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We propose a communication-assisted local-hidden-variable model that yields the correct outcome for the
measurement of any product of Pauli operators on an arbitrary graph state, i.e., that yields the correct global
correlation among the individual measurements in the Pauli product. Within this model, communication is
restricted to a single round of message passing between adjacent nodes of the graph. We show that any model
sharing some general properties with our own is incapable, for at least some graph states, of reproducing the
expected correlations among all subsets of the individual measurements. The ability to reproduce all such
correlations is found to depend on both the communication distance and the symmetries of the communication
protocol.
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I. INTRODUCTION

Graph states are multipartite entangled states that play
many important roles in quantum information theory. The
class of graph states is equivalent, by local unitaries in the
Clifford group, to the class of states stabilized by Pauli op-
erators �1,2�. This class includes Bell states, GHZ states, ba-
sis states for stabilizer codes, cluster states, and many others.
Of particular interest are the cluster states, which are the
graph states represented by two-dimensional square lattices
�3�. Cluster states have been shown to be sufficient to allow
universal quantum computation within a measurement-based
scheme �4�. For this reason, a complete understanding of the
entanglement properties of graph states would likely improve
our understanding of the role entanglement plays in quantum
computation, as well as teaching us about some of the most
useful states in quantum information theory. Graph states and
their applications are reviewed in Ref. �5�.

Both Gühne et al. �6� and Scarani et al. �7� have shown
that graph states display nonlocal properties under the mea-
surement of Pauli operators. In this work, we further our
understanding of the nonlocality of graph states by introduc-
ing a communication-assisted local-hidden-variable �LHV�
model that predicts the outcome of measuring an arbitrary
Pauli product on an arbitrary graph state. Since graph states
violate Bell-type inequalities, the model necessarily involves
communication.

Our investigation is inspired by that of Tessier et al. �8�,
who described a communication-assisted LHV model for ar-
bitrary Pauli measurements on a GHZ state. In the spirit of
Tessier et al., we formulate our LHV model in terms of hid-
den variables that can be thought of as specifying values for
the x, y, and z spin components of the qubits. In general, a
communication protocol might permit the party at a particu-

lar qubit to communicate to any other party what Pauli mea-
surement is made on its qubit. In our communication proto-
col, however, we restrict communication to be between
parties corresponding to nodes that are adjacent in the under-
lying graph. This restriction to communication only with
neighbors in the graph makes intuitive sense if we think of a
graph as a recipe for constructing the corresponding graph
state. In that case, nodes that are connected have interacted in
the past and therefore occupy a privileged position with re-
gard to exchange of information. We call a protocol that
restricts communication to neighbors a nearest-neighbor
communication protocol.

Although our communication-assisted LHV model pre-
dicts correctly the outcome of the measurement of any Pauli
product, it fails in some cases to predict the expected corre-
lations for subsets of the individual measurements in a Pauli
product. By considering restricted classes of graphs, we
show that two general properties of our model assure its
failure. Perhaps unsurprisingly, one of these is the limitation
to nearest-neighbor communication. More generally, we con-
sider protocols with a limited communication distance, de-
fined as the number of successive edges through which in-
formation can be sent, and we show that any protocol whose
communication distance is constant or scales less than lin-
early with the number of qubits fails to predict some sub-
measurements correctly. Less obvious is a second problem of
our protocol, which we call site invariance, i.e., the property
that nodes in symmetric situations perform the same action.
We consider the effects of each of these properties in some
detail and show that if a protocol has either property, it fails
on some submeasurements.

This paper is organized as follows. In Sec. II we introduce
the formal definition of graph states. In Sec. III we describe
our model and prove that it correctly predicts the global re-
sult of any Pauli measurement on a graph state, i.e., predicts
the global correlation among the individual measurements in
the Pauli product. In Sec. IV we demonstrate that neither site
invariance nor any fixed communication distance is compat-
ible with the goal of reproducing all subcorrelations, though
we do demonstrate that a site-invariant protocol can repro-
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duce all subcorrelations on a one-dimensional cluster state. A
final section summarizes our conclusions.

