o(1)
uniformly in 2 as ¢ — 0 by (35) and the fact that N and ¥, do not depend upon 1.
Also, by (33) and (36),
(38) E\N'(c) < E,N*(¢) + E,NI{V,'} = E,N*(c) + o(1)
uniformly in 1 as ¢ — 0 by (35) and monotone convergence, since E;N < oo.
Putting together (37) and (38), and using the fact that W A(j)) < r(4,d)) <
Qyc = 0(c),
cA(1)E,N*(c) + W,2(j)P;(D*(¢) = ,)

= cA(DEN(e) + Wia(j)P;,(N'(¢) < o0) — 0(c)

= R(eA(1), W,(j)) — 0(c) ,
by the definition (21) of R, and the o(c) term does not depend on 4. This shows

that “>” holds in (22) and it remains only to prove that “<” holds in (23).
Observe that

(39) Nc)< N
by the same reasoning used for N*(c) and that, like (36),
(40) V. c {D(c) = d}

for A€ By(c).
The E[ |A]-expectation of the stopping risk equals the part of r (4, d(c)) due
to error. Thus,

r:(4, 6(c)) = cE[N(c)| 2] + E[r(Ay.)) | 4] -
Using the fact that r(4,.,,) < Q,c,
(A1) 14 0(c)) = cE[N(e) [ 4] + A(DEir(Ay o)) 1{V.} + Que(l — A1) + Py(VY))
= cE[N(c) [ 4] + ADEr(Aye) 1V} + o(c)
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uniformly in 2 € By(c), since 1 — 2(1) — O uniformly and P,(V,") | P,(N = o) =0
asc | 0 by (35). Define the extended stopping time T, = inf{n|n = 0 and 4, €
S.(1, ji, d,)}, which in accord with Lemma 1 attains R(cA(1), A(j,)W,), defined in
(21). Assume that exp(4(logc¢~*)*) > WW-'. Then the fact that, on V,, 1, €
Ay(exp((log c7Y)¥)) for n < N (hence, for n < N(c)) implies

(42) Nc) =T, on V,

by (19).

By (41) and the fact that T, attains R(cA(1), A(j,)W,), the “<” in (23) is proved
once it is established that

(43) CE[N(c)|2] £ c2(1)E,T, + o(c)
and
(44) AME r(Ay o) 1{V.} = 2(j)W1 P (T, < o0) + 0(¢)

uniformly in 2 € By(c).

By (39) and (42),
(45) E N(c) £ ET, + ENI{V/} = E\T, + o(1)
by monotone convergence, as in (38). To estimate E; N(c) for i > 1, note that
N(c) is at most the infimum of n > 1 such that f;, W < ca(i)f,, for all j + i. The
E-expectation of the latter stopping time is at most M*(1 + log (W/ci(i))) for a

suitable M* > 0, as a consequence of Theorem 3.3 of Lorden (1967). Hence,
letting ¢(c) = exp(— (log ¢~*)}), which is greater than A(2), - - -, A(s) for 2 € By(c),

(46) CHDEN(S) < M¥ep(e)(1 + log (Wjeg(c)))  i=2, .5,
using the fact that x(1 4- log (W/x)) is increasing for x < W. Since ¢(c)logc™' — 0
as ¢ — 0, the right-hand side of (46) is seen to be o(c) as well as not dependent
on A. Hence, (46) and (45) yield (43).

To prove (44), first observe that on V,
(47)  rOyie) = My ) = Widyo () + QuesW exp(—j(log ¢™))

= W1'2N<c>(j1) + 0(c)

by routine estimates making use of the facts that 4, € 4,(exp(4(log c¢~*)})) on
V,and r(2y.,) < Q,c. Hence,
(48) ADE Ay )V} = WiA(D)E Ay ()1{Ve} + o(c)

uniformly for 2 € By(c).
Now, by (42) and the fact that T, < co on V,,

BV = B G)1V) S B 20T, < o0)

_ A
= 7(717 le(Tc < 00),
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which combines with (48) to yield (44). Thus, the “<” in (23) is established
and the proof of Lemma 4 is complete.

The next theorem gives more information about the structure of the Bayes
stopping region, S,*. As indicated in the remark that follows the proof, this
result implies convergence of the stopping boundaries of d(c) and 6*(c) in the
case of Koopman-Darmois families.

