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A/~racr -A general representation of a class of low passband sensitivity 
digital filter structures is proposed. The proposed representation for a 
transfer function of order N consists of an (N + l)-pair memoryless system 
terminated at N-pairs by delays. The (N + l)-pair system contains only 
adders and multipliers, and is described by an orthogonal transfer matrix. 
The set of terminating delays can be looked upon as an N-pair system with 
transfer matrix t- ‘1. Certain wave digital filter structures, Gray-Markel 
lattice structures and the coupled-form biquadratic section belong to the 
general form advanced here. Several properties satisfied in these special 
cases are derived in a unified manner using the generalized representation. 
Also, a quantization scheme that makes the structure free from zero-input 
limit cycles even under time-varying conditions is advanced, unifying 
similar such results independently reported for the above well-known 
structures. 

I. INTRODUCTION 

I N THE literature on digital filtering, a number of 
papers have drawn attention to the importance of ob- 

taining structures that perform satisfactorily under finite- 
precision constraints [l]-[9]. The importance of passivity 
concept in this regard has been identified in a number of 
these contributions. For example, wave digital filters [2], 
[3], well known for low-sensitivity properties, satisfy cer- 
tain passivity conditions [4].’ Likewise, the orthogonal 
digital filters, introduced by DeWilde and Deprettere [5], 
and the Gray and Markel structures [6], [7], are again 
known to have inherent passivity properties [9]. A general 
framework for low-sensitivity digital filters, based on the 
concepts of “bounded real” (BR) and “lossless bounded 
real” (LBR) functions and matrices has been recently 
advanced [lo], [ll]. The LBR property is essentially the 
characterizing feature of the well-known scattering matrices 
of lossless continuous-time multiport networks [12]-[14], 
and hence, plays a critical role in the synthesis of passive 
filters. 

.In an interesting development due to Barnes and Fam 
[15], it has been shown that state-space realizations of 
digital filters with a “minimum-norm” state transition 
matrix can be made free from overflow oscillations that are 
normally caused by quantization nonlinearities. Indeed, 
these structures also satisfy a passivity requirement. Thus 
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‘Fettweis [20] has also advanced and studied the concepts of pseudo- 
passivity and pseudolosslessness in certain generalized signal flow net- 
works. 

the “minimum-norm” state transition matrix of a stable 
minimal system is a BR (rather than LBR) matrix. (Indeed, 
if the state transition matrix were LBR, i.e., orthogonal, 
then all its eigenvalues would lie on the unit circle, imply- 
ing an unstable system.) Barnes and Fam also point out 
that the coupled form digital filter structure is a second- 
order minimum-norm system. In [9], Gray again draws 
attention to the passivity properties of the coupled-form 
structure, and proceeds to establish a number of results 
concerning suppression of limit cycles. In his earlier devel- 
opments, Fettweis [4], [16] establishes the crucial role of 
passivity for limit-cycle suppression in digital filters. (In 
fact, the orthogonal filter structures of Gray and Markel 
are known to be a special form of wave filters [17].) 

The main purpose of this paper is to derive these and 
new results in a unified manner, based on a general repre- 
sentation of the digital filter structures concerned. Among 
the issues considered here are certain kinds of stability 
properties under time-varying conditions, certain possibili- 
ties of avoiding parasitic oscillations (due to arithmetic 
rounding) and overflow under time-varying conditions, and 
some orthogonality relations. These properties are derived 
making use only of the property of “lossless bounded 
reality.” 

II. THE GENERAL FFMMEWORK 

We begin with a review of definitions. Let r(z) be a 
discrete-time transfer matrix defined by 

y(z) = ~ww 0) 

where U(z) and Y(z) are Z-transforms of input and 
output vectors, respectively. y(z) is called bounded real 
(BR) if (a) y(z) is real for real z, (b) Each entry of r(z) 
is stable, i.e., has all poles in 111 < 1, and (c) 
,?- +(ej“)y(e’“) is bounded above by the identity matrix 
1 for all w, i.e., 

V+.T+(ej”).T(ej”)V< V+V, for all V. (2) 

Here superscript dagger t denotes transposed conjuga- 
tion. The matrix y(z) is called lossless bounded real 
(LBR) if, in addition, (2) holds with equality for all w, i.e., 
if 9 t(ej”)fl(e’“) = 1 for all w. Thus for an LBR system, 

Y+(ej”)Y(ej”) =ZJ+(eja)U(ejw) (3) 

for all inputs U and all w. In the time domain, the LBR 
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property translates to 

(4 

for all finite energy inputs {u(n)}, assuming zero initial 
conditions. For a BR system, inequalitites of the form Q 
replace the equalities in (3) and (4). 