II. GRAPH STATES

A graph is a set of n nodes and a set of edges connecting
them. The neighborhood N�j� of a node j is the set of nodes
that are connected to it. Given a particular graph, we can
associate a qubit with each node and define the correspond-
ing graph state of the qubits in the following way. Let X, Y,
and Z denote the Pauli matrices �x, �y, and �z, and adopt
the shorthand of writing tensor products of Pauli matrices
as products of Pauli matrices indexed by position, i.e.,
X � I � Y =X1Y3. The graph state ��� on n qubits is the simul-
taneous +1 eigenstate of the �commuting� operators

Gj = Xj �
k�N�j�

Zk, j = 1, . . . ,n . �1�

The operators Gj constitute an independent set of generators
of the stabilizer group of ���. Any graph state can be con-
structed by preparing each qubit in the eigenstate of spin up
in the x direction and then applying a controlled-phase gate
between each pair of qubits that is connected by an edge in
the graph. The order in which the controlled-phase gates are
implemented is unimportant since they all commute.

The structure of graph states makes them good candidates
for the study of nonlocality. For a connected graph �of at
least two nodes�, all single-qubit measurements yield random
values, yet these values are correlated in such a way that
certain products of them give deterministic results. If M rep-
resents an n-fold tensor product of the Pauli matrices, I, X, Y,
and Z, then the result of measuring M on the n-qubit graph
state ��� is determined by which of following three cases
applies to M �see Ref. �9��.

�i� M is an element of the stabilizer group, i.e.,
M =G1

a1
¯Gn

an is a product of the generators Gj for some
aj =0,1, in which case a measurement of M obviously gives
outcome +1.

�ii� −M is an element of the stabilizer group, i.e.,
−M =G1

a1
¯Gn

an is a product of the generators Gj for some
aj =0,1, in which case a measurement of M obviously gives
outcome −1.

�iii� ±M is not an element of the stabilizer, i.e., M is not
a product of the generators up to a multiplicative factor ±1,
in which case a measurement of M gives outcomes +1 and
−1 with equal probability.

The minus sign in case �ii� comes from the fact that products
of generators can introduce at each site terms such as
ZXZ=−X or ZX= iY, with i’s from pairs of sites multiplying
to give a −1. These terms lead to GHZ-like paradoxes for the
graph state, implying that communication between the par-
ties is required to model the correlations classically.

III. COMMUNICATION-ASSISTED LHV MODEL
FOR GRAPH STATES

A. Description of the model

Our model uses n binary random variables, z1 , . . . ,zn,
each taking on values ±1 with equal probability. These hid-

den variables can be thought of as values for the z spin
components of the n qubits. For the corresponding values of
the x and y spin components, we define the quantities

xj = �
k�N�j�

zk, �2a�

yj = zj �
k�N�j�

zk. �2b�

The values xj are suggested by the +1 values associated with
the generators Gj, i.e.,

xj �
k�N�j�

zk = + 1, �3�

in analogy to Eq. �1�. The values

yj = xjzj �4�

are suggested by the analogous relations Y j = iXjZj for Pauli
matrices.

We assume now that each party is given a measurement
Mj to perform, chosen from I �no measurement�, X, Y, and Z.
After the measurement, there is a round of communication
between neighboring sites, and then each party outputs a
value +1 or −1 as the result of the measurement. When no
measurement is performed at a site, the output can be re-
garded as +1.

During the round of communication, site j sends a bit cj
to each site k�N�j�, where cj =0 if Mj = I ,Z and cj =1 if
Mj =X ,Y. The value v j output at site j is determined by the
hidden variable for the observable measured at that site and
by the quantity

tj = �
k�N�j�

ck mod 4, �5�

which is computed from the bits sent to site j from neigh-
boring sites and which is equal to the number of neighboring
sites that make an X or Y measurement modulo 4. The output
v j is determined by rules that decide whether to flip the sign
of the hidden variable associated with the measurement at
site j.

�1� If Mj = I, v j =1.

�2� If Mj =Z, v j =zj.

�3� If Mj =X, v j = 	xj if tj =0,1,

−xj if tj =2,3.

�4� If Mj =Y, v j = 	yj if tj =1,2,

−yj if tj =0,3.

This protocol reproduces the quantum predictions for any
global Pauli measurement on graph states, as we show in the
next subsection. In other words, if we take the product of
the outputs from all the sites, the result is the same as
the quantum prediction for a measurement of the operator
M = � j=1

n Mj. The number of bits communicated in this pro-
tocol is twice the number of edges in the graph.

Variants of rules �3� and �4� also give the correct predic-
tions for global Pauli measurements; for example, these rules
can be modified so that the sign flip occurs under the same
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circumstances for both X and Y measurements. We note,
however, that neither the rules given above nor these modi-
fied rules are guaranteed to reproduce all of the correlations
predicted by quantum mechanics on subsets of the Pauli op-
erators measured. We take up the question of these subcor-
relations in Sec. IV.