THEOREM 2. Assume that (1) holds and that a function y(c) is given satisfying
7(c)/log ¢t — oo as ¢ — 0. Then, in the notation of Lemma 4,

(49) lim, , SUP i iy tenns? j;{i)) = lim, , lan](Tm;wS; j;(jll)i - WIL(lllfl) .

REMARK. Analogs of (49) hold, of course, for A (y(c)) n S.* and 4.(y(¢c)) — S.*.
If the f,’s belong to a Koopman-Darmois family, then d(c) and d%(c) are associ-
ated with continuation regions, B(c) and B*(c), in the (n, §,) plane. It follows
easily from Theorem 2 that along a fixed ray from the origin the distance be-
tween the points of intersection with the boundaries of these two regions goes to
zero with ¢, provided that the ray is not among the (finitely many) exceptional
rays along which the a posteriori distributions are not in B(c). Moreover, one
can choose p = p(c) | 1 as ¢ | 0 so that for ¢ € (0, 1) B(pc) C B*(c) C B(p7'c) in
the region of the plane outside an exceptional set of points (n, S,) whose distance
from the closest exceptional ray is less than a constant times log n.

Proor. Assume that ¢ is small enough so that
(50) F(e) > max (sW, WW-1y,

in order that (18) and (19) can be used where needed in the sequel. A straight-
forward calculation shows that for 2 € 4,(y(c)) under the assumption (50), W, 4(j,)
accounts for at least half of the stopping risk r(2) = r(4, ;). It follows easily that

(51) r(4) > ¢ max (Q,, 2/L(L, jy) = :;(J’i)) > 7W1L1*1,;j) and AeS*.
Because of this, it turns out to be sufficient to prove (49) with A,(y(c)) replaced
by A,(7(c)) N {A|r(2) < Q,c¢}, where Q; = max (Q,, 2/L(1, jy)). “Putting back in”
2’s with (1) > Q¢ = Q,c doesn’t add anything to S,* and the infimum in (49)
is not reduced because of (51).

Let 6,%(c) denote the test which stops at the first n > 1 such that 1, € S,* and
chooses the smallest d minimizing the a posteriori risk. Then d,%(c) attains the
minimum integrated risk among all tests taking at least one observation, the
so-called “continuation risk.” A slight modification of the argument used to
prove Lemma 4 shows that

(52) r(2, 0,%(c)) = Ry(cA(1), A(j)Wy) + o(c)
uniformly for A € A,(7(c)) satisfying r(2) = Q,¢, where R, is defined by modifying
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(21) to require N = 1. The only changes necessary are using the n > 1 versions
of 6*(c), d(c) and T,, and the replacement of Q, by Q, and exp((log ¢~")?) by 7(c),
with corresponding replacements of its square root and reciprocal. The fact that
7(¢) — oo as ¢ — O suffices for the argument until (46), where the assumption
that y(c)/log c™' — oo is needed to make the argument about ¢(c) = 1/r(c) go
through.

By arguing as in (47),

(53) r(2) = A(j)W, + o(c),

uniformly for 2 A(r(c)) satisfying (1) < Q,c. By (52) and (53), the fact that
r(2) < r(4, 0,%(c)) for 1€ S,* yields

AWy = R(ea(1), A(j) W) + o(€)
= Ry(eA(1), ()W) (1 + o(1))
uniformly for 1 e A4,(y(c)) N S,*, using the fact that R, > ¢(1), which is of order
¢ since A(1) — 1 uniformly. Dividing by A(j,)W, yields

5 [ cA(l)
1 <R, <i(j1)W;’ 1) (1 + o(1)),

which implies that

1 — o()L(1, j) < 4D

(1 =o)Lty = 0
uniformly for A€ A,(y(c)) n S,*, by the nondecreasing property of R,(s, 1) and
the fact that this function takes the value 1 only at t = L(1, j,), by analogy with
(9). This proves the ‘“sup” part of (49), and a similar argument with reversed
inequalities for 2 ¢ S * takes care of the “inf” part, proving the theorem.

