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Propositional Relevance through Letter-Sharing  

 

David Makinson 

 

 

Abstract  

 

The concept of relevance between classical propositional formulae, defined in terms 

of letter-sharing, has been around for a long time. But it began to take on a fresh life 

in the late 1990s when it was reconsidered in the context of the logic of belief change. 

Two new ideas appeared in independent work of Odinaldo Rodrigues and Rohit 

Parikh: the relation of relevance was considered modulo the choice of a background 

belief set, and the belief set was put into a canonical form, called its finest splitting. In 

the first part of this paper, we recall the ideas of Rodrigues and Parikh, and show that 

they yield equivalent definitions of what may be called canonical cell/path relevance. 

The second part presents the main new result of the paper: while the relation of 

canonical relevance is syntax-independent in the usual sense of the term, it 

nevertheless remains language-dependent in a deeper sense, as is shown with an 

example. The final part of the paper turns to questions of application, where we 

present a new concept of parameter-sensitive relevance that relaxes the 

Rodrigues/Parikh definition, allowing it to take into account extra-logical sources as 

well as purely logical ones.   

 

Keywords: relevance, letter-sharing, belief change, splitting, language-dependence.  

 

 

From Syntactic to Canonical Cell/Path Relevance 

 

1. Logical Relevance as a Two-Place Relation between Formulae 

 

Attempts to give formal expression to the notion of relevance between propositional 

formulae go back at least to Belnap (1960), who suggested that a necessary, but not 

sufficient, condition for one formula to be relevant to another is that they share some 

elementary letter. We call this syntactical relevance. 

 

Definition 1.1. Let a,b be formulae of a given propositional logic. They are 

syntactically relevant to each other iff they share some elementary letter. 

 

In the same paper, Belnap went on to propose that relevance of antecedent to 

consequent should serve as an adequacy condition for any acceptable entailment 

relation in propositional logic. While classical logic fails syntactic relevance, his 

subclassical logic E (for ‘entailment’) satisfies that formal condition, as do a number 

of other subsystems of classical logic that came to be known as ‘relevance logics’.  

 

The present paper is not at all concerned with such relevance logics, and we have no 

desire to weaken the classical one. We are interested in the concept of relevance itself. 

Our purpose is to see how far the simple idea of letter-sharing may be developed into 

a well-behaved formal account of relevance in classical propositional contexts, and 

examine its application to the theory of belief change. 
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Poor behaviour of syntactic relevance. (1) The relation is syntax-dependent. In other 

words, formulae a,b may be classically equivalent to a,b respectively, and a relevant 

to b but a not relevant to b. Moreover (2), for any a, b there are a, b to which they 

are respectively classically equivalent, with a syntactically relevant to b. 

 

Example 1.1. For (1), the formula p(pq) is syntactically relevant to q, but the 

former is classically equivalent to p which is not relevant to q when these letters are 

chosen as distinct. For (2), just put e.g. a  a(rr) and b  b(rr).  
 

Notation. We are using p,q,… for elementary letters, a,b,..,x,y,… for arbitrary 

formulae, A,B,..,K,… for sets of formulae, and ├, ┤├  for the relations of classical 

propositional consequence and equivalence. Classical consequence as an operation is 

written Cn, with Cn(A)  {x: A├ x} as usual. A formula is called contingent iff it is 

neither a tautology nor a contradiction. 

 
To overcome the shortcomings of the syntactic notion, an obvious first move is to 

express each formula in its least letter-set, using the well-known least letter-set 

theorem:  

 

Theorem 1.1. For every set A of formulae, there is a unique least set of elementary 

letters such that A may equivalently be expressed using only letters from that set.  

 

Example 1.2. The unique least letter-set of p(pq) is {p} since p(pq) is 

equivalent to p. On the other hand, the unique least letter-set of p(rq) is 
{p,q,r}, as the formula is not equivalent to any other formula lacking any of those 

letters.  

 

Comments on least letter-set theorem. This theorem should figure in every textbook 

of elementary logic, but in fact is rarely so much as mentioned. We recall:   

 

 Strictly speaking, it holds in this simple form only when the language has a 

primitive zero-ary operator (propositional constant) such as the falsum . In 

such a language, the least letter-set of any tautology or contradiction is . 

Without a zero-ary connective, say with just ,,, tautologies and 
contradictions have many minimal letter-sets (in fact, all the singleton letter 

sets), but no least one (since no formula is bereft of letters). For simplicity of 

formulation, in this paper we work with the falsum.  

 

 Intuitively, the least letter-set theorem is just what anyone would expect, but it 

needs proof. Getting minimal letter sets is trivial since every formula contains 

only finitely many letters. But getting a least one (which, by the antisymmetry 

of set-inclusion, will be unique) requires a bit more work – see e.g. the 

appendix of Makinson (2007).  

 

 Letters in the least letter-set of A are said to be essential (to A) or irredundant 

(in A), those outside are called inessential or redundant (in A). 
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 With this terminology, the theorem may be stated in another manner: the set of 
all letters separately redundant in A, is jointly redundant in A, in the sense that 

A may equivalently be expressed without any of them.  

 

When a formula a has no redundant letters, i.e. when all letters occurring in a are in 

its least letter-set, we say that it is in least letter-set form. It is convenient to use a 

choice function, writing a* for an arbitrarily chosen formula in least letter-set form 

that is equivalent to a. The formula a* is called a least letter-set version of a. 

Likewise for sets A of formulae. 