B. Proof that the model works

The proof that our model yields the correct global quan-
tum predictions proceeds in two stages. We first introduce a
simple related model that involves no classical communica-
tion and show that this simple model makes the correct quan-
tum predictions in cases �i� and �iii� above, but not in case
�ii�. We then show that the communication-assisted model
makes correct global predictions in all three cases.

The simple no-communication model has each party out-
put the hidden variable 1, xj, yj, or zj associated with the
measurement made at its site. The communication-assisted
model is derived from this no-communication model by
sometimes flipping the sign of the outcome at a site where X
or Y is measured, i.e., by outputting −xj instead of xj or −yj
instead of yj. The decision to flip a sign is determined by the
number of X and Y measurements made at neighboring sites,
in accordance with the conditions in rules �3� and �4�.

For any tensor product of Pauli operators, M = � j=1
n Mj, it

is useful to introduce a corresponding n-tuple m of the same
form as M, but with the tensor product of Pauli operators
replaced by an n-tuple of the corresponding hidden variables,
1, xj, yj, and zj. In the no-communication model, the ele-
ments of the n-tuple are the outcomes of the measurements
Mj. The n-tuples m form an Abelian group of order 4n, with
multiplication defined bitwise.

The hidden variables xj, yj, zj satisfy a commutative alge-
bra, similar to the Pauli algebra, with xj

2=yj
2=zj

2=1 and
yj =xjzj, as in Eq. �4�. The noteworthy differences from the
Pauli algebra are the commutativity and the absence of an i
in Eq. �4�. As a consequence, when a measurement has the
form M = ±G1

a1
¯Gn

an, the product of all parties’ outputs in
the no-communication model always equals +1. Thus it is
clear that the no-communication model gets the correct result
in case �i� above, but not in case �ii�.

We show now that the no-communication model is also
correct in case �iii�. For this purpose, note that the n-tuples gj
associated with the stabilizer generators Gj generate a sub-
group of order 2n, which contains the n-tuples associated
with all Pauli products M such that ±M is in the stabilizer.
This subgroup defines 2n cosets which, except for the sub-
group itself, necessarily contain n-tuples associated with
Pauli products from case �iii�. Thus we need to show that the
no-communication model predicts a random outcome for all
cosets except the subgroup itself. We note that two n-tuples
in the same coset predict the same outcome, thus allowing us
to restrict attention to a single element in each coset. Ele-
ments of the form �z1

a1 , . . . ,zn
an�, with aj =0,1, clearly predict

a random overall outcome, except when aj =0 for all j �i.e.,
the identity n-tuple�. Moreover, these 2n n-tuples each belong
to a different coset, since they make up a subgroup of their
own that contains none of the elements of the subgroup gen-

erated by the gj, except the identity. Thus we recover the
correct predictions for case �iii�.

The next step in the proof is to show that the
communication-assisted LHV model recovers the correct
predictions for a measurement of M in all three cases. If M is
as in �iii�, then the result predicted by the no-communication
model is random, and flipping an outcome at any site does
not affect this. Thus the communication model works when
M is as in �iii�. To show that the model also works when M
is as in �i� or �ii�, we proceed by induction. The model works
when M is any one of the generators Gj. We consider a Pauli
product M = � l=1

n Ml that is a product, up to a factor ±1, of
generators Gk with k� j. With this assumption, it is clear that
Mj is either I or Z. Our inductive procedure is to show that
if the model correctly predicts the overall correlation for
M, then it also reproduces the overall correlation for
M�= ±MGj.

Consider the outcome for a measurement of M�, as pre-
dicted by quantum mechanics. We express M� in terms of
M = � l=1

n Ml and the generator Gj =Xj�k�N�j�Zk. Upon multi-
plying M with Gj, we obtain the following: �a� At each
k�N�j� for which Mk= I, the product IZ=Z gives Mk�=Z; �b�
at each k�N�j� for which Mk=Z, the product ZZ= I gives
Mk�= I; �c� at each k�N�j� for which Mk=X—we let q de-
note the number of such sites—the product XZ=−iY gives
Mk�=Y and introduces a factor of −i; �d� at each k�N�j� for
which Mk=Y—we let r denote the number of such sites—the
product YZ= iX gives Mk�=X and introduces a factor of +i.
Overall we thus obtain a factor �−i�qir= �−i�q+r�−1�r. Now
consider site j: If q+r is even, Mj = I, and we are left with
Mj�=X and no additional factors of i; if q+r is odd, Mj =Z,
and we are left with Mj�=Y and an additional factor of i.
There are thus four possibilities: If q+r=0,1 mod 4,
then M�= �−1�rMGj, and if q+r=2,3 mod 4, then M�
= �−1�r+1MGj. It follows that in the case q+r=0 mod 4, the
quantum prediction for measurement of the operator M� is
equal to the quantum prediction for a measurement of M
multiplied by �−1�r, and similarly for the other cases.