The next result clarifies what it is that a test should do to “behave like 0*(c)”
as ¢ — 0. Tests which meet the requirements of the theorem, such as o(c), act
“exactly as ¢*(c) would have acted” for the same observations X, X,, - - ., with
probability approaching one as ¢ — 0, for all P,. Furthermore, such tests attain
the Bayes risk within o(c), as in Theorem 1. However, there is an additional
assumption needed:

(54) P,(log (f.(X)/f;(X,)) = mb for some integer m) < 1 forall 6> 0

fori,j =1, ..., ssuch that i = j. This assumption rules out the so-called “lat-
tice case” for the random walk {log ( f;,/f;,)} and excludes, for example, problems
involving the binomial parameter p if two of its possible values, say p, and p,,
are such that log (p,/p,)/log ((1 — p,)/(1 — p;)) is a rational number.

For use in Theorem 3, it is helpful to consider the notion of a test defined by
a stopping region, S, and an a priori distribution, in the sense that observations
are stopped as soon as 4, € S and the smallest 4 minimizing the a posteriori risk
is chosen.

THEOREM 3. Assume that (1) and (54) are satisfied and a fixed a priori distribution,
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Ao is given. Let {8, 0 < ¢ < 1} denote a family of stopping regions satisfying (49)
with y(c) = exp((log ¢™)}) and also satisfying its analogs for A (y(c)). Assume that
there exist constants Q, > O, > 0 such that

(55) {2]r(Q) £ 0.} < 8, < {2]|r(2) £ Oyc} .

Let N(c) = inf{n|n =0, 2, € S)}.
Then, as ¢ — 0

(56) P,(N(c) = N*(c¢) and D(c) = D*(c)) — 1 i=1,-..,s,

where D(c) is the smallest d minimizing r(23,,, d). Furthermore, letting d(c) =
(N(e), D(c)), )

r.(40 0(¢)) — r(4, 0%(¢)) = o(c)
as ¢ — 0.

REMARKS. In the lattice case where (54) is not satisfied, the conclusions of
the theorem hold provided that, as ¢ — 0, log ¢! remains bounded away from
certain arithmetic sequences of exceptional points which can be determined from
the proof. The fact that d(c) satisfies the hypotheses of Theorem 3 is a straight-
forward consequence of (19) and its analogs. By similar arguments, many vari-
ants of d(c) can be shown to satisfy the hypotheses. One such variant is obtained
by stopping when (12) holds for the value of j maximizing 2,(;) subject to W(},
d) > 0. Another variant stops when, for the permutation = induced by 2,
r(4,) = ¢[L(z(1), 7(jr))-

ProOF OF THEOREM 3. Let M(c) = min (N(c), N*(c)). Examination of the
proof of Lemma 3 shows that as ¢ — 0

37 P,y € A_z(exp((log chHY)) -1 i=1,...,s,

where
A.(exp((log ™)) = Uxizay=: A(exp((log ¢™1)?)) .
Relation (57) also holds with M(c) in place of M(c) because (27) holds for N(c)
by virtue of (55). Since (49) holds with y(c) = exp((log ¢~*)}) both for S ,* and
S,, it follows that 2., € 4 (exp((log ¢c™"))) — (S, n S,*) only if, for some j > 1
and d,
108 [(2ie (e (W (s LT, P = <(c) ,

where ¢(c) —» 0 as ¢ — 0. This last event requires that the random walk
{log (/1./f7.)} hit one of a finite number of intervals of length 2¢(c), whose mid-
points go to infinity with log ¢='. Using the renewal theorem, this is seen to be
an event whose probability goes to zero as ¢ — 0. Applying this result with the
M(c)-version of (57),

(58) P28 NS -1 as c—0.

The event in (58) is equivalent to N(c) = N*(c) and, from (18) and its analogs, it
is clear that the probability that r(4;,,,, d) is minimized by only one d approaches
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one. Hence, (56) is proved for i = 1, and, by a similar argument, for all i. The
conclusion about the integrated risk of §(c) follows as in the proof of Theorem
1, with the assumption (55) sufficing for Lemma 2 and with Lemma 4 replaced
by the fact that

o(Asicers 0(€)) = M Zjie)) = TeZsicers 0%(€))
with P,-probability approaching one, as a consequence of (56). This completes
the proof of Theorem 3.