 

Definition 1.2. Let a,b be formulae of classical propositional logic. They are said to be 

essentially relevant to each other iff a*,b* share some elementary letter. Equivalently: 

iff every formula equivalent to a shares a letter with every formula equivalent to b. 

 

Example 1.3. Although p(pq) is syntactically relevant to q, it is not essentially 

so, since (p(pq))* = p shares no letter with q* = q. 
      

Features of essential relevance 

 It is syntax-independent in the usual sense: when a, b are tautologically 

equivalent to a, b respectively, then a is essentially relevant to b iff a is 

essentially relevant to b (immediate from definition). 

 No two distinct elementary letters are relevant to each other (immediate from 
definition).  

 It is symmetric (immediate from definition). 

 Reflexive? Nearly: every contingent formula is relevant to itself. Non-
contingent formulae are not relevant to anything (given the presence of the 

falsum in our language). 

 Not transitive. Example: p is essentially relevant to pq which is so to q, but p 

is not to q. 

 Cannot be ‘made transitive’: its transitive closure makes any two contingent 
formulae relevant to each other. Verification: Take contingent a,c. Since they 

are contingent, a* and c* contain letters p and q. Put b = pq = b*.  Then a is 

essentially relevant to b, also b to c, so transitive closure would make a 

relevant to c.  

 

This is all part of the folklore and well documented in the literature (see Appendix A). 

However, things began to take a fresh turn in the late 1990s, when a few people began 

thinking about relevance in the light of formal accounts of belief change. Two basic 

insights emerged. The first was that in that context, the relevance or irrelevance of one 

formula to another may be taken to depend not only on the formulae themselves but 

also on the choice of a background belief set. The second was that this belief set may 

be given a canonical form known as its finest splitting.  

 

As these developments are not very widely known, we explain and comment on them 

in the following two sections. To help the reader keep track of successive definitions, 

Appendix B contains a table of all the different kinds of relevance examined in the 

text. 
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2. Path-Relevance Modulo a Belief Set  

 

Consider any three distinct elementary letters p, q, r. They are not essentially relevant 

to each other. Now consider the belief set K = {pq, qr}. Then it is natural to say 
that from the point of view of K, the letter p is relevant to q, q is relevant to r, and p is 

indirectly relevant to r.  This suggests the following definition. 

 

Definition 2.1. (Rodrigues). Let a,b be formulae of classical propositional logic, and 

let K be a set of formulae serving as a belief set. We say that a is path-relevant to b 

(mod K) iff there is a finite sequence x0,…xn+1 (n  0) of formulae with x0 = a*, xn+1 = 

b*, x1,…,xn  K, and each xi shares at least one letter with xi+1. 
 

Comments. Note that x1,…,xn are required to be elements of K. Thus we are looking at 

finite paths through K. On the other hand, it is not required that either of x0 = a*, xn+1 

= b* is in K (although of course they may be). We do not require that K is closed 

under consequence (though it may be): a belief set is understood to be an arbitrary set 

of formulae of propositional logic.   

 

History. Essentially this notion was introduced by Rodrigues in his thesis (1997), 

Appendix A, definition 8.14. It was also used by Renata Wassermann in her thesis 

(1999) and in subsequent papers e.g. Riana and Wassermann (2004). Actually, these 

authors took a,b instead of a*,b* in the definition, but we have refined it to ensure 

that it is syntax-independent in those two arguments.  

 

Path-relevance generalizes essential relevance in a natural way: the latter amounts to 

the case n = 0 in Definition 2.1. Like essential relevance, path relevance is:  

 

 Syntax-independent in a,b, symmetric, almost reflexive (in the same sense), 

not transitive (even when n  0). 

But with K as parameter, new features emerge. One is rather positive: 

 Distinct elementary letters can be relevant to each other (mod K). Example: 

Modulo K = {pq, qr, s}, p is path-relevant to r but not to s. 

However, some other features are rather undesirable: 

 The relation is syntax-dependent in K. Example: Add to the above K the 

formula (rs)(sr). As this is a tautology, it does not change the strength of 

K. But p is now path-relevant to s.  

 The relation trivializes when the belief set is closed under classical 
consequence. That is, when K = Cn(K), any two contingent formulae a,b are 

path-relevant to each other modulo K. Reason: Since a,b are contingent, each 

of a*, b* has at least one letter. Take any letter p in a*, any letter q in b* and 

note that Cn(K) contains any tautology in these letters, e.g. (pp)(qq). 

 

Can we get around these unpleasant features? One might try tweaking Definition 2.1 

by replacing K by its least letter-set version K*. However, this does nothing to 

eliminate syntax-dependence in K. Example: Both K = {pq} and the equivalent J = 
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{p,q} are already in least letter-set form, but under Definition 2.1 we have p path-

relevant to q modulo K, but not so modulo J.  

 

A better idea is needed, and one was provided by Rohit Parikh in 1999. As well as 

minimizing the set of elementary letters, we need to disentangle them. The formulae 

in the background belief set K need to be ‘combed out’ so that their letters are not 

mixed up with each other more than necessary. In other words, we need to render K as 

modular as possible. Parikh made this idea precise with his concept of the finest 

splitting of a belief set. 

 

 

3. Splittings and Finest Splittings of a Belief Set 

 

We begin with the definition of a splitting of a belief set K, and then pass to that of a 

finest splitting. Notation: We write E(K) for the set of all elementary letters occurring 

in formulae of K, and E0(K) to be the least letter-set of K, i.e. E0(K)  E(K*).   
 