For the case of single-input, single-output systems, a BR 
transfer function H(z) satisfies ]H(z)] < 1 for all ]z] > 1 
unless H(z) is a constant equal to * 1. (In addition, if 
H(z) is allpass:, i.e., LBR, it can be shown that ]H( z) ] > 1 
for ]z] ( 1.) Note that each entry of a BR transfer matrix is 
individually BR. A structurally lossless (passive) system is 
one which satisfies the LBR (BR) property regardless of 
the values of the actual parameters characterizing the sys- 
tem, as long as they remain in a certain range. 

The wave digital cascade filters and the Gray-Markel 
lattice structures are based on LBR two-pair building 
blocks’ (or their denormalized versions) and many of their 
properties derive from the paraunitary property of an LBR 
system, namely, 9 ‘(z-‘)y(z) = 1 for all z. In addition, 
wave digital filters, Gray-Markel lattices and the coupled- 
form structure can all be represented in a unified manner 
in the form shown in Fig. 2 where r is a memoryless 
(N + 1)-pair digital structure containing only multipliers 
and adders. Appendix B includes a proof of this statement. 
In the case of wave filters, 9 can be assumed bounded real 
without any loss of generality, as wave filters can be 
normalized if necessary for this purpose. By connecting N 
of the terminal pairs with delays (which are LBR elements) 
an Nth-order RR function H(z) = Y( z)/U( z) is obtained. 
In the case of (:normalized) Gray-Markel structures, 9 is 
actually LBR, and the constraining of its N terminal pairs 
by a diagonal LBR matrix of delays gives rise to an 
Nth-order all-pass function H(z). Finally in the case of the 
coupled form N = 2 and y is strictly lossy BR for poles 
inside the unit circle and LBR for poles on the unit circle 
[9], [15]. (In fact for the coupled form, we ignore the 
presence of the input U and output Y. The two-pair 
obtained by extracting both the delays is designated y. 
The actual system input and output could be anywhere 
inside, and, in general, the transfer function does not 
constitute a BR function.) 

Before analyzing the structure of Fig. 2, we make the 
following observation: If an (N + M)-pair LBR structure 
is constrained at its N terminal pairs by an N-pair BR 
structure, the resulting M-pair is BR. Moreover, if the 
constraining N-pair is LBR, it results in an LBR M-pair. 
Note also that, unlike PR (positive real) matrices [14], a BR 
transfer matrix need not be a square matrix, and can, in 
general, be an R-input, M-output system. Thus the con- 
cept of “ports” is no longer necessary for the BR case. For 
the rest of the paper, however, we shall consider only 
square BR matrices. 

‘In Appendix A, an LBR two-pair is reviewed? where a digital two-pair 
is a two-input two-output systems, as shown in Fig. 1. 

:‘zl-Jx: 
Fig. 1. A digital two-pair. 

“-7 

Fig. 2. The unified representation. 

III. PROPERTIES OF THE GENERAL REPRESENTATION 

For generality, let us assume that the- (N + 1)-pair r 
shown in Fig. 2 is time-varying, but at each sampling 
instant satisfies r ‘(n)r(n) < 1. The time-invariant case 
is clearly included as a special case. We then have, 

y’(rz)+ f W,‘(Q) <u*(n)+ f x,!(n). (5) 
i=l i=l 

We also assume for the present that all arithmetic is 
performed with infinite precision and infinite dynamic 
range. Observing that xk(n) is a delayed version of wk(n), 
and summing (5) from 0 to M (M being any integer) we 
get 

5 y*(n)< 5 u*(n)+ f x?(o)- f x&w+l). 
P? = 0 n=O 1=1 i=l 

(6) 

