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Heat Capacity Anomalies of Superfluid*He under the Influence of a Counterflow nearT',
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We present a thermodynamic treatment of superfluid helium in the presence of an applied heat
current,Q, which produces a counterflow velocity. We show that the heat capacity can be expressed
in terms of the dependence of the superfluid densityWion Near 7,, both mean field theory and
renormalization group theory give a divergent heat capacity with an exponent of 0.5 at a depressed
transition temperature. In contrast, W rather thanQ is held constant, the heat capacity remains
finite. [S0031-9007(96)00890-3]

PACS numbers: 67.40.Kh, 64.60.—i, 67.40.Bz, 67.40.Pm

Owing to the remarkable success of the renormalizanormal fluid frameE” can be obtained using the Galilean
tion group theory (RG), phase transitions at equilibriumtransformation [7JE" = E* + pﬁ/z/z - }0 W, giving
are to a large extent well understood. There is still much . .
to be learned, however, concerning nonequilibrium and dE" = Tds + P - dW, (2)

dynamic phenomena. Near the lambda pointidé, an > - . .
y P P whereP = p,W. Thus in the normal fluid frame the new

applied heat fluxQ can have an interesting influence on i AT i -
the nature of the transition. A number of experimentsconjugate pair isP, ). The free energy ig'(T, W) =

[1] report that the transition temperature is depressedt’ — Ts giving
The depressed transition temperatt¢Q) scales with _ 2
Q asT, — T.(Q) ~ Q*. Typicalvalues ar§’, — T, = dF = —sdl + P fiW’
1.1 uK at Q = 10 wW/cm?. Theories [2] predict that

x = 1/Q2v) = 0.746, whererv = 0.6705 [3] is the corre-
lation length exponent. Recently, Haussmann and Dohm .
(HD) [4] have applied RG to this problem and predictedwe_ henceforth drop the vector notation because all
cusp shaped curves [5] for the superfluid density and thghotions are in the same direction in the case we treat.

heat capacity at constant superfluid velocity, for various The term F('T.,O) contains aII' the characteristics of_the
values ofQ nearT.(Q). In this paper we show the sur- phase transition at zer@, which has been well studied

prising result that ifQ is held constant instead &, the both experime.ntally and 'theoretically. _At .finitW'the
heat capacity diverges 4t.(Q), even in mean-field the- pnly unknown is the funcUorpi(W). Ql_Jalltatlver, if pg
ory. HD have independently discovered this same resuff @ Weak function oW, the integral in Eq. (3) can be

[6]. In this paper we present the new discovery and clarifyPProximated byos(0)W?/2. The dashed line in Fig. 1
the thermodynamics of this interesting system. shows F(T, W) for this case. On the other hand, if

Liquid helium in the presence of a counterflow can?s IS Significantly depressed [Fig. 1(a)], the integrand in
be treated as a system that exhibits an extra degréed- (3),ps(W)W, increases withv at smallw, but might
of thermodynamic freedom. This is a unique case ird€crease at larg@ [Fig. 1(b)]. As shown by the solid
which a dynamic situation may be treated by equilibrium“ne in Fig. 1(c), a critical counterflow velocitW, exists _
thermodynamic analysis. According to the two-fluid When# (T, W) changes from convex to concave [8]. This

model, the first law of thermodynamics at constant densitys &S0 the point wherp (W)W is maximum. Ifp (W) is
may be written unambiguously for a unit volume in the sufficiently depressed to reach this point, superflow breaks

superfluid frame as [7] down [4].
The depression op, cannot be derived by thermo-

dE* = Tds + W - d}o, (1) dynamic arguments. It must be measured experimen-

_ - L _ tally, calculated from microscopic theory, or obtained
where E* is the energy,W = v, — vy is the velocity  from phase transition theory ne&y. Experimentally, not
of the normal fluid in that frame, angh = p,W is the  much is known aboup,(W). The only experimental evi-
normal fluid momentum density. The teriif - dj, is  dence to date is the observation by Hess [9] far fifBm
the work per unit volume required to set the normalwhich agrees with roton theory. Ne®y, only theoreti-
fluid into motion. Thus the new conjugate variables incal predictions exist. The three existing theories are the
the superfluid frame ar€W, j;). Most phase transition mean-field theory [10] which we modify by using empiri-
theories, to which we wish to compare our results, assumeal exponents, the¢ theory [11], and the RG theory of HD
that the normal fluid is at rest. The internal energy in thg4]. Since we will use thep,(W) expression from these

. L )
F(T,W) = F(T,0) +f ps (W)W - dW .
0
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FIG. 1. This illustration discussed in the text is calculated

using the mean-field theory.

dF s
aw

_ ame dps(W) + ame ) (7)
Bps w aw ow Ds

From Eq. (6),(0Fme/0W),, = ps(W)W. The optimiza-
tion condition is (dFns/dps)w = 0. Thus Eq. (7) and
Eqg. (3) become the same, proving consistency with ther-
modynamics.