Definition 3.1. (Parikh) Let K be a contingent belief set, expressed in the language of 

classical propositional logic (with a zero-ary connective). Let E = {Ei}iI be a 

partition of its least letter-set E0(K), which by contingency will be non-empty. We say 

that E is a splitting of K iff there is a family {Bi}iI of sets of formulae such that each 

E(Bi)  Ei and K  ┤├      {Bi}iI. In other words, iff K can be represented as the union of 

belief sets each of which uses only letters from one of the cells of the partition. 

 

Background on partitions. (1) Recall that a partition of a non-empty set is a family of 

disjoint non-empty subsets of that set, whose union exhausts the set. (2) The partitions 

of a set can be put in one-one correspondence with the equivalence relations over the 

set. (3) One partition is said to be finer than another iff the equivalence relation 

associated with the former is included (set-theoretically) in the equivalence relation 

associated with the latter; equivalently, iff every cell of the first partition is a subset of 

a cell of the second one. (4) Given any non-empty family of partitions of a set, the 

intersection of all the equivalence relations associated with partitions in the family is 

itself an equivalence relation over the set, and so corresponds to a partition of the set. 

With respect to the fineness relation, it is the infimum (alias greatest lower bound or 

glb) of the family of partitions. 

 

Comments on the definition of splitting. (1) A splitting of K is thus a special kind of 

partition of the least letter-set of K; it is not a partition of K itself. (2) While each 

E(Bi)  Ei  E0(K) it is not required that the sets Bi  K, although their union {Bi}iI 

must be classically equivalent to K. (3) Since each E(Bi)  Ei and the Ei are pairwise 

disjoint, the Bi must be ‘almost’ pairwise disjoint, in the sense that they share no 

formulae containing elementary letters. (4) Since E0(K) is the least letter-set of K and 

K is assumed contingent, it follows that in a splitting each Bi is non-empty and in fact 

E(Bi)  Ei. (5) This definition (and all those that follow) may be extended to cover the 
limiting cases that K is inconsistent or tautologous, but at the cost of limiting-case 

clauses in definitions, theorems and proofs that distract from the main ideas. 

 

History. Actually, Parikh (1999) defined splittings of K for any letter-set E  E0(K), 

e.g. E could be E(K) or the set E(L) of all letters of the language. However, it 
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simplifies formulations to fix it at E0(K). For instance, when E  E0(K) then comment 

(4) above can fail at the edges. Example: Put K  {p, qq}, E  E(K)  {p,q}, B1 

{p} but B2 can be {} or  so that E(B2)  E2  {q}.  

 

Example 3.1. K = {pq, qr, ps, s, (rt)(tr)}. 
 

 E(K) = {p,q,r,s,t} but t is redundant, so E0(K) = {p,q,r,s}.   

 The coarsest splitting of K is evidently the singleton partition of E0(K) with  

E0(K)  {p,q,r,s} itself as the only cell, so that {Bi}iI  B1 = {pq, 

qr, ps, s} ┤├      K. But we can do better than that.  

 A less coarse splitting of K partitions E into two cells E1 = {p,q} and E2 = 

{r,s}, taking B1 = {p,q}, B2 = {r,s}, so that K ┤├     B1 B2.  

 The finest splitting of K partitions E into four singleton cells {p}, {q}, {r}, {s} 

with B1 = {p}, B2 = {q}, B3 = {r}, B4 = {s}, so that K ┤├     B1…B4.  
 

In this very simple example, the finest splitting of E has singleton cells and the 

associated sets B1 to B4 consist of literals. Of course, neither of these features need 

hold. For instance, take K = {(pq)(rs)}. Its finest splitting is into the two-

element cells {p,q}, {r,s}, with B1 = {pq}, B2 = {rs} consisting of non-literals. 
 

Theorem 3.1. (Parikh 1999). Every contingent set K of formulae of classical 

propositional logic has a unique finest splitting.  

 

History. Theorem 3.1 was established for the finite case by Parikh (1999). It was 

extended to the infinite case by Kourousias and Makinson (2007), using a new form 

of interpolation called ‘parallel interpolation’. Both parallel interpolation and the 

finest splitting theorem may be extended to first-order logic.  

 

Comments on the theorem. Strictly speaking, it is the finest splitting E = {Ei}iI of 

elementary letters that is unique. Given such a family, there will evidently be many 

families {Bi}iI with {Bi}iI  ┤├      K and E(Bi)  Ei. However, since in fact each E(Bi) 

 Ei, the different ways of choosing a given Bi do not affect its letters. Moreover, it 

turns out that:  

 

Observation 3.2. For contingent K the Bi associated with the finest splitting of K are 

unique up to tautological equivalence. That is: let K be a contingent belief set, and E 

= {Ei}iI its finest splitting. Suppose  both K ┤├     {Bi}iI and K ┤├     {Bi}iI where 

E(Bi)  Ei and E(Bi)  Ei. Then each Bi ┤├     Bi. 

 

Sketch of proof. This follows from the fact that the Bi are pairwise disjoint. For the 

details, see Appendix C.  