If .F is actually LBR, the inequality in (6) becomes an 

equality and we have the following power balance equa- 
tion: 

Total output energy from n = 0 to n = M 

= [Total input energy from n = 0 to n = M] 

+ [(initial stored energy at n = 0) 

- (energy stored at n = M + l)] . (7) 

Moreover, from (5) we have for the lossless case 

y*(n) = 22(n)+ f x;(n)- ; x,‘(n +1). (8) 
i=l i=l 

Thus the “instantaneous output energy” is precisely the 
“instantaneous input energy” minus the instantaneous in- 
crease in internal energy. The input u(n) is the only source 
of energy and y(n) is the only means of energy extraction. 
If y is BR rather than LBR, then, in addition to the loss 
of energy via y*(n), there is also a loss of energy inside the 
structure resulting in an inequality rather than equality in 
(8). 

The results regarding stability, derived in [7] for infinite 
precision arithmetic, under time-varying conditions also 
hold under the above general setup. For example, a finite 
bound on the energy of the input sequence implies a finite 
bound on the energy of the output sequence, establishing 
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“ finite energy stability.” Similarly, “bounded mean-square 
stability” [7] also follows from (6). 

It is possible in the case of wave filters [4], [16], and the 
lattice structures and the coupled-form biquad [9] to avoid 
zero-input limit cycles by adopting suitable arithmetic 
schemes, even under time-varying conditions. We now note 
that there exists an essentially similar controlled-rounding 
scheme which can completely suppress granular zero-input 
limit cycles and overflow oscillations for the model of Fig. 
2 regardless of specific interconnections inside the (N + l)- 
pair. 

The controlled rounding scheme to be adopted is based 
on the observation that the (n + 1)-pair network Y(n) is 
memoryless and does not, therefore, have loops (we would 
otherwise have delay-free loops). As a result, there is no 
unlimited bit-accumulation due to multiplications in Y(n). 
We can therefore implement Y(n) without any quantizer. 
This means firstly, that extra least significant bits gener- 
ated by multiplications are not rounded off, and secondly, 
extra higher significant bits are retained instead of being 
allowed to overflow. Thus given u(n) and x(n) = 
[x,(n),-. -3 xN(n)]‘, the computation of r(n) and w(n) = 
[ wi( n), . .. . , w,,,(n)]’ is performed with full accuracy. There- 
fore, the following equation: 

(9) 
where the parameters A, 6, c’, d correspond to the usual 
state-space description, is implemented with full accuracy. 
Note that, in our developments the state-space parameters 
can, in general, be time varying. 

The quantizers which are obviously needed, one per 
disjoint loop in order to avoid unlimited bit accumulation, 
are inserted before the delays. Thus 

xi(n) = Q[wi<n -l>l (10) 
where Q[ .] denotes the quantization operation. We assume 
fixed-point arithmetic. The quantization scheme to be 
adopted is “magnitude truncation” for rounding purposes. 
In addition, any overflow bit at the input of the quantizer 
is simply dropped and does not appear at the output of the 
quantizer. In this manner, we have 

xi’(n) < wf(n -1) ill) 
6$(n) A w?(n -1)-x?(n) > 0 (12) 

and quantization always leads to loss of energy. 
Now, under infinite precision arithmetic, in the absence 

of an input, (5) leads to 

i.e., 

wyn)w(n)-xr(n)x(n) Q -y*(n) 034 

x’(n+l)x(n+l)-+)x(n)<-y*(n). (13b) 

Thus under infinite precision conditions, the internal en- 
ergy always decreases, whenever y(n) is nonzero, i.e., as 
long as a portion of the stored energy is “observable” at 

the output, it continues to decrease. But, in the limit as 
n + co, it is not clear why r’(n)x(n) should not approach 
a nonzero lower bound. However, in practice, with finite 
wordlength arithmetic, if the quantization scheme de- 
scribed above is adopted, (13a) still holds, but instead of 
(13b) we get 

X+z+l)x(n+l)=Q[ru’(~)]Q[W(?r)] 

< xf(n)x(n)- y*(n). (14) 

Thus as long as y(n) does not become identically zero for 
all n 2 some NO, the result of the quantization (magnitude 
truncation) is to reduce the internal energy by a nonzero 
amount. Consequently, regardless of the initial energy, 
under zero-input conditions, the internal energy drops to 
zero after a finite number of iterations. 

