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The decay of nominally isotropic, homogeneous incompressible turbulence is studied by direct

numerical simulations for Ret in the range (5-50) with 2563 spectral coefficients. A power-law
decay of the turbulent energy is observed with exponents approximately equal to 1.5 and 1.25,

apparently dependent on Rex. A new complete similarity form for the double and triple velocity
correlation functions, f(r,t) and k(r,t), is proposed for low to intermediate Rex that is consistent
with the Kirman-Howarth equation and the results of the numerical experiments. The results are
also consistent with Saffman's proposed asymptotic behavior of f(r,t) for large separation r for

runs with a decay exponent of 1.5. The so-called final period of decay is not observed.

1. INTRODUCTION

Grid-generated turbulence was first extensively studied
by Batchelor and Townsend. 1-3 The turbulence, which was
nearly isotropic and homogeneous, was observed to have a
power-law decay in energy. They distinguished three stages
of the decay: an initial period, during which turbulence is
being developed, a transition period, and a final period, dur-
ing which viscous forces are believed to dominate inertial
forces throughout the full wave-number range. The associ-
ated decay exponent was found to be about one for the initial
period of decay and 2.5 for the final period. More recent
measurements made by Sato and Yamamoto 4 also followed a
power-law decay with exponent 2.5 in the final period, but
found exponents between 1 and 1.3 for the initial period of
decay. Recently, Smith et al.5 measured the decay of enstro-
phy for towed grid-generated turbulence with grid Reynolds
number of order 105 without using Taylor's "frozen field"
hypothesis. They observed a power-law decay of the root-
mean-square (RMS) vorticity with an exponent of 1.5±0.2,
corresponding to a decay exponent of 2 for the turbulent
energy.

Results of numerical simulations of turbulence at small
Reynolds numbers were studied by Mansour and Wray.6

Power-law decays were observed and decay exponents be-
tween 1.1 and 2.5 were found depending on the Reynolds
number and on the behavior of the energy spectrum at low
wave numbers. The decay exponent 1.5 for the RMS vortic-
ity was observed in numerical experiments by Herring and
Kerr,7 also.

On the theoretical side, a number of analyses, based on
various assumptions, have been developed to treat decaying
homogeneous turbulence. As an example, one may start with
the hypothesis of complete and/or partial self-similarity of
the double and triple velocity correlation functions and use
the Kirmrn-Howarth equation8 to deduce further results. A
detailed study of self-similar solutions of the Karman-
Howarth equation and their stable equilibria can be found in

Speziale and Bernard9 (also see Batchelorl0 ). They conclude
that completely self-similar solutions always lead to a decay
exponent of one, unless the Reynolds number is zero, a state
that can be reached only as time goes to infinity.

Partially self-similar solutions, i.e., correlation functions
that are self-similar only for some ranges of r, can lead to
decay exponents other, than one. Some of the criteria re-
quired by complete self-similarity must be relaxed and re-
placed by other assumptions. For example, by relaxing the
criterion that the scaling length has to be Taylor's micros-
cale, a decay exponent of 10/7 can be obtained provided
Loitsianskii's integral is invariant in timell while, on the
other hand, an exponent of 6/5 is found if Saffman's invari-
ant is assumed.1 2

To predict the power-law decay during the final period,
one ignores the inertial force in the energy equation (almost
by definition of "final period"). The turbulent energy can
then be determined by

K- f E(k,t,)exp[-2vk 2(t- t,)]dk, (1)

where E(k,t) is the three dimensional energy spectrum, k is
the magnitude of the wave vector k and to is some reference
time. Because of the exponential factor in the integrand, con-
tributions from small wave numbers dominate and a power-
law behavior of E(k,t,) near k=0 results in a power-law
decay of turbulent energy. A decay exponent of 2.5, there-
fore, follows from an analytic behavior of Eij(k,t0 ), the en-
ergy spectral tensor, near the origin,'3 namely,

E(k)-C2 k 4 +o(k 4 ). (2)

However, Batchelor and Proudman14 studied the asymptotic
form for large separations of the double and triple velocity
correlations based on their hypothesis and obtained a
nonanalytic behavior of the energy spectral tensor near the
origin. Saffman12 subsequently modified the hypothesis and
made it less restrictive. He showed, in general, that the
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double correlation function is 6P(r-3 ) for large separation.
This corresponds to a nonanalytic behavior of energy spectra
near the origin with the result

E(k)-C ok2 +o(k2 ). (3)

The decay exponent then becomes 1.5 for the final period of
decay.