 

Again, it simplifies formulations if we use a choice function: 

 

Definition 3.2. For contingent K, write K
#
 for {Bi}iI for some particular such family 

{Bi}iI. We abuse terminology a little by also calling K
#
 the finest splitting of K.  
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Comments on the definition of K
#
. (1) Clearly, when K1 ┤├     K2 then K1

#
  K2

#
. (2) Keep 

in mind that the family {Bi}iI is not necessarily a partition of K, but is formed from a 
certain partition of its least letter-set E0(K). (3) Note that when the finest splitting E = 

{Ei}iI of K has at least two cells, then K
#
 cannot be closed under classical 

consequence –the conjunction of any two formulae from different cells will be in 

Cn(K
#
) but cannot be in K

#
. Even when there is only one cell, K

#
 need not be closed 

under consequence. (4) As we have defined it, the finest splitting K
#
 is always a least 

letter-set version of K. However, a least letter-set version K* of K need not be a finest 

splitting, as in the following simple example.  

 

Example 3.2. Put K  {pq}. Then K is already in a least letter-set form, since there is 

no equivalent set of formulae in fewer letters. But it is not in a finest splitting form, 

since K ┤├     {p}{q}, which partitions E(K) into two singleton cells.  
 

Indeed, if we take a least letter-set version of a belief set K and tangle the letters up in 

any way we like, then so long as we keep it equivalent to K and do not introduce fresh 

letters, we are still in the least letter-set but can be far from a finest splitting. 

 

 

4. Using Finest Splittings to Define Canonical Relevance (Modulo a Belief Set) 

 

How can finest splitting help make the notion of relevance modulo a belief set fully 

syntax-independent in K as well as in a, x? We may see the finest splitting K
#
 = 

{Bi}iI of K as a canonical form for the belief set K, disentangling the roles of the 

different elementary letters as far as is possible without altering the power of K and at 

the same time (under our definition) eliminating redundant letters. We can then refine 

Rodrigues’ notion of path-relevance by taking the path through this canonical 

representation K
#
 instead of through K itself. Thus, replacing x1,…,xn  K by x1,…,xn 

 K
#
 in Definition 2.1, we have the following:   

  

Definition 4.1. Let a,b be formulae of classical propositional logic, K a contingent set 

of formulae serving as a belief set, and K
#
 the finest splitting of K. We say that a is 

canonically path-relevant to b (mod K) iff there is a finite sequence x0,…xn+1 (n  0) 

of formulae with x0 = a*, xn+1 = b*, x1,…,xn  K
#
, and each xi sharing at least one 

letter with xi+1. 

 

Features of canonical path-relevance modulo K: 

 This time x1,…,xn are required to be elements of the canonical form K
#
, so we 

are looking at finite paths through K
#
 (rather than through K itself). As before, 

it is not required that either of x0 = a*, xn+1 = b* is in K
#
 (although of course 

they may be).  

 As desired, path-relevance becomes syntax-independent in the usual sense that 
it is invariant under logical equivalence in argument K as well as in a, b.  This 

follows from the fact, noted in the comments after Definition 3.2, that 

equivalent belief sets have the same finest splitting K
#
.  

 Like plain path-relevance, it is symmetric but not transitive (in the arguments 

a,b with K fixed); almost reflexive (in the same sense as before); distinct 

elementary letters can be relevant to each other (mod K).   
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There is another way of arriving at the same concept. It also uses Parikh’s notion of 

the finest splitting K
#
 of K, but does not consider paths. Instead, it looks at cells.  

 

Definition 4.2. (Parikh 1999). Let a,b be formulae of classical propositional logic and 

K be a contingent set of formulae serving as a belief set with E = {Ei}iI the finest 
splitting of K. We say that a is canonically cell-relevant to b (mod K) iff either a* 

shares some letter with b*, or there is a cell Ei of E such that each of a* and b* shares 

some letter (not necessarily the same letter) with Ei.  
 

More formally: iff either E(a*)E(b*) is non-empty, or for some i  I, each of the 

sets E(a*)Ei and E(b*)Ei is non-empty. 
 

Table 4.1: Illustration of canonical cell-relevance 

 

E1 E2 E3 

p                        q r                                        s   t                        u 

E(a*) E(b*) 

 

In this illustration of the principal case of the definition, the finest partition E of K has 

three cells, each containing two elementary letters. The letters in a* and b* are 

disjoint, but there is a cell (the middle one) that contains letters r, s from E(a*), E(b*) 

respectively. Thus a is canonically cell-relevant to b (mod K). However, if E(b*) 

consisted of just t,u then a would not be canonically cell-relevant to b (mod K).  

 

History. Actually, Definition 4.2 is implicit rather than explicit in Parikh (1999). 

Moreover, both that paper and Kourousias and Makinson (2007) use E(a), E(b) rather 

than E(a*), E(b*).  

 

Surprisingly, the following equivalence does not appear to have been noticed in the 

literature.  

 

Theorem 4.1. Canonical path-relevance is equivalent to canonical cell-relevance. In 

detail: let a,b be formulae of classical propositional logic, and let K be a contingent 

set of formulae serving as a belief set. Then a is canonically path-relevant to b (mod 

K) iff it is canonically cell-relevant to b (mod K). 

 

Sketch of proof: Left to right, the essential idea is that there can be no paths across 

cells. Right to left, paths must span the cells. For details, see Appendix C. 

 

Remark on the theorem. The first disjunct in the definition of canonical cell relevance 

corresponds to the case n  0 in the definition of canonical path relevance. 

 

Summary of the story so far. By using Parikh’s notion of the finest splitting of K, we 

can refine Rodrigues’ account of path-relevance to make it syntax-independent in all 

three arguments a, b, K. This notion of canonical path-relevance is equivalent to the 
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more semantic-looking one of canonical cell-relevance. The equivalence suggests 

robustness of the concept, which henceforth we call simply canonical relevance.  

