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The lowest multipole moments of the cosmic microwave background (CMB) are smaller than
expected for a scale-invariant power spectrum. One possible explanation is a cutoff in the primordial
power spectrum below a comoving scale of kc ’ 5:0� 10�4 Mpc�1. Such a cutoff would increase
significantly the cross correlation between the large-angle CMB and cosmic-shear patterns. The cross
correlation may be detectable at > 2� which, combined with the low CMB moments, may tilt the
balance between a 2� result and a firm detection of a large-scale power-spectrum cutoff. The cutoff also
increases the large-angle cross correlation between the CMB and the low-redshift tracers of the mass
distribution.
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correlation between the CMB and the CS distortion of the
CMB on the largest scales. This cross correlation may be

integrated Sachs-Wolfe effect (ISW)] comes from density
perturbations along the line of sight.
One of the more intriguing results to come from the
Wilkinson Microwave Anisotropy Probe (WMAP) [1] is
confirmation of the absence of large-scale temperature
correlations in the cosmic microwave background (CMB),
or equivalently, a suppression of power in the quadrupole
and octupole moments, found earlier by the Cosmic
Background Explorer [2]. A variety of measures of the
power spectrum—from the l � 4 moment of the CMB
power spectrum, which probes wavelengths �104 Mpc,
to galaxy surveys and the Lyman-alpha forest, which
probe down to 1–10 Mpc—shows consistency with a
scale-invariant spectrum of primordial perturbations.
Thus, the suppression of the l � 2 and l � 3 moments
of the CMB power spectrum come as a bit of a surprise.

Is this simply a statistical fluke? Or is something novel
occurring just beyond our observable cosmological hori-
zon? Possibilities include remnants of a preinflationary
Universe, a curvature scale just larger than the horizon,
and/or exotic inflation [3,4]. If there is indeed a suppres-
sion of large-scale power, it occurs at distance scales
�104 Mpc [4], larger than those typically probed by
galaxy surveys. Future experiments to determine the
lowest moments of the CMB power spectrum are also
of limited value because current measurements are al-
ready dominated by cosmic variance rather than instru-
mental noise. Thus, although the current evidence for new
superhorizon physics is tantalizing, the prospects for
further testing are limited.

In this paper we point out that there exists another
probe of the mass distribution on these largest distance
scales. Cosmic shear (CS), weak gravitational lensing by
density perturbations along the line of sight, will produce
identifiable distortions in the temperature-polarization
pattern of the CMB. When observed, these distortions
map the gravitational potential projected along a given
line of sight. Here we show that a power-spectrum cutoff
enhances significantly (roughly a factor of 4) the cross
0031-9007=03=91(22)=221302(4)$20.00 
detectable at the >2� level and may thus provide a
valuable cross-check of the current �2� evidence for a
dearth of large-scale CMB power. As an aside, we also
show that the large-angle cross correlation between the
CMB and low-redshift tracers of large-scale structure [5]
is roughly doubled if the large-scale cutoff is real.
Although recent detections [6] of this effect are at smaller
scales than would be affected by a large-scale cutoff,
correlations on larger scales may be probed by future
experiments.

Below we first discuss the large-scale CS power spec-
tra, as well as the cross correlation of the CS pattern with
the CMB temperature pattern. We then construct an esti-
mator for the cross correlation and show that it can
distinguish the cross correlation with and without a cutoff
at roughly the 2� level. When combined with the already
suspiciously low l � 2 and l � 3 moments of the
CMB power spectrum, this finding may tilt the balance
between a 2� result and a 3� discrepancy with scale
invariance.

Perturbations in the matter density induce perturba-
tions to the gravitational potential 
�r; z�, which then
induce temperature perturbations in the CMB through
the Sachs-Wolfe effect:

��n̂n� �
1

3

�r0; z0� � 2

Z r0

0

d

dr

�r; z�r��dr; (1)

where r and z are the physical comoving distance and
redshift, respectively, and the subscript 0 denotes these
quantities at the last-scattering surface. The position vec-
tor r points in the direction n̂n on the sky. The potential at
redshift z can be related to its present-day value with the
linear-theory growth factor G�z� (normalized to unity
today) through 
�r; z� � �1� z�G�z�
�r; 0�. The first
term in Eq. (1) comes from density perturbations at the
surface of the last scatter, while the second term [the
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Relating the potential to the matter perturbation
through the Poisson equation, if the three-dimensional
matter power spectrum is P�k� as a function of wave
number k, then the angular power spectrum for tempera-
ture fluctuations is

C��
l /

Z
dkk�2P�k�
 ~��l�k��

2; (2)

as a function of multipole moment l, where

~�� l�k� �
1

3
�1� z0�G�z0�jl�kr0�

� 2
Z z0

0
dz
�1� z�G�z��0jl�kr�z��; (3)

and the prime denotes a derivative with respect to redshift
z. The main contributions to the integral in Eq. (2) come
from wave numbers k near 10�4 Mpc�1 (see, e.g., Fig. 7 in
Ref. [7]).