The test d(c) are always combinations of one-sided SPRT’s, but they assume
a particularly simple form for the s-decision problem of choosing which of given
densities, f;, - - -, f, is true. In this case, they become simple combinations of
two-sided SPRT’s and have an asymptotic property like the exact optimality of
the SPRT (Wald and Wolfowitz, 1948).

To define such a test without reference to loss functions or a priori distribu-
tions, consider a boundary matrix B = ||B,;|| with positive entries except for the
diagonal entries B,;, which are immaterial.

For 0 < ¢ < min B,; define the matrix SPRT (T(c), D(c)) as follows: stop at
the first n > 1 such that for some i

(59) Bjifin < cfin  forall ji

and choose the unique i satisfying (59). The scale factor ¢ can, of course, be
eliminated by dividing it into the B matrix, but ¢ — 0 for fixed B leads to inter-
esting asymptotic considerations.

For any test (N, D) consider weighted error probabilities of the form

(60) ay =i a,P(D=1), - a,= 31 ,a,P(D=y5),
where 4 = ||a;|| is a given matrix of weights, positive except for the diagonal
entries which are zero.

Choosing
(61) Bij:ale(i’j) l,j: 17""S7
leads to

THEOREM 4. Suppose that (1) holds, the matrix of weights A is given, and B is
defined by (61). Let ay(c), ---, a,(c) denote the weighted error probabilities of
(T(c), D(c)) defined as in (60). If a family of tests o(c) = (N(c), D(c)) has weighted
error probabilities ‘

(62) a(c) = ay(c) i=1,...,s,
then as ¢ — 0
(63) E,N(c) = E;T(c) — o(1) i=1,...,s.

REMARK. Of course, for any B, the matrix 4 can be chosen to satisfy (61),
yielding an asymptotic optimality property for (T(c), D(c)). Strengthening the
hypothesis to eliminate 4 from the formulation, there is an immediate
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COROLLARY. For any B, (T(c), D(c)) minimizes the expected sample sizes for
i=1,...,5 to within o(l) as ¢ —0 among all tests whose error probabilities
{P(D =)),i,j=1,.--,s,i+ j}are less than or equal to those of (T(c), D(c)).

Proor oF THEOREM 4. Since L(i, j) = L(j, i) the order of these arguments
will be interchanged whenever convenient. The conclusion (63) will be proved
for i = 1, the other cases being similar.

Fix 0 < ¢ < 1 and consider the a priori distribution

1 5

(64) (1) = W—_Ijg’ Ao(i) = m)—e i=2,...,5.
Define
i) — Zo(j)aij I — R
(65) Wi, j) = ) J=1 s

Assuming ¢ < s~'e(min,,; a;;)(min L(i, j)), it is easy to verify from (59) and the
definitions that (T(c), D(c)) coincides with the procedure d(c) of Theorem 1 for
the problem specified by (64) and (65) with ¢ as the cost per observation.

It follows from (59) and the choice of B that

a5, P;(D(c) = i) = a;;¢B5) = cL(i, )™,

so that
a,(c) £ Mc i=1,...,s

where M = s max (L(i, j)™"). Also, for any test § = (N, D) the integrated risk of
error can be written using (60) and (65) as

e(dy 0) = 2. A1) 5 Wi, )PUD = )) = s A(j)a,; PD = j) = 3, A(j)a; -
Hence, by (62) and the fact that a;(c) < Mc for all j
(66) e(2,, 0(¢)) < e(4y, 0(c)) < Mc .
Before invoking Theorem 1, it is necessary to introduce a modification s(c) =
(N(c), D(c)) of é(c) by defining
N(¢) = min (N(c), T(zc))
and B
D(c) = D(¢)  if N(c) < T(ec)
= D(cc) if N(c) > T(ec) .
Clearly, )
e(%, 0(¢)) = e(A, (c)) + e(Ay, d(ec)) ,
whence, by (66)
(67) e(Z 9(¢)) < e(Ay, (c)) + Mec .
By Theorem 1
Folhos 3(6)) = 1ol (0)) + <
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for sufficiently small ¢ and, hence, using (67)
Tis ADET(€) < Tics WOEN(©) + (M + 1)z .
Dividing by 4,(1) and using the definition of 4, leads to
E\T(¢) £ E\N(€) + & Siea E(N(e) — T(@)) + (1 + (s — De)(M + 1)e,
and the definiton of ﬁ(c) implies
E,T(c) < E,N(c) + ¢ 3, E(T(s¢) — T(c)) + s(M + 1)e.