In this paper we study the decay problem by numerically
simulating incompressible homogeneous turbulence. Decay
exponents are found and a new self-similarity is proposed
that is consistent with the numerical results and the Karman-
Howarth equation. The paper is arranged as follows. In Sec.
II we give a short review of the classical similarity theories
mentioned above and propose a new similarity form for the
velocity correlation functions. Numerical techniques and re-
sults are presented in Sec. III. Summary and conclusions are
given in Sec. IV.

II. THEORETICAL BACKGROUND

A. Previous similarity hypotheses

We investigate the energy decay of incompressible tur-
bulent flow which is governed by the Navier-Stokes equa-
tions

du +u.Vu=-Vp+vV 2 u, (4a)

V u=O, (4b)

where u is the turbulent velocity, p is the pressure, and v is
the kinematic viscosity. In this paper, we restrict our atten-
tion to isotropic homogeneous turbulence. Because of homo-
geneity, isotropy, and the incompressibility, the two-point
second-order moment tensors of velocity can be expressed in
term of a single scalar function f(r,t), the longitudinal ve-
locity correlation coefficient, defined as

f(r,t)=_u(x,t)u(x+r,t)1q( t) 2, (5)

where r is the separation of the two points, t is the time, u is
the velocity component in the r direction, and 2q

2 is the
turbulent energy. Similarly, k(r,t), the triple velocity corre-
lation coefficient, is defined as

k(r,t)u(xt)2 u(x+ r,t)/q(t)3 . (6)

The dynamical equation connecting these two scalar func-
tions derived by Kirmin and Howarth8 from the Navier-
Stokes equations is given by

9( q 2 ' q3 ( d + 4 k) + 2vq (~ v~ + df (7)

K6.rmnn and Howarth8 showed that completely self-similar
solutions of the above equation, if they exist, must be of the
form

f(r,t)=f[r/X(t)] and k(r,t)=k[r/X(t)] (8a)

and two constraints,

q -X = const (8b)

and

dX
X - = const,

dt (8c)

must be satisfied. Here X is the Taylor microscale8'9"13 de-
fined by

2-5f f~E(k)dk

f-k 2E(k)dk' (9)

A power-law decay of the turbulent energy is consequently
obtained with the decay exponent equal to one, that is,

K-ioFq 2_ t- 1. (10)

Although early experiments2' 15' 16 seemed consistent with this
power-law decay, a subsequent study by Comte-Bellot and
Corrsin17 shows even a better fit to their experimental data
with decay exponents in the range, approximately, from 1.1
to 1.4 by adding a virtual time origin to the fit.

A more general hypothesis of similarity may be formu-
lated such that the decay exponent z 1. George,' 8 instead of
assigning a self-similarity of the correlation coefficients, as-
sumed a self-similar energy spectrum, E(k,t) and energy
transfer spectrum, T(k,t), as follows:

(lla)

(lib)

Substituting into the spectral energy equation for isotropic
turbulence

(12)dEkt) =T(k,t)-2 vkE(k,t)
a5t

and enforcing consistency, he found

SWA X,

E(k,t)Iq 2X = E(kX),

T(k,t)/q 3
= ReA T(kX),

(13a)

(13b)

(13c)

and an arbitrary decay exponent n, where Rex=qklv is the
Reynolds number based on turbulent velocity (q) and Tay-
lor's microscale. Corresponding results were obtained earlier
by Barenblatt and Gavrilov19 using an equivalent similarity
hypothesis for the double and the triple correlation coeffi-
cients. With the Re-' modification, any decay exponent is
now consistent. However, this modification implies stronger
nonlinear interactions with decreasing Reynolds number,
which is not physically reasonable. However, George' 8 sus-
pects that such a similarity might exist at an early stage of
the decay during which the turbulence is still in developing
and the nonlinear terms are increasing. The derivative skew-
ness thus increases with decreasing Reynolds number and
eventually reaches a maximum value. After that, possibly
another self-similar state that includes the proper decay of
nonlinear terms is entered.