In uniform flow, Vp, = 0. The expression fop,(W)
is obtained by optimizingFy;. All three theories give
ps(W) of the form

ps(W) = ps(0)f(x), 8

where «k = W/W, and W, is a characteristic velocity
given byW, = i/mé. Below Ty, & = &y(2t)~%, where
& = 143 X 1078 cm [14]. The characteristic veloc-
ity W, can be expressed a8, = Wyt”, where W, =
h2”/méy = 175.4 m/sec. For the mean-field theory,
f(k) =1 — 2k*. For they theory,
1 - M
flo) = =~

1 <1 - M>2 4 < 6 +2M >
+ = + —|1 - K2 ).
2 M M 3
For HD, f(k) is given by Egs. 5.12, C11, and C3 in

Ref. [4]. All three theories predict that, is sufficiently
depressed to cause superflow to break down.

theories to compute the heat capacity, it is desirable to Next we compute the heat capacity usipgW) from
show that the theories are consistent with thermOdynan‘these theories. We first treat the case whiras held
ics. These theories all start from a mean-field expansiongonstant. Experimentally, this might be the case of a

Fue = alypl® + Blyl* + (B> /2m) [V + M|pl°.  (4)
It is not clear at this point how ¢ is related toF (T, W)

persistent superfluid current flowing around a loop, similar
to the superfluid gyroscope experiment demonstrated by
Clow and Reppy [15]. From Eq. (3) above

in Eq. (3). Herea, 8, andM are expansion coefficients,
M is zero except in thes theory, the macroscopic wave
function is given byy = né¢, where p; = m|y|* and
vy, = (h/m)V¢, andm is the mass of a helium atom. In
terms ofp, andv;,

AF(T,W) = F(T,W) — F(T,0)

= ps(O)szfO

The heat capacity is changed b¥Cy = —TV X

Mp? 02AF(T,W)/oT?|y, where V = 27.38 cm’/mole [16]

m3 is the molar volume. Usingp,(0) = pot*, where
(5) Po=0370 g/cm? [17], together with the scaling rela-

) ) . ) tion/ = v = (2 — a)/3, we obtain
A controversy exists in the literature concerning the

proper procedure for minimizing,,; with respect toy
(or p,). Pitaevskii [12] minimizes L = Fup + pav2/2
while holding the momentuny = P + pwv, constant.
Here, Fk; is a free energy in the laboratory frame.
Khalatnikov [13] uses a Galilean transformation to obtain

K

xf(x)dx. 9)

hz(vps)2
8m?p;

aps . Bp? | psv?

Fo.=
mf m m? 2

ACyt® = —COV|:3(3I/ - l)kaf(x)dx
0

— (4v — D&2f(k) + vi? %(KK)}, (20)

a free energy in the normal fluid frame, where Cy = VpoW3/T, = 143 J/moleK. For the
. _aps Bp> . o W2 HB2(Vpy)? . Mp? mean-field theory, this reduces to
mf m m? 2 8m2p; m3 ACwt® = Cork’[(1 — ») + (1 + »)k%]/2. (11)
(6)

For they theory and for HD, Eq. (10) is evaluated using

He then minimizesFy,; holding W constant. To show numerical differentiation and integration. These results

that this is the correct approach, we note tRgt varies
with W throughp,(W) and the ternp,W?/2. Thus
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are shown in Fig. 2(a).Cy approaches a finite constant
atk. = W./W; in all three theories. As discussed above,
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] (9P /aT)w (T /dW)p(aW /0P)r = —1, (17)
] Co = Cw + TV(IP/IT)3 /(9P /IW)r . (18)

fo:]

(o)
T

] Superflow  breaks down when (0°F/oW?); =
] (aP/oW)r = 0. ThusC, diverges at this point.