 

Warning. Canonical relevance depends only on the logical power of K, but is not 

monotonically increasing in that power. When K1 ├      K2 then it does not follow that if 

a is canonically relevant to b modulo K2 then it is so modulo K1. Example: Put K1  

{pq}, K2  {pq}. Then K1  ├      K2 and p is canonically relevant to q modulo K2, but 

is not so modulo K1.  

 

 

5. Syntax-Independent – but Still Language-Dependent 

 

As remarked in the preceding section, canonical relevance is syntax-independent in 

the usual sense that it is invariant under logical equivalence in all three of its 

arguments a,b,K. However, there is also a sense in which it is still not fully language-

independent. Its definition, whether via paths or cells, gives a privileged place to 

elementary letters over compound formulae. As a result, it turns out that whether one 

state of affairs is relevant to another depends on how we deploy elementary letters in 

representing them. This is the first main new result of the paper. 

 

Example 5.1. Consider the belief set {pq, (pq)p}. Clearly, p is not canonically 

relevant to (pq)p modulo the belief set, since p  p*, ((pq)p)*  q, and the 

belief set is equivalent to {p,q}. Now suppose we represent our states of affairs in a 

different manner. Noting that the formulae p and pq are logically independent of 
each other (all four combinations of their truth and falsity are possible), we might let 

the letter p continue to represent the same state of affairs as before, but use the letter q 

to stand for the one previously denoted by pq. Then the formula qp stands for the 

state of affairs previously represented by (pq)p. So under our second 

representation scheme, the belief set is written as {q, qp}, which is again equivalent 

to {p,q}. We now ask whether p (corresponding to the old p) is canonically relevant to 

qp (corresponding to the old (pq)p) modulo the new belief set. This time the 

answer is trivially positive (modulo any belief set) since p*  p shares a letter with 

(qp)*  qp. Changing the way in which we represent states of affairs has thus 
changed the answer to our question! 

 

In case this looks like a sleight-of-hand, we review Example 5.1 more formally. First, 

we give the construction itself.  

 

Observation 5.1. Let L be the propositional language generated by the letters {p,q}, 

and define f: L  L by putting f(p)  p, f(q)  pq, and homomorphic for compound 

formulae. Then there is a bijection  between valuations on the language such that for 

all formulae a  L, v(a)  v(f(a)), where v: L  {0,1} is the counterpart (v) of v: L 

 {0,1}. 
 

The homomorphism condition means of course that f(a)  f(a), f(ab)  f(a)f(b), 

f(ab)  f(a)f(b), f()  . The good behaviour of the formula-homomorphism f 

with respect to the valuation-bijection  gives mathematical content to the intuitive 

idea that f does not alter semantic structure; more specifically, that the formula a 
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represents (under v) the same ‘state of affairs’ as f(a) does (under v). For a proof of 

Observation 5.1, see Appendix C.  

 
Now checking for what is relevant to what, we see (Figure 5.1): 

 

 On the one hand, trivially the formula p is canonically relevant to qp 

modulo the belief set K  {q, qp} (or any other) since p*  p shares a letter 

with (qp)*  qp.  

 

 On the other hand, f(p)  p is not canonically relevant to f(qp)  (pq)p 

modulo f(K)  f({q, qp})  {pq, (pq)p)}, since (f(p))*  p*  p while 

(f(qp))*  ((pq)p)*  q and (f(K))
#
  {p,q} = K

#
.  

 

 

Figure 5.1. Example of language-dependence of canonical relevance modulo K 
 

 

 
 

 

Thus, while the concept of canonical relevance is syntax-independent as usually 

understood, i.e. invariant under logical equivalence in all three of its arguments, it 

nevertheless remains language-dependent, in the deeper sense that it is not invariant 

under different representations of the same state of affairs – even when the 

representations are in the same language. To this extent it is not entirely semantic, 

retaining a residual syntactic element that may be difficult or impossible to eliminate.  

 

The phenomenon does not appear to have been discussed in the literature, but may be 

of some importance. It goes well beyond the problem of relevance. Any concept 

whose definition gives a privileged role to elementary letters (or in the case of 

predicate logic, atomic formulae) is likely to be language-dependent in the same way. 

This seems to be the case, for example, with certain concepts that have been used in 

artificial intelligence to define particular forms of nonmonotonic reasoning, notably 

the closed world assumption and circumscription. 
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How should the language-dependence of the relation of canonical relevance be 

appreciated? Two contrasting attitudes suggest themselves. 

 

 It may be felt that in view of this feature, canonical relevance is not much 
better behaved than its less sophisticated predecessors, which were seen to be 

syntax-dependent in one or more of their arguments a, x, K. For this reason it 

should simply be abandoned (along with all other language-dependent 

concepts such as circumscription). 

 

 On the other hand, it may be felt that language-dependent notions (and perhaps 

even some syntax-dependent ones) do have their legitimate uses, particularly 

in computational contexts.  

 

Without taking a definite stance on this delicate question, we note that canonical 

relevance has very interesting interactions with operations of belief change, which we 

now examine.   

 

 

6. Respecting Relevance in Belief Change  

 

How far do operations of belief change in the manner of Alchourrón, Gärdenfors and 

Makinson (1985), briefly AGM, respect relevance? We begin by reviewing the state 

of play, focussing on the operation of contraction (thus leaving aside revision) and 

omitting all proofs (which can be found in Kourousias and Makinson (2007)).  