In the present study, we develop a new self-similarity
that satisfies the Karman-Howarth equation, is consistent
with a power-law energy decay with an arbitrary decay ex-
ponent, and is physically reasonable. We believe that this
new self-similarity is applicable to fully developed turbu-
lence.
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B. Proposed similarity

We recall that the evolution equations for energy and
dissipation rate are

K -e=-10 vK/X 2, (14a)

e= 1 7 7 \
e=K -5Rex,-- G), (14b)

where S = - X3ko' is the skewness of longitudinal velocity
derivatives and Gmk 4fov. If a power-law decay exists, i.e.,
there exists an n and a time reference to such that

K-(t+t0 Y)'t and so (15)

Equation (14b) then implies that the quantity in the bracket
has to be a constant. In other words, we must have

1 15 (n+l)

2 7 Re+ 
(16)

Therefore, similarity solutions of the form given by (8) (con-
stant Rex, S, and n=1) or of the form given by (13)
(S-Re-1 ) both imply a constant G during the decay. We
consider the possibility of a nonconstant G and insist on a
power-law dependence on Rex of the skewness S. Based on
(16), we propose a complete similarity of the following
form:

(17a)f(r,t) =f ,(r/X) + Reflf 2(rIX)

and

k(r,t) = Re,6j1k2 (r/X). (17b)

Since f(r,t) and k(r,t) are related to E(k,t) and T(k,t) by

E(k,t)= - f. kr(sin kr-kr cos kr)f(r,t)dr (18a)

and

T(k, t) =- fo k2r( si k 3 cos kr-kr sin kr)

Xk(r,t)dr, (18b)

the above hypothesis is equivalent to assuming self-
similarity of the energy and energy transfer spectra of the
form

E(k,t)/q 2 X=Ej(k)X)+Re16 E,(kX),

T(k,t)/q 3 =RePj' T,(kk),

(19a)

(19b)

where El, E2 , and T2 are the self-similar functions related to
fl, f2, and k2, respectively.

Substituting (17a) and (17b) into (16) and (7), and using
relations (14a), we obtain

d4 f, d 4f 2
G=d- _+d74T __Rel,

15 (n+l) Id 3k2
7 n 2 d *RLO 

and

i0i+5 dfI+2d CdlI
n Td

+ Re.[(10+5I3--I3)f 2 ±- df

where C-r/X. From (20), we require

d4f, 15 (n +1)

-d-TL 7 

and

d4f2 1 d3k2

~~ 2dtLO

(20)

(22a)

(22b)

If 83=0, we recover George's self-similarity.' 8 On the other
hand, if ,600, fl, f2, and k2 must satisfy

5 df 2 d( 4 df, ~_,
n d 

and

+ ~ ( k2)=0.

(23a)

(23b)

Equation (23a) is the same equation as that governing a com-
plete self-similar f(r/X) when the triple correlation coeffi-
cient k(r,t) in the Kirmin-Howarth relation is ignored. 20 It
is known that (23a) has solutions for all n E (0,cx) and func-
tion f1 can be expressed in terms of the regular confluent
hypergeometric function

(24)(i = 5 5 2 )

under the conditions

fi(O)= 1, fi(:o)=O.

Moreover,

5

n / Jo 

provided fl-*0 as A-mp- at least faster than t-2 .
Although (23b) is not closed, we can write f2 in terms of

an integral involving the unknown function k2 as follows:

(26)
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f2M _Mti~~zfz U(a,b,z' )h(z') -dz'
f M(a,b,z') U'(a,b,z') -M'(a,b,z') U(a,b,z')

+ U~a, b~z) zM(a,b,z' )h(z') dz',
(27a)

(27b)

(27c)

with

5 , 8(n- 1) 5
z=-n - C, a_=n+ 2 , b=- -a4n+ 2 2'

and

h()_2n [)5k2(0 I d (k2(0)]

under the conditions

f2(0)=0, f2(-)=0,

where U(a,b,z) is the singular confluent hypergeometric
function and k2 (4) is assumed to be an odd function of T.
Expanding (23b) about .=0 with (28), we find that

k(r,t)=ReP' k2(,)

is proposed with f2 and k2 related by (27).

(33b)

11. NUMERICAL SIMULATIONS

In this section, we study the decay of turbulence by nu-
merical simulation and compare the results with the theories
discussed in the previous section.

(28) A. Numerical methods and initial conditions

We use the Fourier spectral method. The velocity com-
ponents are expanded in terms of their Fourier coefficients,

1 d 3k2 4+0 C6.
2( -48 d3 |LO+%(gl)

Condition (22b) is therefore satisfied implicitly. Cond
(22a) follows by differentiating (23a) twice and evalu,
the results at ;=0. We now have a consistent theory with
free parameters n and /', and one function that must be
termined.

In some cases, it is possible to fix n by using the asy
totic behaviors of f 1(j and f2 (), as H--4- predicted by
lier investigators. 1Z1- 4 In particular, consider Saffn
result 12 that f(r,t), in general, has a power-law asymp
behavior, given by

f(r, t) - r-3 as r-oo.