ACy t* (J/mole K)
S
T

_ : This result must be true for any theory that depresses
of ] ps enough to reactioP/dW); = 0, including all three
0.00 0.50 theories discussed here. Equation (18) gives
ACy = ACw + Cot *v*k?
__100F 0 279
Z ook x [KUL ] /2 g
% g (b) 0K 0K
g 60r The results can be expressed in terms of the variabte
= a0k 0/Q. using the relationy = «f(k)/[x.f(k.)] obtained
5, } from Eq. (12). The values fok., f(x.), andQ./t*" are
¥ E0p listed in Table I. For the mean-field theory
ot : i ] @
00 02 04 06 08 1.0 1*ACq
Q/Q.™ c 2[(V + 1) + 5By — Dk + 2(v —'3)K4}
= VK
FIG. 2. Change in the heat capacity timesat (a) constant 0 2(1 — 6k2)
W, and (b) constan®. Thin line, HD theory; thick line, mean- — 242 2 2 4.
field theory; trianglesys theory with M = 1; dashed linep, (Co/2p(v + Dicf~(re)g’[l + 0.965¢7 + -],
not depressed by as discussed in Ref. [6]. (20)

at smallg. Figure 2(b) shows that all three theories give
a divergentCy. Again the results for they theory and
superflow also produces a small shift in the transitionthe HD theory are obtained numerically. Becagxkeis
temperature in all three theories. different for the three theories, we have ugedQ!P as
It is experimentally feasible to measure the heat capaahe x axis, so that all three theories can be plotted on the
ity in a thermal conductivity cell while passing a constantsame scale. Her@!P is the critical heat current given by
heat fluxQ through it, where HD. NearQ., Eq. (18) givesCy ~ 1/(aP/oW)r. We
0 = p,(W)WST, (12) can expand‘_)_aboutPC, the superfluid momentum at the
phase transition:

andS = 1.58 J/g K [18] is the entropy per gram. There-

fore, keeping Q constant is the same as keeping P =P + <m> W — W)

P = p,(W)W constant. At constan®, it is convenient 5 We

to define ®(T,P) = F(T,W) — WP, giving dd = + l( J P> W — W2 + - (1)

—sdT — WdP and A®(T,P) = ®(T.P) = ®(T.0) = 2\ow?/y, ‘

—Jo Wd(p;W). The heat capacity can be computedsince (aP/aW)w. = 0, and (°P/dW?)y. <0, P. —

from P~ (W, — W)?, and(aP/dW); ~ W. — W. Thus,

ACy = —TV[*AD(T, P)/aT?],. (13) €~ 1/(We = W)~ 1/J/Pc =P ~(Qc — Q)"

Although ACy is finite, ACy diverges atT.(Q). (22)

The reason may be seen directly from thermodynamics.

S "
Starting from the entropy density(T, W), we obtained whe.re the exponent; = 0.5. We have _verlfled_nu- .
the relations merically that all three theories are consistent with this

prediction. It is easy to show that if we defire=
ds = (0s/0T)wdT + (ds/OW)7dW , (14) [T.(Q) — T]/T.(Q), then

Cp = TV(ds/dT)g Cop~ 07" (23)

= Cw + TV(3s/aW)r(aW/oT)g.  (15) TABLE I. A summary of «., f(x.) for the three theories
From Eq. (3), dF = —sdT + PdW, we obtained a (M = lforthey theory).

Maxwell relation(dP /0T )y = —(ds/dW)r. Thus, Mean field ¢ theory HD theory
Co=Cw — TVP/IT)w(OW/dT)p.  (16) &, 1//6 0.433 0.397
. - f(k,) 2/3 0.707 0.790
Here we have made use of Eq. (12) to obtain the relatio P (W /e 6082 6842 7007

(0W/aT)o = (0W/aT)p. Using the chain rule
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In conclusion, our analysis has lead to a number of surNASA Microgravity Science and Application Division for
prising results. There exists negy, in theT-Q plane, a its support.
curve T.(Q) at which superflow ceases and the heat ca-
pacity, Co, diverges according to Eq. (23). Unlike other
familiar phase transitions, the heat capacity divergence in
this case is predicted by mean-field theory, and, indeed,
the arguments leading to Eq. (22) show that= 1/2 [1] P. Leiderer and F. Pobell, Z. Phy223 378 (1969); S. M.

in any theory in whichP is an analytic function ofW Bhagat and R.A. Lasken, Phys. Rev. 3\ 340 (1971);
[19]. Experimental measurements 6f nearT.(Q) are R.V. Duncan, G. Ahlers, and V. Steinberg, Phys. Rev.
urgently needed. As our arguments have shown, they Lett. 60, 1522 (1988); F.-C. Liu and G. Ahlers, Phys.
would constitute the first information concerning haw Rev. Lett.76, 1300 (1996).

depends orW nearT,. Existing experiments [1] show [2] H.J. Mikeska, Phys. Revl79 166 (1969); A. Onuki,
J. Low Temp. Phys55, 309 (1984).

g‘e"’t“ig'ﬁ'paj'ogpdﬂeof \éiggxt fo;rrr;%tlosnv[sr()] éleorfs‘ls tgo [3] D.R. Swanson, T.C.P. Chui, and J. A. Lipa, Phys. Rev. B
0 Q.C T ptp P y 46, 9043 (1992); L.S. Goldner, N. Mulders, and
T), whereQ. is very small. However, according to the G. Ahlers, J. Low Temp. Phy§3, 131 (1992).

data displayed in Fig. 2(b) a large effd&Co ~ 1.5J/ (4] R. Haussmann and V. Dohm, Phys. Rev.4B, 6361
moleK) may be expected even @/ QP ~ 0.4. (1992).