 

Definition 6.1. We say that an operation  of contraction on a contingent belief set K 

respects canonical relevance (briefly, when no ambiguity is possible, respects 

relevance) iff whenever K ├      x but Ka  ├    / x then a is canonically relevant to x (mod K). 
Contrapositively, when K ├     x and a is canonically irrelevant to x (mod K) then still 

Ka ├      x.  

 

Comment. When K is closed under classical consequence, i.e. when K = Cn(K) then 

for AGM contraction Ka is also closed under consequence, so we have K ├      x iff x  

K and likewise  Ka ├      x iff x  Ka. In this situation, Definition 6.1 is equivalent to 

one with epsilon replacing turnstile: whenever x  K and a is canonically irrelevant to 

x (mod K) then still x  Ka.  

 

Observation 6.1. (Parikh 1999): AGM contraction can fail to respect relevance, and 

this can happen independently of whether K is closed under consequence. 

 

Example 6.1. Let p,q be two distinct elementary letters, and put K = Cn(p,q). Then 

there is an AGM maxichoice contraction that puts Kp to be Cn(pq), thus 
eliminating not only p but also q from K. However, the letter q is canonically 

irrelevant to p modulo K, because we can split E = {p,q} into E1 = {p}, E2 = {q} with 

K
#
 = {p}{q}.   

 

The example is robust in the sense that it goes through when we work with belief 

bases rather than belief sets already closed under consequence. Put K0 = {pq,q}, so 



 12 

that Cn(K0) = K above. Then one of the AGM maxichoice base contractions puts K0p 

to be {pq}, which eliminates q. However, the eliminated letter q is canonically 
irrelevant to p modulo K0 for the same reason as before. 

 

Theorem 6.2 (Kourousias and Makinson 2007). If we apply AGM contraction to the 

finest splitting K
#
 of a contingent belief set K, rather than to K itself, then it respects 

relevance.  

 

Example 6.2. When given K = Cn(p,q) or K0 = {pq,q} the theorem instructs us to 
apply the contraction operation to the canonical belief set K

#
 = K0

#
 = {p,q}. Since 

there is just one maximal p-nonimplying subset of K
#
, namely {q}, there is just one 

possible output for an AGM belief contraction K
#
p, namely {q}.     

 

Comments. (1) Actually, the observation of Parikh (1999) was made for AGM 

revision, but the counterexamples for revision and contraction are essentially the 

same. (2) Theorem 6.2 was established by Kourousias and Makinson (2007) for the 

epsilon version of Definition 6.1, rather than the turnstile version. When a belief set is 

not closed under classical consequence (as in the case of K
#
) the two versions are not 

the same, as remarked by Pavlos Peppas (personal communication). However, it is not 

difficult to obtain the turnstile version of the theorem from the epsilon one, as is done 

in Appendix C. 

 

 

7. Should Canonical Relevance always be Respected? 
 

Of course, we may ask whether eliminating canonically irrelevant formulae really is a 

shortcoming for a belief contraction operation. Assuming that canonical relevance 

modulo a belief set is itself a reasonable notion to work with (despite its language-

dependence, already noted) we may still ask: is failure to respect it a defect, or just a 

feature, of AGM contraction?  

 

It appears that the answer depends on whether we want our contractions to take into 

account only formal considerations, or also epistemic ones. To see this, consider again 

the example where we wish to contract the belief base K0 = {pq,q} by p.  
 

We know that K
#
 = {p,q}, so that while pq is canonically relevant to p modulo K0, 

q is not. So if the contraction is to respect relevance, it will eliminate pq, but not q. 

But it may happen that the formula pq has a special place among our beliefs. It may 

be more deeply entrenched, less vulnerable, or in some other way epistemically more 

basic than the letters p,q or their conjunction pq, all of which are elements of 

Cn(K0). In that context, when discarding p we should keep the biconditional pq and 

jettison the letter q. The eliminated formula q is not logically relevant to the formula p 

that we are discarding, but it is epistemically so, since it occurs in a formula pq to 
which we are attributing special epistemic status within the belief set.  

 

In general, when a belief set is presented by a base, we may have differing attitudes 

towards the propositions in the base. They may be there by happenstance, and any 

other base might be deemed as just as appropriate so long as it is equivalent (and 

perhaps satisfies general requirements such as being computable or schematic). But 
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other propositions may be in the base because we want them to be there; they may 

have an epistemic priority over items outside the base. Even within the base, some 

elements may have priority over others. From this perspective, taking epistemic 

matters into account, we will not need to respect canonical relevance.  

 

 

8. Parameter- Sensitive Relevance 

 

If we are interested in epistemic factors in belief change, we may well wish to develop 

the concept of canonical relevance to take account of them. How could we go about 

it? Of course, logic alone cannot specify which propositions have what epistemic 

status. But it can introduce into its constructions parameters that allow such 

specifications to play a role. In this section we introduce such a parameter. This is the 

second main new construction of the paper. 

 

Definitions and theorems correspond to earlier unparametrized ones, and are 

numbered by their counterparts with a plus sign. We begin by observing that the finest 

splitting theorem may be strengthened to cover an arbitrary family of splittings, rather 

than just the family of all splittings of K.   

 

Theorem 3.1

. Let K be any contingent set of formulae of classical propositional logic. 

The infimum of any non-empty family of splittings of K is also a splitting of K.  

 

Proof: The proof of Theorem 3.1 (the finest splitting theorem) that is given in 

Kourousias and Makinson (2007) may be applied without change.        