The asymptotic behaviors of functions f 1() and f2(0 ca
obtained from (24) and (27a). As itro, i can be shown

f1and -

and

Of(I -'2nvf(n- 1)] 

provided those integrals involved with k,() in the solut
of f2 converge rapidly enough. Solutions off 1 correspon
to several values of n within interest are shown in Fil
They are found everywhere positive implying from
n l. With nk1 and j3>0, we obtain

f(rt)-f jg)_C-2n as ;-°

giving n=1.5 if we envoke (30).
In summary, a complete similarity hypothesis of the

locity correlation coefficients given by

ffr,t)=Ml~n, i'- 5n (A ]+Re'X f2(A

(29)

[ition
ating
h two
e de-

ymp-
ear-

nan's
)totic

(34)
k

The Fourier coefficients of the nonlinear terms in the
Navier-Stokes equations are obtained by forming the prod-
ucts of velocity components and velocity gradients in the
physical space and transforming back to the wave space. The
Fourier coefficients of the pressure are combined with those
of the nonlinear terms by taking advantage of the incom-
pressibility condition. The resulting spectral Navier-Stokes
equations are

af~ (35)

(30) where 8ij is the Kronecker delta.
Time advancing is by second-order Runge-Kutta. Alias-

ing errors are approximately eliminated through the use of
l that the grid shift technique2 1 and a special treatment of the time
(31a)

1 .0 . . -- ------ . .....-- -. -------- '-- 

(31b) 1 F

tions
ding
g. 1. g JO 0.6 
(26) 0. 4~~~~~~~~~~~~~
(32)

e ve-

33a)

0 2 4 6

FIG. 1. Confluent hypergeometric function fi(,)=M[n,5I2,-(514n)e2 ]
with n =, 1.5, 2, and 2.5.
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TABLE 1. Initial conditions and conditions at start of power-law decay.

runs rbn2 run3 run4 run5 run6 run7

symbol 0 0 + U A

time=0
kAL 207r 40T 32r l16ir 16&r 247r 24ir

E(k,0) Eq. (36a) Eq. (36a) Eq. (36a) Eq. (36b) Eq. (36b) Eq. (36c) Eq. (36c)

vt 0.0015 0.0015 0.0003 0.002 0.0004 0.0013 0.003

N 128 256 256 256 256 256 256

Rex 133 133 667 203 348 165 72

kmax 77 0.53 0.53 0.47 0.40 0.39 0.51 0.78

0.59 0.59 0.25 0.21 0.22 0.40 0.39

time power-law decay begins
km" v7 1.09 1.09 1.00 1.00 0.99 1.03 1.09

Rex 21.5 21.6 44.6 46.2 49.6 42.6 28.0

XIL 2.6% 1.3% 1.7% 1.8% 1.8% 1.8% 1.5%
1.91 1.84 3.14 1.80 2.80 2.89 1.16

;r17 0.22 0.22 0.23 0.14 0.17 0.22 0.11

time X/L10%
km.x q 5.92 14.08 8.11 8.22 >3.96 >6.00 9.18

Rex 10.8 7.6 19.8 22.1 <35.3 <27.1 17.6

nt 1.56 1.51 1.42 1.31 1.23 1.27 1.24

to 0.40 0.064 -0.88 -0.14 -1.28 0.45 0.16

differencing.2 2 The algorithm used was originally developed
by Rogallo2 2 and subsequently parallelized to run on the In-
tel Delta parallel computer at Caltech.

All of the simulations start from a random velocity field
in a periodic domain of size L on a side, with a specified
initial energy spectrum. Initial energy spectra were chosen
from

E(k,t=O) = 16 47k(k)exp[ 2( p)] (36a)

or

ICq2 exp(-a)(k/kP)2 for Okskp;
E(k't=O) = Cq2 (k/k)- 5 /3 exp (-ak/kp) for k-kp,

(36b)
or

(36c)

where all spectra have a peak at k=kp. Parameters used in
each simulation and certain dynamical quantities at the initial
time and at the time the power-law decay appears to begin
are listed in Table I. Included are the product of the maxi-
mum available wave number kma=(V2N/3) -(2iTIL) (N is
the resolution, i.e., the number of grid points in each direc-
tion) and Kolmogorov's dissipation length scale u, Re,, the
eddy turnover time, and the eddy dissipation time. The eddy-
turnover time, Y0 , and the dissipation time scale, i-a, are
defined as

3q~ f'kOE(k,t)dk

and

T,7~ 772/V,

(37)

respectively.
Note that to produce reasonably high Rex when the tur-

bulence reaches the state of power-law decay, the initial val-
ues of kmax are chosen relatively small giving rather poor
resolution during the initial stage of development. However,
we do not use the data from this stage.