If scale invariance holds out to superhorizon scales (as
predicted by the generic inflationary model), then the
power spectrum P�k� at distance scales relevant for
l & 10 is simply P�k� / kn, with n near unity. This is
certainly what the CMB data show at multipole moments
l  4 and it is consistent with determinations of the
power spectrum from the CMB and large-scale structure
out to scales as small as a few Mpc. Thus, the observed
suppression of C��

2 and C��
3 shown in Fig. 1 is a bit of a

surprise.
The same potential perturbations 
�r; z� that contrib-

ute to the Sachs-Wolfe effect also give rise to weak
FIG. 1. The CMB temperature power spectrum. The solid
curve is the power spectrum of Eq. (2) for the ISW effect
without a cutoff. The dashed curve has a cutoff in P�k� below
kc � 5:0� 10�4 Mpc�1. The binned error bars represent actual
WMAP data.
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gravitational lensing described by the projected potential,

��n̂n� � �2
Z r0

0
dr

r0 � r
r0r


�r; z�r��: (4)

The angular power spectrum of the lensing potential is
then

C��
l /

Z
dk k�2P�k�
 ~��l�k��2: (5)

In fact, the only difference between this expression and its
SW counterpart is the replacement of ~��l�k� by

~��l�k� � �2
Z z0

0

c dz
H�z�

r0 � r�z�
r0r�z�

�1� z�G�z�jl�kr�z��: (6)

The projected potential receives contributions from a
wide variety of distances, peaked at roughly half the
comoving distance to the surface of the last scatter. The
lowest multipole moments of the CS power spectrum
come from wave numbers k near 10�4 Mpc�1. Since the
small-k Fourier modes of the potential that give rise to
low-l CS moments are the same as those that give rise to
the low-l CMB moments, we anticipate that the CS power
spectrum should also reflect the suppression of large-
scale power. Evaluating these expressions numerically,
however, we find that the cutoff suppresses C��

2 by no
more than �10%, too small to be detected.

However, the CMB and CS multipole moments are
generated by the same underlying potential fluctuations,
and so there should be some cross correlation between the
two. And as we show, this cross correlation turns out to be
increased significantly if there is a cutoff. The cross-
correlation power spectrum C��

l is

C��
l /

Z
dkk�2P�k� ~��l�k� ~��l�k�: (7)

We can define a dimensionless cross-correlation coeffi-
cient, rl � �C��

l �2=C��
l C��

l . If ~��l�k� and ~��l�k� had pre-
cisely the same k dependence, then the CMB maps would
be maximally correlated, rl � 1. In this case, we would
be able to predict precisely that the CS spherical-
harmonic coefficients should be �lm � �C��

l =C��
l ��lm

in terms of the measured temperature coefficients �lm.
Moreover, if rl were equal to unity, then a CS map might
be used to confirm the CMB measurements, but it would
add no additional statistically independent information
on the large-scale power spectrum.

If, on the other hand, there were no overlap between
~��l�k� and ~��l�k� whatsoever, then there would be no cross
correlation, rl � 0. In this case, the CS pattern could not
confirm the CMB measurement, but it would provide a
statistically independent probe of the large-scale power
spectrum.

Most generally, 0< rl < 1, and the lensing spherical-
harmonic coefficients will be
221302-2
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�lm � �C��
l =C��

l ��lm � 
C��
l � �C��

l �2=C��
l �1=2�;

(8)

where � is a Gaussian random variable with zero mean
and unit variance; i.e., there is a correlated part deter-
mined by the CMB pattern and an uncorrelated part.

Figure 2 shows our central result: the cross-correlation
coefficient for a scale-invariant spectrum and one in
which P�k� � 0 for k < kc � 5� 10�4 Mpc�1. The dra-
matic increase in the cross correlation for the lowest l in
the presence of a cutoff can be understood by examining
the two terms of Eq. (1). The first of these terms, gener-
ated at the last-scattering surface, is uncorrelated with the
lensing potential; the second term is a line-of-sight in-
tegral like the projected potential of Eq. (4). Since the
contribution of the first term comes from a larger distance
from the observer than that of the second term, corre-
spondingly larger structures with lower wave number k
will be projected onto the angular scale set by the multi-
pole moment l. The lowest multipole moments will cor-
respond to structures at the last-scattering surface with
k < kc, implying that in the presence of a cutoff only the
second term of Eq. (1) will be nonvanishing for the lowest
multipole moments. Since it is only this term that is
correlated to the lensing potential, the dimensionless
cross correlation will be significantly higher in the pres-
ence of a cutoff. It is important to note that this increase
in the dimensionless cross correlation in the presence of a
FIG. 2. The dimensionless correlation �C��
l �2=C��

l C��
l be-

tween maps of the CMB temperature and the lensing potential.
The solid curve shows this correlation in the absence of a
cutoff, while the dashed curve is for a cutoff kc � 5:0�
10�4 Mpc�1. The upper, darker curves correspond to the lens-
ing potential seen by sources at the CMB last-scattering sur-
face, while the lower, lighter curves correspond to lensing
sources at redshift z � 1:0.
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cutoff is an independent prediction and not merely a
consequence of the observed suppression of C��

l for low
l. If the CMB and CS multipole moments �lm and �lm
were multiplied by an l-dependent normalization to sup-
press power on large scales, rl itself would remain un-
affected because it is dimensionless. The independence of
this prediction allows estimates of rl from CMB and CS
maps to constrain kc with greater statistical significance
than measurements of C��

l alone.
We now determine how well measurements of rl can

discriminate between a model with a scale-invariant
power spectrum and one with a cutoff [i.e., P�k� � 0 for
k < kc � 5:0� 10�4 Mpc�1]. Higher-order correlations
in a high-resolution low-noise CMB temperature-
polarization map can be used to construct estimators
[8] for the projected potential and thus estimators ĈC��

l
and ĈC��

l , in addition to those ĈC��
l for the temperature

obtained already by WMAP. An estimator r̂rl �
�ĈC��

l �2=ĈC��
l ĈC��

l for rl can then be formed. Although it
is not an unbiased estimator, it is sensitive to rl and
converges to rl for l � 1. For a given realization of the
CMB and CS patterns, rl can be estimated independently
for each value of l. We have calculated the probability
distributions for r̂rl for each l from many different
Monte Carlo realizations of the two models for rl de-
scribed above. The CMB coefficients �lm are set to the
values consistent with theWMAP power spectrum shown
in Fig. 1, while the uncorrelated part of �lm is determined
for each realization of the two models in accordance with
Eq. (8). We assume the CS projected potential is recon-
structed from a full-sky CMB temperature-polarization
map with 70 angular resolution and noise-equivalent tem-
perature of 0:46 �K

��
s

p
. The different predictions for r̂r3

for the two models are shown in Fig. 3; the predictions for
r̂r2 and r̂r4 are qualitatively similar, while for r̂r5 the two
probability distributions begin to merge and for r̂r6 they
are almost indistinguishable.

Assuming that the first model (no cutoff) is correct, we
calculated the fraction of realizations in which the mea-
sured values of r̂rl would lead us to conclude that they were
more likely drawn from the probability distributions of
the second model. This occurs only 0.7% of the time,
implying that only 0.7% of the time would cosmic vari-
ance mislead us into thinking that a cutoff as large as
kc � 5:0� 10�4 Mpc�1 was favored over the no-cutoff
model. Since the CMB coefficients �lm are constrained to
a single realization consistent with WMAP in both mod-
els, this measurement would be statistically independent
of the low observed CMB multipole moments themselves
for the purpose of distinguishing the two models. It could
thus increase the �2� discrepancy of that measurement
into a > 3� detection of a large-scale cutoff in the power
spectrum.

Finally, we consider the cross correlation between the
CMB and low-redshift (z & 1) tracers of a large-scale
structure [5] that several groups have already claimed to
221302-3



FIG. 3. Probability distributions for r̂rl for l � 3 for the two
models described in the text; the solid curve corresponds to the
model without a cutoff in P�k�, while the dashed curve has a
cutoff kc � 5:0� 10�4 Mpc�1.
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detect [6]. To estimate the effect of a cutoff, we have
calculated the cross correlation between the CMB and
CS of a hypothetical population of sources at redshift
z � 1 for models with and without a cutoff. As indicated
by the lighter curves in Fig. 2, a cutoff boosts the cross-
correlation coefficient for these low-redshift sources by
roughly a factor of 2. Similar results are obtained for
cross correlation with the galaxy distribution. Although
recent detections of the cross correlation occur at smaller
scales (l ’ 30) than those effected by the cutoff, future
large-scale surveys could be sensitive to a cutoff-induced
enhancement.

The WMAP observations clearly support the �CDM
concordance model, but they do present a few tantalizing
discrepancies. Perhaps the most intriguing is the sharp
decrease in observed power at the lowest multipole mo-
ments shown in Fig. 1. A variety of fundamental causes
for this large-scale suppression can be modeled empiri-
cally by an effective cutoff kc in the primordial power
spectrum P�k�. Though the WMAP team found that only
0.15% of simulated CMB maps had less power on large
scales [1], it would be highly desirable to find corroborat-
ing evidence to confirm that this observation is not merely
a statistical anomaly. One possibility is the measurement
of the polarization signal from nearby galaxy clusters,
which are proportional to their local CMB quadrupole
221302-4
moment [9]. We have proposed here that the cross corre-
lation C��

l could provide additional evidence. Although
the experimental requirements for measurements of the
CS distortions to the CMB are ambitious, they are closely
aligned with those for the CMBPOL experiment that
appears in NASA’s road map. Thus, this measurement,
like the effect it seeks to study, is on the horizon.
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