The phenomenon that occurs AB(Q) has been com-  [5] R. Haussmann and V. Dohm, Phys. Rev. L&, 3060
pared to a spinodal [4,5]. We would like to point out (1994).
that it also bears some resemblance to a phase transitiorip] Private communication. Related comments: D. Goodstein,
even though there does not exist a normal phase of finite  T. Chui, and A. Harter, Phys. Rev. Left7, 979 (1996);
0 on the other side of the transition. For one reason, R. Haussmann and V. Dohm, Phys. Rev. L&t, 980
all other heat capacity divergences we know of do signal (1996). )
phase transitions. Second, when a system is charactert-] ?é'éé)Gsoggée'n'States of Matter(Dover, New York,
ized by a pair of CQnJUQate v_arlables (p_res_sure-volumt_a,[S] Mikesi<a (Ref. [2]) gave a similar description based on the
concentration-chemical potential, magnetization-magnetic

. o . mean-field theory.
field), a phase transition occurs when the generalized SUS[g] G.B. Hess, Phys. Rev. Le#0, 119 (1978).

ceptibility diverges (gas-liquid critical point, binary mix- [10] V.L. Ginzburg and L. P. Pitaevskii, Zh. Eksp. Teor. Fiz.
ture phase separation, Curie point). In the present case, 34, 1240 (1958) [Sov. Phys. JETP 858 (1958)].
P and W are a new conjugate pair characterizing superfl1] V.L. Ginzburg and A.A. Sobyanin, J. Low Temp. Phys.

flow whose susceptibility(dW /3 P)r, diverges aff.(Q). 49, 507 (1982). .
This is not the ordinary superfluid transition, sinagis  [12] L.P. Pitaevskii, Zh. Eksp. Teor. Fi35, 408 (1959) [Sov.
not zero. By analogy to the other cas#s,(not p,) may Phys. JETF8, 282 (1959)].

be the order parameter afdthe conjugate field. Seen in [13] {S'\c/)lv };hha):gtrjg‘% ozglesEﬁg'?(-)l;]eor' Fiz57, 489 (1969)
this light, the lambda transition & = 0 is rather like a : : ’ :
tricritical point. If the transition is approached along this [14] W. Y. Tam and G. Ahlers, Phys. Rev. ¥, 5932 (1985).

: . . - [15] J.R. Clow and J.D. Reppy, Phys. Rev5A424 (1972).
unique thermodynamic path, the coefficient of the" 16] H.A. Kierstead, Phys. Rei62 153 (1967).

term vanishes, leaving only the familiar, near logarithmicy;7] we used the value given by D. S. Greywall and G. Ahlers,
divergence in the heat capacity, due to the disappearance = phys. Rev. A7, 2145 (1973). The value gf, needed to
of p, [21]. make our result consistent with HD 8406 g/cn.

Since the mean square fluctuationsih (AW?) [22],  [18] A. Singsaas and G. Ahlers, Phys. Rev2& 4951 (1984).
diverge at7.(Q), the real issue becomes not whether wel19] In HD theory, P is analytic at all values ofc up to
call this strange new phenomenon a spinodal or a phase & = 0.397. It is nonanalytic atc = 1/v/6 = 0.408. If
transition, but rather whether the velocity fluctuations  this nonanalyticity occurred at., the exponent would
renormalizep,(W) and thereby change the critical point 0 _?egh;‘”%ehd ,ml/J?’-E sracl 4 M. Lysek. Phvsi
exponent from its mean-field value of 0.5, and whether thé20] T-C-P. Chui, U.E. Israelsson, and M.J. Lysek, Physica

. ' ; (Amsterdam)194-1968 601 (1994).
phenomenon belongs to a different universality class fro

ey . 21] For similar behavior near the tricritical point, see
the lambda transition. The answers to these questions areé * 5 apjers The Physics of Liquid and Solid Helium Part |

not yet known. . . _ edited by K.H. Bennemann and J.B. Ketterson (Wiley,
We would like to acknowledge helpful discussions with New York, 1976), p. 143.

Dr. Yury Mukharsky, Anoop Prasad, and Professor Pete22] It can be shown thatAW?2) = kzT(aW /oP);, wherekg

Weichman. T.C.P.C. and A.W.H. would like to thank is the Boltzmann constant.
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