The two crucial factors involved in the suppression of 
limit cycles in the above manner are that (a) the output 
does not identically vanish for all n > some NO when x’x is 
nonzero, and that, (b) the controlled rounding described 
above has been adopted. If these are satisfied, then the 
“instantaneous LBR or BR property” of Y(n) ensures the 
rest. Condition (a), which is an observability requirement, 
corresponds to the “nonexistence” requirement of “degen- 
erate sections” in the case of the Gray-Markel lattices [9]. 
Note that Y(n) does not necessarily have to be lossy, for 
avoiding zero-input limit cycles. 

In the case of the coupled-form biquad, the representa- 
tion of Fig. 2 does not explicity show an output y and an 
input U. Thus in our equations such as (13), the y*(n) term 
should be replaced with zero. However, if the coupled form 
poles are strictly inside the unit circle, the 2-pair structure 
is strictly lossy [9], and we have strict inequality in (13). 
Therefore, if the proposed arithmetic quantization scheme 
is adopted, the conclusions derived above remain valid. 

Finally, it should be noted that, due to the quantization 
of the multiplier values in the ‘matrix F(n), it may 
not be possible to ensure the orthogonality condition 
5 ‘(n).T(n) = 1 in practice. However if the quantization 
of parameters is properly chosen, the quantity Y(n) can 
be made lossy, i.e., Y’(n).?-(n) Q 1, and the conclusions 
of this section remain valid. 

IV. PROPERTIESOFCASCADED LBR TWO-PAIR 

Consider now the cascade of LBR two-pairs as shown in 
Fig. 3. We call this the H-cascade, to distinguish it from 
conventional multi-input multi-output cascade. It can be 
shown that a H-cascade of LBR two-pairs is an LBR 
two-pair. Thus Fig. 3 is essentially an LBR two-pair 
constrained by the function M,(z). The normalized 
cascaded-lattice structures due to Gray-Markel are of this 
form where each two-pair has the transfer matrix 

\Il- k;5 -z-l 

- k,z-’ 
(15) 

SO that Yi(z-‘)Y,,,(z) = 1, and moreover, the constrain- 
ing transfer function Mb(z) = 1. In the case of cascaded 
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Fig. 3. The terminated LBR cascade. 

wave digital .filters, each two-pair can once again be 
considered LB:R (if the external adders are scaled properly) 
but the constraining function M,, is typically a constant 
with magnitudle less than unity. 

In this section, we derive certain properties of the struc- 
ture of Fig. 3, without making specific assumptions about 
the forms of the two-pairs or MO(z), except that the 
two-pairs are L.BR and that M,(z) is an LBR function. We 
do, however, assume that the structure is “minimal” or 
“canonic” in terms of the number of delays. Also, all 
transfer functions involved are assumed to be stable, under 
infinite-precision conditions. The derivations make exten- 
sive use of the paraunitary properties of digital LBR two- 
pairs, listed in the Appendix. 

Any LBR two-pair constrained by a scalar LBR also 
gives rise to a scalar LBR. So, if we are interested in X, in 
Fig. 3, we can redraw it as in Fig. 4, with G,(z) a scalar 
LBR function and r(z) an LBR two-pair with compo- 
nents pjj. Define 

Y,(z) G(z) A - X3(") 
X,(z) 

H,(z) p - 
x,(z) 

(16) 

We now state and prove a number of properties of a 
constrained LBR two-pair: 

Property I: Qrthogonality-G(z) and H3( z) are ortho- 
normaL i.e., 

(H,,G) L &&H3(z-1)G(z)z-1dz=~ (17) z 

provided, there’is no direct (delay-free) path from X3 to 
Y,. Moreover, Twhen Y, = X3, which happens if T12 = Tzl = 
1, T,, = Tz2 = 0, the value of this integral is equal to unity. 