 

Next, we notice that the concept of canonical cell/path relevance, which was 

introduced in Definition 4.2 using the finest splitting of K, generalizes without change 

with respect to an arbitrary splitting. In terms of cells, for instance, we have:  

 

Definition 4.2

. Let a,b be formulae of classical propositional logic and K be a 

contingent set of formulae serving as a belief set with E = {Ei}iI any splitting of K. 
We say that a is relevant to b (mod E) iff a* shares some letter with b*, or there is a 

cell Ei of E such that each of a* and b* shares some letter (not necessarily the same 

letter) with Ei.  

 

The notion of respect for relevance, introduced Definition 6.1, similarly generalizes:  

 

Definition 6.1

. Let K be a contingent set of formulae serving as a belief set, and E = 

{Ei}iI any splitting of K. We say that an operation  of contraction on K respects 

relevance modulo E iff whenever K ├      x but Ka  ├    / x then a is relevant to x modulo E.  

 

With these generalized definitions available, we can now introduce a parameter R to 

handle extra-logical (and in particular, epistemic) sources of relevance. R is a relation 

between elementary letters, permitting us to stipulate that certain letters are 

epistemically relevant to others. 

 

Definition 8.1. Let K be a contingent set of formulae serving as a belief set, with E its 

least letter-set. Let R be any relation between letters in E. We say that a splitting E = 

{Ei}iI of K protects R  iff whenever (p,q)  R then p,q are in the same cell Ei of E.  
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We may now apply Theorem 3.1

 to the family of all R-protecting splittings of K: 

 

Corollary to Theorem 3.1

. Let K be a contingent set of formulae serving as a belief 

set, with E its least letter-set. Let R be any relation between letters in E. Then K has a 

(unique) finest R-protecting splitting.  

 

Proof. Since R  E
2
, there is at least one splitting that protects R, namely the coarsest 

(one-cell) splitting. Hence by Theorem 3.1

, the infimum of all R-protecting splittings 

of K is a splitting of K, and it is immediate that it protects R.  

 

The relation of relevance modulo the finest R-protecting splitting of K (rather than 

modulo its finest splitting) may naturally be referred to as R-sensitive relevance. 

When the pairs in R represent declarations of epistemic connections between letters, it 

may be thought of as representing epistemically sensitive relevance.  

 

The extent to which R-sensitive relevance goes beyond canonical relevance evidently 

depends on how much is put into the protected relation R. In the limiting case that R is 

empty, the two coincide; in the other limiting case that R contains all pairs of letters, 

we get the one-cell partition of E  E0(K) and so end up with Rodrigues’ path-
relevance without splitting as in section 2. 

 

We end by noting that the same proof as for Theorem 6.2 gives us more generally: 

 

Theorem 6.2

. Let K be a contingent set of formulae serving as a belief set, with E its 

least letter-set. Let R be any relation between letters in E. If we apply AGM 

contraction to the finest R-protecting splitting rather than to K itself, then it respects 

relevance modulo that same splitting.  

 

 

Appendices 

 

Appendix A: Literature on Relevance as a Two-Place Relation 

 

For an overview and extended bibliography of work on propositional relevance as a 

two-place relation between formulae, see Lang et al (2003). This paper gives 

particular attention to computational questions. Although the authors mention the 

seminal paper Parikh (1996) in passing, they do not investigate relevance modulo the 

finest splitting of a background belief set. In their treatment of the notion of an 

essential letter they follow Ryan (1991) in dividing the concept into two parts, thereby 

giving it a polarity. Expressed in the manner of the present paper, we may say that a 

formula a sometimes depends on a positive value for the letter p iff there is a valuation 

v with v(a) 1 but vp0(a)  0, where vp0 is the valuation that agrees with v on all 
letters other than p but gives p the value 0. Likewise, a sometimes depends on a 

negative value for the letter p iff there is a valuation v with v(a) 1 but vp1(a)  0. 

Evidently, the two kinds of dependence do not exclude each other. As Lang et al 

(2003) observe, it is immediate that the essential letters of a formula are just those on 

which it sometimes depends either positively or negatively.  
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Appendix B: Table of Kinds of Relevance Discussed 

 

Name  Arguments Syntax- 

independent? 

Language-

independent? 

syntactic 

relevance 

 

formulae 

no  

 

 

 

 

no 

essential 

relevance 

yes 

path-relevance  

formulae, belief set K 

 

 

yes, except for K 

 
cell-relevance 

canonical 

(path/cell) 

relevance 

yes 

R-sensitive 

relevance 

formulae, belief set K, 

relation R over letters 

yes 

 

 

Appendix C: Proofs 

 

Observation 3.2. For contingent K the Bi in the finest splittings of K are unique up to 

tautological equivalence. That is: let K be a contingent belief set, and E = {Ei}iI its 

finest splitting. Suppose  both K ┤├     {Bi}iI and K ┤├     {Bi}iI where E(Bi)  Ei and 

E(Bi)  Ei. Then each Bi ┤├     Bi. 

 

Notation. We write v(X)  1 as shorthand for v(x)  1 for all x  X, while v(X)  0 

abbreviates v(x)  0 for some x  X. 

 

Proof. Suppose otherwise. Then there is a valuation u with say u(Bj)  1 and u(Bj)  

0. Since K is consistent, there is also a valuation v with v(K) = 1 so v(Bi)  v(Bi)  1 

for all i  I. Let w be the valuation that agrees with u on all letters in Ej and agrees 

with v on all other letters. Then w(K)  w({Bi}iI)   1 while also w(K)  

w({Bi}iI)   0 giving a contradiction.  
 