Now we consider the prediction given for a measurement
of M� by our communication-assisted LHV model, assuming
that the correct prediction is returned for M. The value
returned for a measurement of M� is equal to the value
returned for a measurement of M, multiplied by the value
returned for a measurement of Gj, which is 1, and by a −1
for each site that changes its sign-flip decision. A review of
the immediately preceding paragraph shows that the only site
that changes the c-bit sent to neighboring sites is site j,
which changes its c-bit from cj =0 to cj =1. This means that
at neighboring sites k�N�j�, the quantity tk of Eq. �5� in-
creases by 1. At neighboring sites k�N�j� for which Mk

=X, the X becomes a Y in M�, with tk increased by 1, so
according to rules �3� and �4�, there is no change in the
sign-flip decision. At neighboring sites k�N�j� for which
Mk=Y, the Y becomes a X in M�, with tk increased by 1, so
according to rules �3� and �4�, site k changes its sign-flip
decision. The result of these changes is an overall factor of
�−1�r. The final contribution comes from site j, for which
tj =q+r mod 4, and which changes from Mj = I to Mj�=X if
q+r is even, and from Mj =Z to Mj�=Y if q+r is odd. Ac-
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cording to the rules, the effect of these changes is to intro-
duce an additional sign flip if and only if q+r=2,3 mod 4,
which is just what is required to return the quantum predic-
tions.

IV. GRAPH-STATE SUBMEASUREMENTS

Having shown that our communication-assisted LHV
model agrees with quantum mechanics for global correla-
tions, we now consider the question of submeasurements. A
submeasurement of a global Pauli product M is a Pauli prod-

uct M̃ such that the nonidentity elements of M̃ all appear in

M, i.e., M̃ j =Mj or M̃ j = I for all j. LHV models implicitly
predict the result of measuring such a subset of the Pauli
operators of a global measurement, the measurement of an
identity operator being simply the omission of the corre-
sponding local hidden variable. A proper communication-
assisted LHV model for graph states should not only repro-
duce the predictions of quantum mechanics for global
measurements but also for all possible submeasurements.

It can be shown that our model satisfies this condition for
some, but not all, graph states. Determining the graphs for
which it works, a class including complete bipartite graphs
�a case encompassing the star graphs of GHZ states� and the
symmetric difference of two complete graphs �10�, requires
the introduction of techniques otherwise unused in this paper,
and, as such, we reserve its exposition for another time �11�.
Instead, we focus here on understanding the properties that
limit our model’s effectiveness. The following two subsec-
tions show that protocols with fixed communication distance
or with symmetric communication and decision protocols
generally do not reproduce all subcorrelations on all graphs.
The final subsection further explores the symmetry of site
invariance by considering it in the context of one-
dimensional cluster states.

A. Non-nearest-neighbor communication protocols

In a communication protocol with communication dis-
tance d, nodes j and k can signal to each other if there exists
within the graph a path from j to k that traverses d or fewer
edges �10�. Put another way, this is the statement that infor-
mation can only be transmitted along edges and that the
number of successive edges through which some piece of
information can be sent is at most d. In this section we prove,
via contradiction, that no communication-assisted LHV
model for which the communication distance satisfies

d � 4� n

24
−

1

2 � + 1 �6�

correctly reproduces the predictions of quantum mechanics
for all submeasurements on all graph states of n qubits.

The proof relies on an infinite class of graph states for
which a set of five global measurements can be chosen that
are not locally distinguishable. Each of these global measure-
ments includes a submeasurement that can be written in
terms of stabilizer elements and is thus certain. The output of
each qubit, however, must be such that the correct values are
obtained for all submeasurements that are consistent with its

observable surroundings. This requirement, for the particular
states and measurements chosen, yields a contradiction.

To begin, consider the graph state corresponding to an
n-node ring where n=12f and f is an odd positive integer.
Let the qubits be numbered sequentially, starting with 1 at an
arbitrary point on the ring and moving clockwise along it.
Additionally, define the following subsets of the n labels:

V = 	4f ,8f ,12f
 , �7a�

M = 	2f ,6f ,10f
 , �7b�

Y = 	j�j � 1 mod 2
 , �7c�

L = 	j�j � V,M and j � 2 mod 4
 , �7d�

R = 	j�j � V,M and j � 0 mod 4
 , �7e�

Sk = 	j�2f�k − 1� � j � 2fk
 . �7f�

For our purposes, it is useful to think of the ring as arranged
in an equilateral triangle with vertices specified by the subset
V �see Fig. 1�. The midpoints of the legs of the triangle are
then given by the subset M, and the segments between ad-
jacent vertices and midpoints are given by the S j’s. We use
the notation S j,k as shorthand for S j �Sk, and A \B is used to
denote the set consisting of the elements of A that are not
in B.