B. Power-law energy decay

The evolutions of turbulent energy K and those of Rex
are shown in Figs. 2 and 3. The existence of a power-law
decay is clear. The solid lines are the fitted curves of the
form

K=K,(t+ t,)-n

0
U

+

0,

0 1

(39)

1-1 0
(t+to)/.70

FIG. 2. The decay of turbulent energy K. .O is the eddy turnover time at
(38) kmax 7r 1.
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1.2

-_ 0.83

0.6 Ree- 41.45 
0.4 .

0.1] 0.2 04 0.608 1.0 1.2

0.6 Re, =2.2

0 1 2 3 4 
kj

0

1.6:
1.4 -

. 1.2-
I 1.0 I

0.8
0.6
0.4 -

0

2

2 4 6

T 2 4 6

FIG. 3. The decay of Rex. .7, is the eddy turnover time at km,,, 1. Solid
lines are Rex = V2OK 0/3 vn(t + to)(l')' 2 .

with choices of K 0, to, and n which give the least square
errors to those data between times during which kmsx77-1
and X/L'z0.1. Values of t 0 and n used can be found in Table
I. In Fig. 3 the solid lines represent Ren in terms of the
power-law parameters determined from Fig. 2, so that

(40)

Moreover, for power-law decay we expect X2=1Ov(t+ t,)In.
The asymptotic time independence of X/ t_+t0 is shown in
Fig. 4.

We notice that in these figures the numerical data in
some cases deviates from the fitted curves at large times. We
believe that, in some cases, this occurs because the large
eddies eventually become too large relative to the box size. A
case in point is runs (Fig. 2) which shows this effect,
whereas run2 with twice the box dimension but the same
initial spectrum as runi does not show this effect.

Before we can compare the numerical results with iso-
tropic turbulence theories, we need to check the extent of
isotropy of the turbulence. Consider the one-dimensional en-
ergy spectrum defined as

FIG. 5. The extent of isotropy of turbulence indicated by I,,(kt) (run6).

1
E, ~ ~ (k,t= I .*kt),

2 Id =k
(41)

where a= 1,2,3. The extent of isotropy is measured by
Ia(k,t) defined as

(42)

For isotropic turbulent flow, we expect Ja(k,t) to be close to
one. The distributions of Ij(k,t) over the wave number k at
several Rex for run6 are shown in Fig. 5. The large-scale
eddies are never isotropic while the small-scale eddies lose
isotropy as Reynolds number decreases, which must be
caused by the formation of small-scale structures and their
small sample in a single realization. This anisotropy should
be kept in mind for the discussions below.

In the present study, the quantities G and S are computed
as

J2 X'4 X.
G= 35 I k4 E(k,t)dk

3(5 Fo (43)

and

0.2

0.

(;1 
+

0.1

0.

0.t

0.1

FIG. 4. The evolution of X/(t+t,
km.,71-1 and solid lines are ,Ji0i

7 (2f o'k2E(kt)dk)3 1 2 -
(44)

From the relation (16) with computed Rex, G, and S, we can
also compute the decay exponent as follows:

(45)

These three quantities are all plotted as a function of Rex in
the range investigated (see Figs. 6-8). Similar plots of S

,,, ........ have been done by Kerr,7 as well as Mansour and Wray.6

Again only those data between times during which kma, 7y' 1
and X/L 50.1 are plotted. In this way, we obtain a reasonable

10 10o2 1 0 representation of the dissipation range and minimize the con-
(t+to)/9T tamination due to periodicity. Except for some transitional

early-time behavior (which may correspond to George's
)1/22 V. is the eddy turnover time at similarity regime), a nearly linear dependence on Rex of G
Fn with n given in Table 1. and a nearly constant S are observed for each run during the
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0.60

0.55 I-

in 0.50

0~~~~~~

0 ~ ~ '
0.45 k

0.40L ... 20. . .... L

to ~~20
Re.

40 60

FIG. 6. S plotted as a function of Rex during k... 70 ,1 and XIL-O.1. The
solid line is the fitted curve of the form S =C Reet' with C =0.44 and
13= 1.04.

decay, implying 8B1. Note, also included in Fig. 7 is the
data taken from Fig. 16 of Yeung and Pope23 for stationary
forced turbulence.

