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A Note on the Griesmer Bound 

j& s ji2 + 1 = jis + 1 E j4 - 1 mod 3. 

That is, it is known that these conditions are equivalent to those 
given by (II)-( (II)-(v), and (II)- in Table I when mk = 3. 
Thus the restriction on j,,,,,(J) does not change. 

Moreover the set of ai obtained from ai, = (r - l)ai, = 
uia = -(r - 1)~ also satisfies (37). Thus the situation as 
previously described may happen also for A(r,2). However, we 
have from (38) 

ji, + 1 G ji2 + 1 E ji, 3 j4 mod 2, 

which are equivalent to one of the congruences in (II)-( 
(II)-(v), or (II)-( Thus no new restriction on j,,,,,(J) is needed 
here. 

Except for the case of ai, = (r - l)ai, = ais = -(r - 1)~ 
we can find several sets of ai satisfying (37). However, we cannot 
find those sets of ai in Table I. This fact means that under those 
conditions J cannot be divided by an A that is composed of 
three or more A(r,m,), even if one of them is A(r,2). Therefore 
this discussion does not impose any more stringent restriction 
on i,,,(J). 
Case (III) 

(III)-(ii): This case has the same condition on ji as that con- 
sidered by Kondratyev and Trofimov [l] for the binary case. 
It follows from the results obtained there that (13) is a sufficient 
condition for A r J. 

Finally we must consider the cases where w,(J) < 4. How- 
ever, the details for these cases are omitted here, because they 
can be discussed in a similar and even simpler way than that in 
the case of w,(J) = 4. The result obtained is that looser restric- 
tions than (5) and (13) will do. 

From all that has been discussed previously and the in- 
equalities 

min n mk + n mk 
II .I2 kslj ks12 > 

< kvI mk - 2 < n mk - 1 
ksl 
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Abstract-Griesmer’s lower bound for the word length n of a linear 
code of dimension k and minimum distance d is shown to be sharp for 
fixed k, when d is sufficiently large. For k I 6 and all d the minimum 
word length is determined. 

I. INTRODUCTION 

Denote by n(k,d) the smallest integer n such that there exists 
an (n,k) binary linear code with minimum distance at least d. In 
1960 Griesmer [l ] proved that’ 

k-l 
n(k,d) 2 c [d/2'] 

i=O 
(1.1) 

and showed that for certain values of k and d the inequality (1.1) 
was in fact an equality. In 1965 Solomon and Stiffler [2 ] simpli- 
fied Griesmer’s proof of (1.1) and at the same time generalized 
it to linear codes over an arbitrary finite field GF(q), where it 
takes the form1 

k-l 

n(k,d) 2 c Iu'lq'l. i=o 
More important, however, Solomon and Stiffler introduced the 
notion of “puncturing” a (qk - 1, k) maximal-length shift- 
register code and showed that for many more values of k and d 
equality holds in (1.2). 

In this correspondence we shall use the technique of puncturing 
to show that for fixed k, when d is sufficiently large, the Griesmer 
bound (1.2) is sharp. That is, we will show that for each k there 
exists an integer D(k) such that if d 2 D(k), then 

k-l 

n(k,d) = c rdlq'l. 
i=O 

As a matter of fact we will only prove this for q = 2, the exten- 
sion to general q being easy but notationally awkward. 

We shall use the notation 
k-l 

s(k,d) = c r 42'1 
I=0 

in the rest of the paper. 
we can conclude that the following theorem is valid. 

Theorem 2: A radix-r AN code generated by A = rJksr A(r,m,) 
II. THETHEOREM OF SOLOMON-STIFFLER 

has distance not less than five under the three conditions stated Let V, denote a k-dimensional vector space over GF(2). Let 
in Theorem 1. Sl,&,. * ., S, be subspaces of Vk of dimensions k,,k,,. . .,k, such 
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that no element (except 0) of V, is contained in more than h of 
the Si. Then Solomon and Stiffler showed that there exists an 
(n,k) binary linear code with minimum distance d, where’ 

n = h(2k - 1) - i (2k’ - 1) 
i=l 

d 2 h2k-1 - i 2ki-1 = d’. 

i=l 

Furthermore if the ki are distinct, n = g(k,d’) and so the code 
is length optimal; i.e., n(k,d) = g(k,d). Finally they showed 
that .a sufficient condition for the existence of such subspaces 
Si is that C ki I kh. 

III. MAIN RESULT 

Theorem: For each k there exists an integer D(k) such that 

4W) = g(W), if d z D(k). 

Proof: We show that D(k) = [(k - l)/212k-’ will do. 
Write d = d, + (h - 1)2k-’ , where 1 5 d,, I 2k-‘. Then if 
d 2 [(k - 1)/212k-1 it follows that h 2 I(k - 1)/21. Next we 
write 2k-’ - d,, in its binary expansion 

2k-1 _ do = i 24-1, 0 < k, < kz < . . . < k, < k. 
i=1 

Then 

jl ki I 1 + 2 + .. . + k - 1 = k(k - 1)/2 5 k . h 

and so .by the results of Solomon-Stiffler quoted in Section II, 
&kd) = dkd). 