FIG. 1. Example demonstrating that any communication-
assisted LHV model with communication distance d�1 fails to
reproduce some submeasurements for the ring with n=12 nodes.
Five of the global measurements shown on the ring,

Y1X2Y3X4Y5X6Y7X8Y9X10Y11X12,
Y1X2Y3Y4Y5X6Y7Y8Y9X10Y11Y12,
Y1X2Y3Y4Y5X6Y7X8Y9X10Y11Y12,
Y1X2Y3Y4Y5X6Y7Y8Y9X10Y11X12,
Y1X2Y3X4Y5X6Y7Y8Y9X10Y11Y12,

contain submeasurements �underlined� useful for showing
a contradiction. These submeasurements imply the follow-
ing constraints on a nearest-neighbor communication model,
x2x4x6x8x10x12=1, y1

Yx2y3
Yy5

Yx6y7
Yy9

Yx10y11
Y =−1, y1

Yy3
Yy4x6x8x10y12=1,

x2y4y5
Yy7

Yy8x10x12=1, x2x4x6y8y9
Yy11

Y y12=1, which, when multiplied
together, yield a contradiction.
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Now consider global measurements of the form

Mj = �X or Y if j � V ,

Y if j � Y ,

X otherwise,

�8�

such that the number of vertices measuring Y is not one.
These global measurements include the following submea-
surements, for which quantum mechanics predicts an out-
come with certainty.

For M4f =X, M8f =X, M12f =X,

X2fX4fX6fX8fX10fX12f �
j�L�R

Xj = �
j=1

6f

G2j , �9a�

implying a measurement outcome of +1.
For M4f =Y, M8f =Y, M12f =Y,

X2fX6fX10f �
j�Y

Y j �
k�L

Xk = �
j=1

3f

�− G4j−3G4j−2G4j−1� , �9b�

implying a measurement outcome of �−1�3f =−1.
For M4f =Y, M8f =X, M12f =Y,

Y4fX6fX8fX10fY12f �
j�Y�S1,2

Y j �
k�R��L\S1,2�

Xk

= G1�
j=1

f−1

�− G4j−1G4jG4j+1�G4f−1 �
k=2f

6f

G2k, �9c�

implying a measurement outcome of �−1� f−1= +1.
Cyclic permutation of this last measurement yields two

more with +1 outcomes.
For M4f =Y, M8f =Y, M12f =X, we have

X2fY4fY8fX10fX12f �
j�Y�S3,4

Y j �
k�R��L\S3,4�

Xk, �9d�

and for M4f =X, M8f =Y, M12f =Y, we have

X2fX4fX6fY8fY12f �
j�Y�S5,6

Y j �
k�R��L\S5,6�

Xk. �9e�

Now assume there exists a distance d=2f −1
communication-assisted LHV model that correctly replicates
the predictions of quantum mechanics for all Pauli measure-
ments on n qubits. The output of such a model can be fully
described in terms of single-qubit hidden variables whose
value depends both on the qubit in question and on the mea-
surements made by other qubits within its communication
range. We write these hidden variables in the form � j

� where
j is the qubit being measured, � is the hidden variable cor-
responding to the Pauli operator measured upon it, and �
indicates the measurements made on qubits within its com-
munication range. The global measurements utilized for Eqs.
�9� have the virtue that each qubit’s communication range
includes at most one other qubit whose measurement is
changeable, and that is the qubit at the nearest vertex. Thus,
in comparisons between them, the measurement performed
on, at most, a single qubit need be included in �. Moreover,
the qubits at the center of each side of the triangle cannot see
the changes at the vertices. Consequently, the constraints im-

plied by Eqs. �9� on a hidden variable model with commu-
nication range d can be expressed as follows:

1 = x2fx4fx6fx8fx10fx12f �
j�L�R

xj
X, �10a�

− 1 = x2fx6fx10f �
j�Y

yj
Y �

k�L
xk

Y , �10b�

1 = y4fx6fx8fx10fy12f

� �
j�Y�S1,2

yj
Y �

k��L�R��S4,5

xk
X �

l��L�S3,6���R\S4,5�
xl

Y ,

�10c�

1 = x2fy4fy8fx10fx12f

� �
j�Y�S3,4

yj
Y �

k��L�R��S6,1

xk
X �

l��L�S5,2���R\S6,1�
xl

Y ,

�10d�

1 = x2fx4fx6fy8fy12f

� �
j�Y�S5,6

yj
Y �

k��L�R��S2,3

xk
X �

l��L�S1,4���R\S2,3�
xl

Y .