Proof: Write G(z) and H,(z) in terms of transfer 
matrix parameters 

G(z) = T,,(z)-A(z 
l- T,,(z)Gdz) 

T,,(z)G,(z) 
“3(z)= l-T,,(z)G,(z) 08) 

where 

A(z) = LwT,,(+ M4M4. 
So ( H3, G) takes the form4 

(ff39G) 

rl;,(z)~,(z)[T,,(z)-A(z)G,(z)lz-’ =- 
&$,=I [1-~*;2(z)~‘O(~)][1-T22(~)GO(~)] dz’ 

09) 

3 Here (. , ) denotes an inner product. 
4Superscript tilde stands for transposition followed by replacement of z 

with 2-l. 

Yl 
Fig. 4. Simplification of Fig. 3 

As such, it does not seem possible to proceed further 
because the exact forms of q.j and G, are not given. 
However, the constraints imposed by LBR properties lead 
to significant simplifications as shown next. 

The numerator N(z) of the integrand in (19) is 

N(z)=~,,[~~~T~,-A~~~G~]z-~. (20) 
Using the properties of LBR two-pairs given in Appendix 
A, we can show that 

- Ai?& = T12 
and that 

Thus (20) reduces to 

N(z)=~,T,,[G~-~~;*]z-~ 

and since G, is LBR, we finally arrive at 

N(z) = T,,(z)[l- ~2;,(z)G,(z)]~-‘. 

Consequently, (19) simplifies to 

With a change of variables, z -+ z-l this becomes 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Now, the poles of the integrand are at z = 0, and at the 
points where 

l-GO(z)~*;z(z)=o (27) 
is satisfied. But TT2 and G, are both BR functions and 
satisfy the inequality, 

IGol ~1 IL1 ~1 (28) 
outside the unit circle. So, the quantity on the left-hand 
side of (27) cannot be zero in ]z] < 1, unless both G,,(z) the 
Tx2(z) are constants. But in view of realizability con- 
straints, this is not possible. 

In view of the minimality assumption, there is no 
pole-zero cancellation in (18). Moreover, by stability as- 
sumption, there cannot be an uncanceled zero of [l- 
G,( z)T,,( z)] on the unit circle. This means, essentially, 
that (27) does not hold at any point on the unit circle. Thus 
the integrand in (26) is analytic everywhere on the unit 
circle. Therefore, the only pole of the integrand inside the 
contour is at z = 0. This gives 

82 (0) M4 
(H3’G)= 1-G’o(0)FZ;2(O) = l-G,(co)T,,(m) (29) 

and as there is no direct path from X3 to Y,, T,, has a 
forward delay, so T12(co) = 0, proving (17). 
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(4 

(b) 
Fig. 5. (a) Generalization of orthonormality property. (b) Proving the 

generalization. 

Next consider the case when X3 and Y, are equal. Now, 
T12 = TZ1 = 1 and by LBR property, T,, = T12 = 0, hence 
from (29), (H,, G) = 1. This completes the proof. 

Note that the above sequence of arguments depends 
strongly upon the LBR nature of r(z) and G,(z). We 
now consider a generalized version of this property: 

Consider now Fig. 5(a). Define 

X2(“> H,(z) A - X3(4 

Xl(“) 

H,(z) 2 - 
Xl(Z) . 

(30) 

Property 2: General Statement of Orthogonality 
Unless there is a direct path from X3 to X,, H3(z) and 

H2( z) are orthogonal: 

(Hz, H3) = 0. (31) 
Proof: Define 

x2(4 H;(z) A - X3(“> 

Y,(z) 

H;(z)=- Y,(z) 

Y,(z) 

w(z) = - 

Xl(“). 

Hence, 

H,(z) = fG(z)JJ’(z) 
and 

(32) 

H,(z) = fGww (33) 

(Hz, H3) = &($=l&(z)Hd’)z-ldz 

1 =- 
6 2rj IZI=I 

ii;(z)H;(z)F%‘(z)W(z)z-‘dz. 