IV. NUMERICAL RESULTS 

We have been able to calculate the exact values of n(k,d) for 
k I 6 and all d. It turns out that the value D(k) = [(k - 1)/21. 
2k-1 given in our theorem is extremely conservative; for example, 
for k = 6 our theorem only guarantees that if d 2 96, n(6,d) = 
g(6,d), while d 2 20 would do. Much of this disparity arises 
from our use of the very weak sufficient condition C ki I kh for 
the existence of subspaces Si,S,, . . . ,S,. 

Thus consider the example k = 6, d = 35. Examining the 
proof in Section III, we write 35 = 3 + 1 . 32 (h = 2), and 
32 - 3 = 29 = 24 + 23 + 22 + 2O. Thus we need to find 
subspaces of V, of dimensions 5, 4, 3, and 1 that cover each 
nonzero vector of V, at most twice. Since 5 + 4 + 3 + 1 = 

TABLE I 

k 

5 

5 

6 

6 

6 6 

z z 
6 6 

6 6 

d s(W) 4W Comments 
3 8 9 HB; (9,5) = (15,ll) Hamming 

shortened 
5 12 13 search; (13,5) = (15,7) BCH 

shortened 
3 9 10 HB; (10,6) = (15,ll) Hamming 

shortened 
5 13 14 n(5,3); (14,6) = (15.7) BCH 

shor shortened ~ ’ ’ 
7 7 16 16 17 17 n(5/ n(5,4); (17,6) = (23,12) Golay 

shor shortened 
9 9 

:: :: 
;i ;i E E 

n(5,f n(5,5); (22,6) found ad hoc” 
nc5.t n(5,6); (25,6) found ad hocb 

28 28 29 29 search; (29,6) = (31,6) RM minus 2 
colu columns 

19 19 40 40 41 41 Sean search; (41,6) = Solomon-Stiffler 
cons construction with dimensions 
3,3,3,1 (h = 1) 3,3,3,1 (h = 1) 

BTake as columns in the generator matrix the 6-place binary expansions 
of: 2 3 4 6 8 9 11,12,16,17,20,21,26,32,33,38,44,51,58,61,62,63. 

bT8ke’aiiohrmns 1 12 4 6 8 10,13,16,18,21,27,28,31,32,34,37,43,45,46,53, 
’ ’ ’ ’ ’ ’ 54,57,58,60. 

need subspaces of dimensions 4, 3, 2, and 1 that covered every 
nonzero element at most once; but it is easy to see that any two 
subspaces of dimensions 4 and 3 in V6 must share at least one 
nonzero vector. Thus the Solomon-Stiffler results could not 
yield a (37,6) code with d = 17. However, in his original paper 
(Theorem 5) Griesmer gave a construction that yields such a 
code. 

We conclude the paper with Table I, which shows those values 
of k and d with k 5 6 for which n(k,d) > g(k,d). The column 
titled “Comments” explains how we calculate n(k,d). HB means 
that the Hamming bound forces n(k,d) > g(k,d). “Search” 
means that a computer search found no codes of length g(k,d). 
An entry like n(5,3) refers to the bound, proved by Griesmer, 
that n(k,d) 2 d + n(k - 1, [d/21). Thus if n(k - 1, [d/21) > 
g(k - 1, [d/21), then n(k,d) > g(k,d) as well. We only list odd 
d because of the relationship n(k,d) = n(k, d + 1) - 1 for 
odd d. 
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13 > 6 .2, the condition of Solomon-Stiffler does not apply. 
However, if the vectors of V, are coordinatized x = (x1,x2,. + ., A Note on One-Step Majority-Logic Decodable Codes 

x,), consider the following subspaces: C. L. CHEN AND W. T. WARREN 

Sl = {x: x1 = 0) dimension 5 Abstract-Construction of shortened geometric codes as shown here 
s2 = {x: x2 = x3 = 0) dimension 4 results in l-step majority-logic decodable codes. The shortened codes 

retain the error-correction ability of the parent codes and the decoders for 
s, = {x: x4 = xg = X6 = 0) dimension 3 the shortened codes are much simpler than for the parent code. A table 

of shortened codes is given. 
S, = (111111 and 000000} dimension 1. 

I. SHORTENED FINITE GEOMETRY CODES 
These subspaces have the desired property of covering each 
nonzero vector at most twice and so n(6,35) = g(6,35). A shortened cyclic code retains at least the error-correcting 

However, even if we knew exact necessary and sufficient capability of the parent full-length cyclic (n,k) code. In the case 
9 
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