�10e�

Using the identity A=A� �S1�S2�S3�S4�S5�S6�
for A=Y ,L, or R and the fact that all variables square to 1,
it can be shown that the right-hand side of Eq. �10a� is equal
to the product of the right-hand sides of the other four equa-
tions. Thus we have the contradiction 1=−1, showing that no
distance-d communication-assisted LHV model reproduces
the predictions of quantum mechanics in this instance.

For other values of n�12f , with f odd, an identical
contradiction applies to a graph consisting of r= �n
−12� mod 24 unconnected nodes and a ring of size n−r. It is
also possible to adapt our example to two-dimensional clus-
ter states. One can show, for example, that for a �3f +3�
� �3f +3� cluster state, with f odd, a communication distance
of at least 2f is required.

B. Site-invariant communication protocols

Both the numbering and the arrangement of nodes in a
graph are arbitrary, so it seems reasonable to suppose that a
communication protocol should be insensitive to these
things. We refer to this property as site invariance and define
it formally as follows. Given a graph G, each of whose nodes
has been assigned a measurement, a permutation that leaves
the graph invariant is one that interchanges nodes and their
measurements, letting edges move with the nodes, such that
the new graph G� is identical to G in the sense that they could
be placed on top of each other with all nodes, measurements,
and edges overlapping. A site-invariant protocol is one for
which nodes in identical situations, as defined by permuta-
tions that leave the graph invariant, make the same sign-
flipping decision. Surprisingly, we find this trait to be at odds
with the modeling of submeasurements.
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We demonstrate the limitations imposed by site invariance
using the example of a 2�3 cluster state, which is depicted
in Fig. 2. The two relevant measurements for this example
are M =Y1Y2Y3Y4Y5Y6, which has a random outcome, and

M̃ =Y1Y2Y3I4Y5I6, which has the certain outcome −1. When
either of these is considered as a global measurement, our
model yields the correct prediction, as we have already
shown in general, but when the second is considered as a
submeasurement of the first, the model fails. In this second
case, rules �1�–�4� say that the two qubits measuring Y at
nodes 2 and 5 should introduce a sign flip, but the two qubits
measuring Y at nodes 1 and 3 should not. The result is no
overall sign flip and an outcome +1, showing that the model
gets the submeasurement outcome wrong. In contrast, when

M̃ is considered as a global measurement, rules �1�–�4� dic-
tate a sign flip for qubit 2, but no other qubit, thus giving the

correct, certain outcome −1. The same measurement M̃ can
lead to different sign-flipping decisions in the two situations
because the nearest-neighbor environments of the qubits dif-
fer depending on whether a submeasurement or a global
measurement is under consideration. As is shown in Fig. 2,
the counterexample is not limited to the communication
model used in this paper. In fact, any site-invariant protocol
based on our hidden variables yields an incorrect result for

the submeasurement M̃.
This example can easily be generalized by adding p rows

and q columns to opposite sides of the 2�3 cluster state.
Doing this results in a class of �2+2p�� �3+2q� cluster
states for which LHV models based on the hidden variables
of Eq. �2� and assisted by a site-invariant communication
protocol fail for some submeasurements.

C. Site-invariant model for 1D cluster states

In Sec. IV A it was shown that there exist graph states of
size n for which any communication-assisted LHV model
must involve communication over a distance at least n /6 if it
reproduces all subcorrelations. Note that this result applies to
all models, whether site-invariant or not, and whatever the
structure of the LHVs. In Sec. IV B it was shown that, for
certain graph states, no model based on the hidden variables
of Eq. �2� and assisted by a site-invariant communication
protocol is capable of reproducing all subcorrelations. This
result holds even if the model allows unlimited-distance
communication.

It is intriguing that both of these results apply to
two-dimensional cluster states, since two-dimensional
cluster states, along with single-qubit measurements, are
universal for quantum computation.1 It is therefore reason-
able to ask whether the same results hold for one-
dimensional cluster states �linear chains�, which are not uni-
versal for computation �13�. In this subsection we show that
linear chains do permit successful site-invariant protocols.
The protocol we describe involves communication over a
distance equal to the number of edges in the one-dimensional
cluster state �i.e, unlimited communication�. At present it is
unknown whether the subcorrelations of a linear chain could
be reproduced by a protocol with limited-distance communi-
cation.