Since ¢ is arbitrary, the conclusion (63) for i = 1 follows immediately once it is
shown that there exist M;, M, > 0 such that

(68) E(T(ec) — T(c)) < M, + M, log e

fori=1, .--,s.

Since there are only a finite number of i values, it clearly suffices to prove
(68) for one of them—say, i = 5. To do this, note that T(ec) — T(c) is at most
the number of observations required after time 7(c) for the random walks
log (fun/fin), j = 1, -+, s — 1, simultaneously to advance a distance

C = 10g ¢! if D(C) =S

— log{ac min,_, < Jfere ) - } if D) % s.
]sLT(c)
By Theorem 3.3 of Lorden (1967) the conditional (on ) E,-expectation of the
number of observations required is at most V, 4 V,{, for some V,, V, > 0.
Hence,

E(T(sc) — T(c)) < Vy + V,E,C

<V, + Vyloget + V,log (max; B;,)

+ Vy(log c)P(D(c) # 5) + V, Y1974 E, log <Supﬂgl 1}w> ,

am

which suffices for (68) since
(log c™)P(D(c) + s) < c(logc™?) 3352% B} § — Zs ! B}

and
E,log <supn;1.fffl‘.> = P, (suanI jj:“‘ > e‘> dt < (e tdr=1.

ReMARK. The full strength of (62) is not needed to prove that (63) holds for
i = 1. Relation (67), with a larger M, can be derived straightforwardly under
the assumptions that (62) is true for i = | and d,(c), - - -, @,(c) are O(c). The
conclusion for i = 1 follows as before.

3. The numbers L(i, j). If instead of Lemma 1 a simple calculation is made
“neglecting excess over the boundary” for one-sided SPRT’s, then R,(u, v) is
attained by using u/vI(i, j) in place of u/vL(i, j). This suggests that L(i, j)/I(i, j)
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is close to 1 when the “excess” is small, which is borne out by the following
result, a one-sided variant of the error probability approximations for (two-
sided) SPRT’s in Siegmund (1975).

THEOREM 5. Suppose I(i, j) is positive and (1) holds. Then if the random walk
{log (fin/fin)} is not concentrated on a lattice,

L)) _ gev,

I, j) l
where ¢ > 0 has the limit distribution as y — co of the excess of {10g (fin/fin)} Over
the boundary y.

Remark. If the random walk is concentrated on a lattice of width # and
7 — oo through multiples of 4, then E;e~¢ = h(e* — 1)7'L(i, j)/I(i, j) provided
strict crossing of the boundary is required. In either case, L(i, j) < I(i, j), and
since L(i, j) = L(j, i), L(i, j) < min (I(i, j), I(j, i))-

Proor. In the nonlattice case, it is well known ([4], pages 355-357) that ¢
has probability density function P,(§ > x)/E;§,0 < x < oo, where £ denotes the
first positive ladder variable of {log ( f;,/f;,)}- Thus, by Fubini’s theorem,

Eev = S0 PE>Nde _ E(fse*dx) _ 1 — Ee?

Letting N denote the time of first entry of S, = log (f,./f;.) into (0, o), i.e.,
N =inf{n|n =1, f,, > f;,}, and using Wald’s equation, it follows that

coop oy 1 —Ee*t 1 — E(fis/fir) _ P;(N = o0)
I Ee?¢=_—___""1" — — 4 .
( DEe EN EN EN

This last is seen to equal L(i, j) exactly as in the proof of Lemma 1.
In the case of testing the mean of a normal distribution with variance one, if
f: and f; have means 6, and ¢,, then I(i, j) = 1|0, — 0,* and

L(i, j) = exp(—=2 Lo n'@(—3n40, — 0,))) .

TABLE 1
L-numbers in Normal case

10; — 0] L LI exp(—.58/0; — 03))
1 .004717 9434 .9437
2 .01780 .8901 .8905
3 .03779 .8398 .8403
4 106339 7924 .7929
.5 .09346 7477 7483
6 1270 7056 .7061
7 .1631 6659 6663
8 2012 6286 6288
9 2403 .5934 .5933

1.0 2802 .5603 .5599
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Table 1 illustrates some values of L and L/I together with a useful approxima-
tion to L/I, given in the last column. Table 1 of [11] is more extensive, listing
A = —%log L(i, j) as a function of w = 4|0, — 6.