(34) 

The quantity l%‘(z)W(z) is bounded on the unit circle 
(though not by unity) by, say, K > 0. Then, 

&‘(z)H;(z)z-ldz = 0 (35) 

by Property 1. Now refer to Fig. 5(b). Here 

A3 .----ff 

Xl 
? 

where H3 is the quantity appearing in the above equations. 
Clearly, the multiplier M, = - 1 can be incorporated into 
the constraining transfer function and the multiplier 

M2 = - 1 can be incorporated into the LBR two-pair yZ. 
But - G, is still LBR, and FZ, thus modified, is still an 
LBR two-pair. Therefore, 

(Hz, H3) = -(Hz, H3) G 0. (36) 

Thus (35) and (36) imply (31) proving the property. 
A third property we wish to consider is the following: 

Consider again Fig. 4, where an LBR two-pair y(z) is 
terminated by scalar LBR function G,(z). Define 

Y,(z) w(z) = - 
Xl(Z) . 

Property 3: Normalization-W(z) is normalized in the 
I,-sense, i.e., 

(w,W) 4 &&w(z)W(z)z-‘dz =I (37) 
z 

even though the inequality, IW(z)l < 1 may not hold for 
each z on the unit circle. 

Proof: We have 

T,,(z) 
w(z)= l-G,(z)T,,(z) 

hence, 

w> w = WI; 

(39) 

Because of realizability constraints, we have a forward 
delay in G,( z)TZ2( z), therefore, 

[l-Go(z)T,&)l lz=o = 00 (40) 

indicating that the pole at z = 0 due to the z-l factor is 
cancelled. In view of the LBR properties of F(z) and 
G,(z), the only possible poles of the integrand in IzI < 1 
are solutions z0 of _ 

l- G,(dT,,(z,) = 0 (41) 

i.e., 

G;,(z,)= l ---=Mzd G&o) (42) 

and the quantity, 

becomes, in view of LBR property, 

1 - T&2 
1 - T&;, = lf z = Z” 

So, the integral in (39) is the same as 

4 

-1 

2ij Isl=l l- E,T,,(z) 
dz. 

(44) 

(45) 
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A change of variables leads to 

So, the only pole to be considered is at z = 0, and we have 

“wII 2’ 
1 

= l-G,(co)T,,(co) =’ 

where, we have used the fact that Got,, = 0 in 
view of realizability. A consequence of the above property 
is the following: Consider an all-pass filter with unity gain. 
If we extract a delay, the remaining two-pair can be 
assumed to be LBR without loss of any generality. We then 
have the situation shown in Fig. 4, with z-l in place of 
G,(z). Property 3 above shows that the “stored signal”’ is 
scaled in I,-sense. Note that Property 3 is generalization of 
the well-known scaling property of the normalized lattice 
[7]. ” 

None of the properties proved above require that the 
LBR two-pairs be reciprocal. fhe properties shown indi- 
cate that, in an LBR cascade as shown in Fig. 3, the 
external nodes, are normalized in an I,-sense. However, 
adders appearing inside each two-pair are not necessarily 
scaled. 

V. CONCLUDING REMARKS 

Some of the results derived in this paper have already 
been reported in the literature, by analyzing specific cir- 
cuits in an independent manner. Thus in the case of wave 
filters [4], [16], the properties satisfied by various elements 
including the a.daptors are individually analyzed, and then 
tied together i:n order to obtain many important conclu- 
sions. Similarly, the specific transfer matrices of the lattice 
two pairs are analyzed in [7], [9] in order to obtain proper- 
ties satisfied by the -cascaded lattice structures. In this 
paper, we obtain these and other conclusions, based only 
upon the paraunitary property, and do not assume any- 
thing further a’bout the specific details of the circuit. 

APPENDIX A 

A digital two-pair (Fig.1) with inputs X,(z) and X,(z) 
and outputs Y,(z) and Y,(z) is described by its transfer 
matrix Y(z): 

(Al) 
or equivalently by its chain matrix II(z): 

(A21 

An LBR two-pair has a transfer matrix which satisfies the 
paraunitary property, i.e., 9 ‘( z-l)Y(z) = 1 for all z. 

‘Signal stored in the memory element 2-l. 

Fig. 6. An LBR cascade. 

YI 
LBR 

u2 

Fig. 7. The unified representation of the cascade of Fig. 6. 