Theorem 4.1. Canonical path-relevance is equivalent to canonical cell-relevance. In 

detail: let a,b be formulae of classical propositional logic, and let K be a contingent 

set of formulae serving as a belief set. Then a is canonically path-relevant to b (mod 

K) iff it is canonically cell-relevant to b (mod K). 

 

Proof. The theorem is immediate when a* shares a letter with b*. So suppose 

otherwise.  

 



 16 

Left to right: Suppose that a is canonically path-relevant to b (mod K). Then there is a 

finite sequence x0,…xn+1 of formulae with x0 = a*, xn+1 = b*, all of x1,…,xn  K
#
, and 

each xi sharing at least one letter with xi+1. Since a* shares no letter with b*, we have 

n  1. Let p be a letter shared by x0 = a* and x1, and let q be a letter shared by xn and 

xn+1 = b*. Since all of x1,…,xn  K
#
, and each xi shares at least one letter with xi+1, it 

follows that all of the letters in x1,…,xn come from the same cell Ei of the finest 

splitting of K. Thus in particular p and q come from the same cell Ei, so each of the 

sets E(a*)Ei and E(b*)Ei is non-empty as required for canonical cell-relevance.    

 

Right to left: Suppose that a is canonically cell-relevant to b (mod K). Then there is a 

cell Ei of the finest splitting E of K such that each of the sets E(a*)Ei and E(b*)Ei 

is non-empty. So there are letters p, q  Ei with p occurring in a* and q occurring in 

b*. Since p, q  Ei and K
#
 is in least letter-set form, they must occur in formulae y, z 

 Bi  K
#
. To complete the proof we need to show that there are x1,…,xn (n  0) in K

#
 

with y = x1, xn = z and each xi sharing a letter with xi+1. But this must hold because 

otherwise we could take the closure {y}
+
 of {y} under the relation of sharing a letter, 

to divide Ei further into non-empty sets E({y}
+
) and Ei\ E({y}

+
) which would split K 

further.   

 

Observation 5.1. Let L be the propositional language generated by the letters {p,q}, 

and define f: L  L by putting f(p)  p, f(q)  pq, and homomorphic for compound 

formulae. Then there is a bijection  between valuations on the language such that 

such that for all formulae a  L, v(a)  v(f(a)), where v: L  {0,1} is the counterpart 

(v) of v: L  {0,1}. 

 

Proof. We construct the bijection  as follows: for each valuation v: L  {0,1} define 

(v)  v: L  {0,1} by setting v(p)  v(p) and v(q)  v(pq). We need to check that 

(1)  is a bijection between valuations on L, and (2) for all formulae a  L, v(a)  

v(f(a). 
 

For (1), since the set of valuations is finite (4 elements), it suffices to show that  is 

injective. Suppose v  w; we need to show v  w. Case 1: Suppose v(p)  w(p). Then 

immediately v(p)  v(p)  w(p)  w(p) and we are done. Case 2: Suppose v(p)  w(p) 

but v(q)  w(q). Then v(pq)  w(pq) so v(q)  v(pq)  w(pq)  w(q) and 
again we are done. 

 

For (2), it suffices to show that v(p)  v(f(p)) and v(q)  v(f(q)). The former is 

immediate since v(f(p))  v(p)  v(p) by the constructions of f and v. For the latter, 

v(f(q))  v(pq) by the construction of f. Case 1: Suppose v(q)  1. Then v(q)  

v(pq)  v(p)  v(p) so v(pq)  1, giving us v(q)  v(f(q)) as desired. Case 2: 

Suppose v(q)  0. Then v(q)  v(pq)  v(p)  v(p) so v(pq)  0, again giving 

us v(q)  v(f(q)) as desired. 
 

Theorem 6.2.  If we apply AGM contraction to the finest splitting K
#
 of a contingent 

belief set K, rather than to K itself, then it respects relevance.  

 

Proof. In Kourousias and Makinson (2007) this was proven in an ‘epsilon version’: 

whenever x  K
#
 but x  K

#
a then a is canonically relevant to x (mod K). We need 
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to derive the turnstile version of the theorem from the epsilon one. Assume the 

epsilon version, i.e. that for  contingent K, whenever x  K
#
 but x  K

#
a then a is 

canonically relevant to x (mod K). Suppose that K is contingent, K
#
 ├     x, K

#
a    ├    / x; we 

need to show that a is canonically relevant to x (mod K).  

 

Since K
#
 ├     x we have K

#
 ├     x*, so there are a1,…,ak  K

#
 with a1…ak ├     x*. Since K 

is consistent, we may assume without loss of generality that each ai* shares a letter 

with x*. Since K
#
a ├   / x we likewise have K

#
a    ├    /  x*, so there is an i  k with K

#
a    ├    /  

ai, so that ai  K
#
a. By the epsilon version of the theorem, a is canonically relevant 

to ai (mod K). That is, there is a cell Ej of the finest partition E of K such that each of 

the sets E(a*)Ej and E(ai*)Ej is non-empty.  
 

To show that a is canonically relevant to x (mod K) and complete the proof it will 

suffice to show that E(x*)Ej is non-empty. But since ai  K
#
 all the letters of ai 

come from the same cell, so E(ai)  Ej. Since E(ai*)  E(ai) this gives us E(ai*)  Ej. 

Since ai* shares a letter with x*, this tells us that E(x*)Ej is non-empty as desired. 

  

It is also possible to prove Theorem 6.2 (turnstile version) directly, essentially by 

including the above considerations within a re-run of the proof of the epsilon version 
in Kourousias and Makinson (2007).  
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