For the Wiener process, a direct argument based on the operating charac-
teristics of one-sided SPRT’s with critical likelihood ratios near 1 shows that
R(u, v) is attained by using L(i, j) = I(i, j), which is to be expected since there
is no excess over the boundary.

4. A binomial example. Computations of the operating characteristics of d(c)
and 6*(c) were carried out in several cases of the following problem. The ob-
servations take only the values 0 and 1, with probabilities 1 — p and p, respec-
tively. Values 0 < p, < p, < p, < 1 are given. The terminal decisions are “p,
is true” and “p, is true,” with 0-1 loss, p, being an indifference point. The cost
per observation is ¢ > 0 and a priori probabilities M i =0,1,2, are assigned
to the corresponding p,’s. All cases considered are symmetric in the sense that
p.=1— pand p, = }.

The method used for computing the Bayes solutions, §*(c), and the operating
characteristics of d*(c) and d(c) was the standard “backward induction” algo-
rithm, which is thoroughly described for binomial cases in Weiss (1962). With
this algorithm, each computer run for fixed ¢ yields the operating characteristics
for a number of a priori distributions. The binomial case is particularly simple
computationally because the results for the point (¢, y) are quickly derived from
those for (r 4+ 1, y) and (r + 1, y 4 1), these being the only points immediately
accessible from (7, y) in the course of sampling.

TABLE 2
Operating characteristics of d(c) and 6*(c); p1 = .35, pi = %

c Error probabilities EN at p1, p» EN at po Integrated risk Efficiency

(%) (%)

3*(c) 8.81 10.54 13.53 1395 .
a0 7.38 12.41 15.59 1435 97.21
o+ . 12.60 16.86 1148
((;((E;:) 005 ?Zé 15.19 19.78 1188 9.67
*(c) 5.27 14.21 19.91 0996

ey o0 4.35 16.34 2.18 1021 97.61
* . 15.92 23.08 0826
(é(i)c) 003 ‘;2 12. 73 26.08 0851 97.10
7+ . 18.26 28.48 0623

g(c()C) 002 igf 20.70 30.76 0635 98.17
x . 23.20 38.86 0375
Z(c()C) 001 i ;; 24.59 39.62 0379 98.95
*(c) 68 27.64 49.32 0220

oo 00 57 30.56 s1.14 0225 97.59

* The efficiencies were computed as the ratio of integrated risks accurate to six significant
figures.
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Runs were made with p, = .35 for ¢ = .007, .005, .004, .003, .002, .001,
.0005 and with p, = .4 for ¢ = .004 and .002. The above table shows the results
for p, = .35 with respect to the a priori distribution assigning equal weights of
% to the three points.

The results for p, = .4 and ¢ = .004 and .002 are similar, giving efficiencies
of 97.379% and 97.179, with d(c) error probabilities of 9.819, and 4.99 %,
respectively.

Although there is an increasing trend as ¢ decreases, the sequence of efficiencies
in Table 2 is not monotonic. This is in contrast with similar results in Lorden
(1975) and seems to be due to the fact that the set of lattice points falling in the
continuation region of d(c) (or d*(c)) changes in a discontinuous and somewhat
irregular fashion as c¢ varies. As c is reduced the continuation regions of d(c)
and 0*(c) grow and a given lattice point may first be included in one of the re-
gions and, later, for somewhat smaller c, is finally included in both regions.
Thus, for some values of ¢ the symmetric difference of the two continuation
regions may contain a relatively large number of lattice points and, for other
values of ¢, a relatively small number. This affects the closeness of d(c)’s per-
formance to that of d*(c).

Among all the results for a priori distributions satisfying the symmetry
condition p, = p, the lowest efficiencies obtained with p, = .35 for ¢ = .001,
.003 and .007, for example, were 98.43 9, 96.37 9, and 96.88 9, respectively,
omitting cases where error probabilities exceeded .15. For p, = .4, the lowest
symmetric-case efficiencies were 96.619, for ¢ = .004 and 97.01 9 for ¢ = .002,
with cases involving high error probabilities (i.e., very small sample sizes) once
again omitted.
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