The fact that unlimited communication is allowed is in the
same spirit as our counterexample of Fig. 2, where commu-
nication spans the entire graph and the only restriction is site
invariance. The key simplification in the case of one-
dimensional cluster states is that all qubits, except those at
the ends of the chain, have exactly two neighbors. As a con-
sequence, the form of stabilizer elements whose hidden-
variable result from Eq. �2� requires correction is constrained
so that the correction can be effected by a site-invariant pro-
tocol.

For an n-qubit chain, the n stabilizer generators are given
by G1=X1Z2, Gj =Zj−1XjZj+1 for j=2, . . . ,n−1, and Gn
=Zn−1Xn. Any stabilizer element is a product of generators.
An arbitrary product of generators can be decomposed into a
product of terms each of which is a product of successive
generators. We call these terms primitive stabilizers or just
primitives. The primitive stabilizers are separated by the
omission of one or more generators in the product of genera-
tors. An example of a stabilizer element for n=10 qubits is
G1G2G3G5G6G9=−Y1X2Y3I4Y5Y6Z7Z8X9Z10. The primitives
in this example are G1G2G3, G5G6, and G9.

Associated with each primitive is a Pauli product �with
the sign omitted� for the qubits corresponding to the genera-
tors in the primitive. We call these Pauli products words. For
the 10-qubit example above, the words are Y1X2Y3, Y5Y6,
and X9. At each end of a word, there is an I if one generator
is omitted and a Z if two or more generators are omitted. We
can make these word boundaries apply even at the end of the

1Admittedly, our models are only concerned with measurements
of Pauli operators, which are not universal for computation due to
the Gottesman-Knill theorem �12�.

FIG. 2. Example demonstrating that any communication-
assisted LHV model based on the hidden variables of Eq. �2� and
assisted by a site-invariant communication protocol fails to repro-
duce some submeasurements. The global measurement M
=Y1Y2Y3Y4Y5Y6 has a random outcome, but contains a submeasure-

ment M̃ =Y1Y2Y3I4Y5I6 such that −M̃ is an element of the stabilizer
group. This means that an overall sign flip is required to correct the

+1 prediction of the hidden variables for a measurement of M̃. The
two qubits measuring Y at nodes 1 and 3 are in symmetric situa-
tions, as are the qubits at nodes 2 and 5. Thus, under a site-invariant
protocol, 1 and 3 must make the same sign-flipping decision, as
must 2 and 5. For each pair, the sign-flipping decisions cancel one
another, producing no overall sign flip and thus giving an incorrect

result of +1 for the measurement of M̃.
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linear chain by embedding our cluster state in an infinite
linear chain. The generators for the qubits to the left of j
=1 and to the right of j=n are always omitted, and we rede-
fine G1=Z0X1Z2 and Gn=Zn−1XnZn+1.

If a word is bounded by an I, there must be another word
immediately on the other side of the I. A sentence is a Pauli
product consisting of a set of words separated by singleton Is
and bracketed by Zs at both ends. Words are not stabilizer
elements, but sentences are. The example above contains two
sentences, Z0Y1X2Y3I4Y5Y6Z7 �including the zeroth qubit�
and Z8X9Z10. The Z bookends on a sentence separate it from
other, nonoverlapping sentences in the same overall stabi-
lizer element. Between the Zs in successive sentences, there
can be an arbitrary number of Is. Any stabilizer element is a
product of nonoverlapping sentences.

We can list the entire set of words by considering all
possible primitives:

X for a primitive with one Pauli operator, �11a�

Y � Y for a primitive with two Pauli operators,

�11b�

Y � X��j−2�
� Y for a primitive with j � 3 Pauli operators.

�11c�

For stabilizer elements, Is occur only between sentences or
as singletons between words, Xs and Ys occur only in words,
and Zs occur only as the boundaries of sentences.

Recall that the goal of the communication protocol is to
introduce a sign flip into the product of hidden-variable en-
tries for those Pauli products that are the negative of a sta-
bilizer element. The only words that introduce a minus sign
into the corresponding product of generators are those of the
form Y � X��j−2� � Y with j odd. Thus a candidate for a site-
invariant communication protocol is the following.

�1� Each site at which an X or a Z is measured broadcasts
the measurement performed upon it.