It is, in general, believed that the decay exponent is
dominated by the large-scale motion or the spectral behavior
of the energy spectrum at low wave numbers, especially dur-
ing the initial period of decay. For example, Mansour and
Wray6 attempted to classify flows and their decay exponents
according to the initial spectral behaviors at low wave num-
bers such as E(k,O)-Cok2 and E(k,O)-C 2 k4 , where Co
and C2 are constants. From the present numerical data (Fig.
8), we observe two states with distinct decay exponents, one
for Re, in the range of (30, 40) (run3, run5, and run6) and
the other for Rex in (10, 20) (run2), and a transition between
these two states as suggested by data of run3 (+), run4 (U),
and run7 (*). This indicates a dependence of the decay ex-
ponent on Rex rather than on the spectral behavior at low
wave numbers. Notice that run2 and run3 have an
E(k,O)-C 2 k4 while run5 and run6 have an E(k,O)-Cok2 .
However, for the present simulations, the statistical sample at
low wave numbers is especially small after the power-law

20 . - --------- . .

10 ,5 0 

0~~~~~~~~ 

9 U~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

a stotionory turbulence
by Yeung ond Pope

0 20
Re,

40 60

FIG. 7. G plotted as a function of Re, during km. V-,,I and XIL-0.1. The
lower solid line is Eq. (16) with n=1.5 while the upper one with n=1.25.

0 1 0 20 30 40 50
Re.

FIG. 8. The decay exponent n calculated by using Eq. (45) plotted as a
function of Rex during km&,7>l and X/L<0.1. Horizontal lines represent
decay exponents of 1.5 and 1.25.

decay begins so that a definitive statement on the influence
of the spectral behavior cannot be made at this time.

Finally, the decay exponents, 1.5 and 1.25, are shown in
Fig. 8 as horizontal lines. Recall that run2 yielded an expo-
nent of 1.51 and the latter exponent, 1.25, is the average of
runS and run6 from Table I. The decay exponents from Table
I are generally in good agreement with those computed from
(45), giving assurance that we are observing isotropic,
power-law decay.

C. Self-similarity

Finally, we attempt to test the similarity of the form pro-
posed, that is, to test the existence of the self-similar func-
tions f2 (r,k) and k2 (rIX). The correlations f(r,t) and
k(r,t) in the present study are obtained by computing the
velocity structure function

Aua(r)-uj(x+ re,,) -ujx), (46)

where e, a= 1,2,3, are the unit vectors in the Cartesian co-
ordinates, and using the isotropic relations (in spite of the
anisotropy observed above)

0 2 4 6

FIG. 9. Double velocity correlation coefficient, f(r,t) for run2.
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0 4

FIG. 10. Triple velocity correlation coefficient k(r,t) for run2

f(r,t)= 1 - Au(r)2 /2q 2

and

k(r,t) = Au(r)3 16q3 .

Averaging is taken over the full volume and over the
directions. Examples are shown in Fig. 9 for f(r,t) a
Fig. 10 for k(r,t). Note the double correlation f(r,t
also be obtained by measuring the one-dimensional e
spectra and taking the Fourier transform. We found tl
sults agree with those of (47). The zeros of k(r,t) at
±L/2 come directly from (48) and the periodicity of the
field. The relatively high values of function f(r,t) shoN
Fig. 9 for r-L/2 at later times indicate the box-size con
nation once again. The persistence of the peak valu
function k(r,t) implies the presence of the inertial forc
all time, and so the so-called final period of decay i
observed in the range of Rex investigated in agreement
Mansour and Wray.6

We select run2, runS, and run6 for testing, correspo
to the two distinct decay exponents that are observed

decay exponent n -1.5 is used for run2 while n=1.25 for
runS and run6. Note, runS and run6 are expected to possess
the same self-similar functions f2 and k2 . To determine the
value of /3, we use all the data for S in Fig. 6, except those in
the early transient period. Note the data for S in Fig. 6 could
be described by S-const-0.50 or by

S- Re,51 (49)

with /=1.04 as shown by the solid curve. With the latter fit
and the use of the two decay exponents 1.5 and 1.25, we plot
two curves for G given by (16) in Fig. 7. Again we see
consistency with the results for G computed directly by (43).
Use of S=const=O.50 rather makes only a slight change in
the curves shown in Fig. 7.

In Fig. 11 we show double velocity correlation coeffi-
cients f as a function of r/X for the three runs. Figures 12(a)
and 13(a) show the result of subtracting fl(r/X) from f(r/
X,t). Next we divide the above results by Re3 with /3=1.04

(47) to obtain our estimate for f2 (rIX). This is shown in Figs.
12(b) and 13(b). Although some spread in the curves persists,
it is clearly reduced from the spread shown in Figs. 12(a) and

(48) 13(a). The difference between the f2 functions of the two
cases is clearly much larger than its spread in each.

three Si Milarly we show k(r,t) in its proposed self-similar
and in form in Fig. 14. Here the collapse of the data is reasonably
) can good but not as good as it was with the double correlation
nergy coefficients where two functions f1 (r/X) and f2 (r/X) are
he re- used.
r=0,
e flow D. Discussion
bwn in
ntami- We have studied three completely self-similar solutions
.es of of Karman-Howarth equation: Karman-Howarth's [f(r,t)
es for =f(r/A), k(r,t) =k(r/X), and n = 1], George's [f(r,t) =f(r/
is not X) and k(r,t) =Re-' k(r/X)], and the one proposed herein
it with [f(r,t)=fj(r/X)+Re~f2 (r/X) and k(r,t)=ReA ' k2 (rIX)].