Cascade of mLBR two-p&s (m+l)-th LER two-pair 
I I 

- V, n 

U 

Fig. 8. Inductive proof of the representation. 

In what follows, superscript “ - ” stands for replacement 
of z with z-l, and corresponds to complex conjugation on 
the unit circle, lzl = 1. The following properties hold for 
LBR two-pairs: 

(i) TIlTI;, = T121&, T,,f'l;, = T,,Fz;, for all z. 

In particular, on the unit circle, for an LBR two-pair, 
IT,,l = ITz21 and IT&l = IT,,1 for all steady-state frequencies 
w. 

(ii) ]Tj] <l if]z] 21 

ITjl < ’ if I zI > 1 unless Tij is a constant 

(iii) l+BB=AK, 

BB=Cc;,, 
C(AD-BC)=B 

(iv) CD=AB, 

cA=bB, 
(AD-BC)(~&E;)=~, 

AA=Db. 
(Set (iii) is necessary and sufficient for paraunitariness.) 

APPENDIX B 

In this appendix, we justify the representation of Fig. 2. 
Consider the cascade of Fig. 6 where each two-pair is a 
“basic” LBR two-pair, i.e., LBR two-pair of order one or 
two. We first show that this cascade can be represented, as 
shown in Fig. 7, where all N delays have been extracted, 
leaving behind an LBR (N + 2)-port. (The number of de- 
lays N in the cascade of Fig. 6 depends on the orders of 
the two-pairs, and is in the range [ M,2M].) The proof is 
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Fig. 9. The normalized lattice structure. 

based on induction on the number. of two-pairs in the 
cascade. Let us assume the representation of Fig. 7 to be 
valid for M < m + 1. We then establish the validity for 
M = m + 1. Fig. 8 depicts the situation, where the new 
(m + 1)-th two pair is first-order LBR. By the induction 
hypothesis, for the cascade of m LBR two-pairs, we have 

lUl(eju)12 + lVl(eju)12 + lXI(P)12 + . * * + lXn(eju)12 

=IYl(ei”)l~+lV2(ei”)~2+IWl(e~w)~2+ .--lWn(eja)12 

(A3) 
and for the (m + 1)th LBR two-pair, we get 

lV2(e+)12 + lU2(eju)12 + lXn+I(ejw)12 

= IVI(eju)12 + lY2(eju)12 + IWn+I(ejw)12. (A4) 

From (A3) and (A4) we get 

lUI(ejm)12 + lU2(eia)12 

+ IXl(ej0)12+ ... + JXn+I(ejw)12 

= (YI(ejw)12 + IY2(eju)12 

which shows that the (n + 3) X( n + 3) delay-free circuit is 
indeed LBR. If the (m + 1)th two-pair is of second order, 
the proof is similar, except that resulting circuit is an 
(n +4)x(n +4) LBR. 

It only remains to establish the basis for the induction. 
This is done by showing that all first- and second-order 
two-pairs under consideration have the representation of 
Fig. 7. For example, consider the first-order normalized 
Gray-Markel lattice structure (Fig. 9). The relevant 3 X 3 
matrix is seen to be 

[ 

0 J1-kz 

d&O -k 
0 1 0 1 

which is clearly LBR. The coupled form structure is known 
to be a lossy version of the normalized lattice [9], and 
hence leads to a BR rather than an LBR multiport. Next, 
consider a typical first order two-pair in a wave digital 
filter. It is shown in [lo] that such two-pairs can be 
implemented in the form of Fig. 10, where Y3 is LBR. 
Finally consider a typical second-order wave digital two- 
pair. A minimal realization of such a two-pair can always 
be obtained with two-delavs. and this realization can be 

Fig. 10. The first-order wave two-pair. 

redrawn as in Fig. 7 with N = 2. One way to prove this is 
with the help of the discrete version of the “Lossless 
Bounded Real Lemma,” discussed in [14]. The details are 
omitted here, in the interests of brevity. 

The representation of Fig. 2 follows immediately from 
Fig. 7 because, in all the structures of interest, the input U, 
is constrained to be 

U,=a*Y, 

where Ial < 1. 

PI 
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