�2� Each site that measures X determines if it is the
middle �implying an odd number of Xs� qubit in a word of
the form �11c� in a submeasurement sentence, and if so, flips
its hidden-variable entry, i.e., changes x to −x.

This clearly gets any stabilizer right and thus all global cor-
relations right.

The only question remaining is whether this protocol
works for subcorrelations. We answer this question by show-
ing the following: two sentences, S1 and S2, that are submea-
surements of the same global measurement, generally not a
stabilizer element, must be identical on the region where they
overlap, except possibly at bracketing Zs. This property im-
plies that S1 and S2 have exactly the same words in the re-
gion of overlap. Thus, for any pair of submeasurements of
the global measurement, a sign flip arising from a word of
the form �11c� in the overlap region is common to both sub-
measurements. Since both the word and the sign flip occur in
both submeasurements, our protocol correctly predicts both
outcomes.

To prove this property, notice first that if S1 and S2 over-
lap �should they not overlap, the property is trivially true�,
there are two cases: The region of overlap coincides with one
of the sentences, or it does not. In the former case, we choose
S2 to be the sentence that coincides with the region of over-
lap, and in the latter case, we choose S1 to be the sentence on
the left and S2 to be the one on the right. With these conven-
tions, the left boundary of the overlap region coincides with
the Z that bounds the left end of S2, and the right boundary of
the overlap region coincides in the former �latter� case with
the Z that bounds the right end of S2 �S1�.

To be submeasurements of the same global measurement,
the two sentences must satisfy the following basic rule: In
the overlap region, sites within a word of one sentence must
be occupied in the other sentence by the same Pauli operator
or by an I. Since Zs do not occur in words, this rule implies
that the Zs that bound the overlap region at either end in one
of the two sentences cannot occupy a site within a word in
the other sentence and thus must be a bounding Z or a single-
ton I in the other sentence. The submeasurement require-
ment, by itself, implies that in the overlap region, the site of
a singleton I in one sentence can be occupied by anything in
the other sentence, but the available words impose a much
stronger constraint, as we now show.

Consider the left boundary of the overlap region, which is
occupied by the leftmost Z in S2 and by a Z or a singleton I
in S1. Immediately to the right in both S1 and S2 is a word.
When one of these words is shorter than the other, the basic
rule implies that the shorter word must be a prefix of the
longer one. A glance at the allowed words in Eq. �11� shows,
however, that none is a prefix of another. Thus S1 and S2
must have the same word in this first overlap position, which
is followed by a singleton I in both sentences. Applying the
same logic to this and subsequent singleton Is shows, as
promised, that S1 and S2 are identical in the overlap region,
except possibly at the boundaries.

V. CONCLUSION

Communication-assisted LHV models allow us to explore
the degree of nonlocality present in various states. In this
paper we focused on graph states and parameterized
communication-assisted LHV models by the allowed dis-
tance of communication, where the distance between two
qubits is defined as the number of links between the corre-
sponding nodes in its graph. Interestingly, a simple nearest-
neighbor communication protocol is capable of yielding the
global quantum-mechanical correlation for any measurement
of Pauli products on any graph state, but the submeasure-
ments of these global measurements are much harder to re-
produce. To replicate the predictions of quantum mechanics
for all submeasurements on any graph state, it is necessary
for the communication distance to scale as n /6 or faster in
the number n of qubits in the graph. Thus, using the metric
of communication distance, reproduction of all subcorrela-
tions is a much more difficult task than producing global
correlations.

Unexpectedly, another property of interest for communi-
cation protocols seems to be a kind of graph isomorphism
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symmetry, which we dubbed site invariance. By considering
a class of two-dimensional cluster states, we showed that,
regardless of communication distance, site-invariant commu-
nication protocols based on the local hidden variables of Eq.
�2� are incapable of yielding the correct correlations for all
submeasurements on all graph states. Nevertheless, a site-
invariant communication protocol with unlimited communi-
cation distance is capable of yielding the correct correlations
for all submeasurements on all one-dimensional cluster
states. These results are notable because the two-dimensional
cluster state is a suitable resource for measurement-based
quantum computation, while the one-dimensional cluster
state is not. This perhaps suggests a fundamental division
between states such as the two-dimensional cluster state
which are sufficient for quantum computation and states such
as the GHZ and one-dimensional cluster state which are not.

Our hope is that the study of communication-assisted
LHV models will lead to a better understanding of the nature
of entanglement and the apparent nonlocality of quantum
mechanics. Already, in this paper, we have indications that
the richness of entanglement lies not in the overall measure-
ment result, but in measurement subcorrelations.
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