The solution proposed herein is the only one that can predict
)nding a decreasing nonlinear interaction during the decay with
i. The ,3>1 and thus is the only one that might be applied to the

0.4 04

02 02-

_ 0.0~ *-*-*-*-.- .. 0.0

10 1 5 0 510 15 0 5 10 1 5

FIG. 11. Double velocity correlation coefficients f(r/A,t) (solid lines) for (a) run2 (n = 1.5). (b) run5 (n= 1.25), (c) run6 (n=1.25). The dash-dotted lines are
the regular confluent hypergeometric function M(n,5/2,-5t2 I4n), where ;=rlk.

3772 Phys. Fluids, Vol. 6, No. 11, November 1994

1.

r/X

1:

5

M.-J. Huang and A. Leonard

Downloaded 02 Apr 2006 to 131.215.240.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



0.006-

- 0.004-

- 0.002

0,000 . . ..
5 10 15 0 5

r/ t f w 0

FIG. 12. (a) f(rIX,t)-f1 (rIX), (b) f2 (rIX), for run2 with ,8=1.04 and n=1.5.

final period of decay. The self-similar functions fl, f2 , and
k2 , however, depend on the decay exponent n, which in turn
depends on the initial conditions and possibly the Reynolds
number as well. George's similarity which can be treated as
a special case with /3=0 is possibly a self-similar state for an
early stage of decay during which turbulence is still devel-
oping and the skewness has not yet reached its maximum
value. A modification of George's similarity which gives ex-
plicitly a maximum skewness S during the decay and is con-
sistent with the relation (16) is actually obtainable and is
presented in the Appendix. Such a similarity, however, like
George's, cannot be applied to the final period of decay.

It has been argued that Kirman-Howarth's solution is a
limiting solution at infinite Reynold number (Barenblatt and
Gavrilov19 and George'8 ) and also a limiting solution as Rey-
nolds number goes to zero (Speziale and Bernard9 ). The lat-

0.40 -

0.30 X"

0O.20

ter case is not meaningful because it requires K-40. The
former case is argued on the empirical grounds and the fact
that the Kolmogorov similarity law can be satisfied in this
solution (n=l). In particular, all length scales are propor-
tional for all time in this special solution because the Rey-
nolds number remains constant during the decay. However,
we doubt the applicability of the n=1 solution and, in fact,
our proposed similarity solution at large Reynolds number,
because only one length scale is used. For such a flow, we
suspect that two length scales must be employed, an energy
scale &=q3/e6_X Re A and the Kolmogorov dissipation scale
27(v '/e)'14'X Re 1"2 , well separated because Rex> 1. (Even
though the Reynolds number is constant in time for the n = 1
solution, it can vary from one flow to another and we require
universality of the similarity solution.) Thus we believe the

0 5 10 1 5 0 5 1 0 1 5

FIG. 13. (a) f(rIX,t)-f 1(rIX), (b) f2 (rIX), for run5 (dash dotted lines) and run6 (solid lines) with 3= 1.04 and n =1.25.
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-0.04

- -0.6
1 5 0 5 1 0 1 5

r/2X

FIG. 14. Triple velocity correlation coefficients k(rIX,t)/Reg- 1 with B=1.04 for (a) run2, (b) run5 (dash dotted lines), and run6 (solid lines).

leading terms for the two-point correlation function are given
by

f(r) =f 0 ( +ex)+Re-2 f1( l ex)Re-'

*f20 +ReA * f2 1 (-R 2 ), (50)

corresponding to an energy spectrum given by

E(k)=q2 X ReJIIE1o(kk Rex)+Re -
2 Eii(kX Rex)]

+q 2 X ReJ '/ 2. [E2 0(kX Re- t/2) + Re-

*EE2 1(kX Re-' /2)]. (51)

The triple correlation function would be given by

k(r)=kio( r ) +Re 2- k,( r ) 1R -3/2

rk( Rex/) +R -5/2 k2 (r Rex'/) (52)

In the Karmin-Howarth equation, the function flo would
yield the leading-order term for the time derivative of f(r)
and be balanced by the kjo component of k(r), and f20
would yield the leading order contribution for the dissipation
term in the equation and be balanced by k2o.

It is interesting to compare the small r expansion of the
proposed high Rex representation of f(r) given by (50) with
the expansion of our proposed similarity form (17a). The
expansion of the latter is given by

fir) = 1-2A2 + {Cl + C2 Red} ( A ) + { + Red}

X Ar 6+---; (53)

while the former is given by

f(r) =1 - ~j+[Di+D2 Rex+o(l)] - +{D3 Rex

+D4 Re 'o(Re,)}( ) +..., (54)

where Ci and Di, i=1, 2, 3, 4, are all constants and condi-
tions such as f(O) =1 and - 1/f"(O) = X2 have been imposed.
The similarity form (17a) seemingly still provides a good
model with /3=1 as a partially self-similar solution given by
(50) for large Reynolds number, at least up to the order of
(r/X)6 . Finally, the representation of k(r,t) given by (52)
suggests a skewness given by

S-S 1 +S 2 Re-t+o(Rex ),

where S 1 and S2 are constants.

IV. SUMMARY AND CONCLUSION

(55)

Simulations of decaying homogeneous turbulence at
small to intermediate Reynolds numbers have been per-
formed. We find that the turbulent kinetic energy decays
eventually as a power law in time. The decay exponent for
the initial conditions summarized in Sec. III A is found to be
about 1.5 for Re, in (10, 20) and 1.25 for Rex, in (30,40). A
new self-similar form for the double and triple velocity cor-
relations of decaying turbulence has been proposed in which
the Taylor microscale is the appropriate scaling. The double
correlation coefficient is divided into two parts-one has a
power-law dependence on the Reynolds numbers and the
other does not. The nonlinear terms, as measured by the
triple velocity correlations, vary as Ref J during the decay.
Provided 6z# 0, two independent equations can be obtained
with three unknown functions. Although the problem is still
not closed, the asymptotic behavior of f(r,t) at large sepa-
ration r is found uniquely related to the decay exponent n.
Together with Saffman's proposed asymptotic behavior of
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f(r,t), the theory predicts a decay exponent of 1.5 in agree-
ment with some of the present numerical results.

A nearly linear relation between Rex and G, a quantity
related to the dissipation of enstrophy, was observed, in
agreement with the observation that the skewness S-Re-I
with /3=1.04. Because /3>1 (so the inertial force increases as
Reynolds number increases), the result may be applicable to
the limiting case of zero Reynolds number-to the final pe-
riod of decay in which the inertial effect is negligible and the
double correlation coefficients approach a complete self-
similar state.

On the other hand, we believe there exists an upper limit
for the validity of the proposed similarity. At large Rex we
anticipate at least two length scales will be required, the
dissipation scale, V-X Re 1/2, and the energy scale,
SZ~X Rex.
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APPENDIX: MODIFIED SIMILARITY HYPOTHESIS

A modification to the George's similarity which is
sistent with (16) is discussed here. Instead of (17b), we
sider

f(r,t) =f1 (rIX) + Reg f2 (r/k)

and

k(r,t)=Rejl kl(r/X)+Refl 1 k,(r/X).

The expression for G (16) and skewness S thus becom

d4f I d4fl 02 [ R =15 | n+l

1 d 3k1 l 1Id 3k,
3 I- *~Reg

2d ~~ 2 d 13 = X

and

d 3 k 2 d3 k,
S= =-z Rex- I -v Rex l 

Two equations with four unknown functions are obtain
one substitutes (Al) and (A2) into Kirmin-Howarth e

tion. The boundary condition (22a) of f 1 has been chang

d4f, 15 (n+ 1) 1 d3klj
dX;l=: 7 \ n ) T2d-C3 l=o'

Most of all, provided 0<,8<1 and d - -k' 1"(0) < 0 and
c - -k'2'(0) > 0, a maximum S exists and occurs at
Re *=[d/c(Q3-1)IF1 '1. With Smax = /d/(- 1) - Re-' , we
obtain

S = I Rex + /J 1 Rex \ -1]

Smax / LRex * (I Re * (A6)

If 13 is universal, Eq. (A6) then provides an universal rela-
tionship between SISmax and Rex/Rex,. Although we have
observed a transient state before turbulence becomes fully
developed in Fig. 6 from all the simulations, we have diffi-
culties in getting a maximum S and its corresponding Rex*
because of the fluctuation of the data. Further simulations
concentrating on this transient state are expected to be per-
formed in the future.
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