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A State Space Approach to the Design of Globally
Optimal FIR Energy Compaction Filters

Jamal Tuqan, Member, IEEE,and P. P. Vaidyanathan, Fellow, IEEE

Abstract—We introduce a new approach for the least squared
optimization of a weighted FIR filter of arbitrary order under
the constraint that its magnitude squared response be Nyquist( ).
Although the new formulation is general enough to cover a wide
variety of applications, the focus of the paper is on optimal en-
ergy compaction filters. The optimization of such filters has re-
ceived considerable attention in the past due to the fact that they
are the main building blocks in the design of principal compo-
nent filter banks (PCFBs). The newly proposed method finds the
optimum product filter ( ) = ( ) ( 1) corre-
sponding to the compaction filter ( ). By expressing ( ) in
the form ( )+ ( 1), we show that the compaction problem
can be completely parameterized in terms of the state-space real-
ization of the causal function ( ). For a given input power spec-
trum, the resulting filter ( ) is guaranteed to be aglobal op-
timum solution due to the convexity of the new formulation. The
new algorithm is universal in the sense that it works for any ,
arbitrary filter length , and any given input power spectrum.
Furthermore, additional linear constraints such as wavelets reg-
ularity constraints can be incorporated into the design problem.
Finally, obtaining ( ) from ( ) does not require an ad-
ditional spectral factorization step. The minimum-phase spectral
factor min( ) can be obtained automatically by relating the state
space realization of ( ) to that of ( ).

Index Terms—Discrete-time positive real lemma, energy com-
paction filters, Kalman–Yakubovich–Popov (KYP) lemma, linear
matrix inequality (LMI), optimum orthonormal subband coder
(SBC), principal components filter bank (PCFB), semi-definite
programming (SDP).

I. INTRODUCTION

CONSIDER the following optimization problem

(1)

subject to

(2)
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Fig. 1. Schematic of the FIR energy compaction problem.

where is a real coefficient FIR filter of order . The
constraint (2) means that the magnitude squared response

is Nyquist( ) [1, pp. 151–152]].

The problem described above has received considerable at-
tention in the past because of its wide occurrence in different
disciplines depending on the choice of the frequency weight
function . As an example, consider the problem of de-
signing optimum FIR transmitter and receiver filters for data
transmission over bandlimited channels [2]–[4]. Such filters
are used in data modems realized predominantly in digital
technology. The filters are designed so that maximum energy
concentration is achieved in the transmission bandwidth of
the channel, and zero intersymbol interference (ISI) is ob-
tained when the filters operate in cascade. With a receiver
filter matched to the transmitter filter and
by choosing , where is the cutoff
frequency of the lowpass channel, the problem can be indeed
expressed in the form described by (1) and (2) (see [4] for de-
tails). Other applications are in echo cancellation [5], the stan-
dard problem of designing FIR orthonormal filterbanks with
good frequency selectivity [6], quantization of a class of non-
bandlimited signals [7], optimization of wavelet basis [8], [9]
and identification of time-varying systems [10], to name a few.
Although the new method proposed in this paper is general
enough to cover any of the previously mentioned applications,
it is the design of FIR energy compaction filters that provides
the main motivation of this work.

A. The FIR Energy Compaction Problem

Consider the scheme of Fig. 1, where is a real coeffi-
cient FIR filter of order . The input is assumed to be a
zero mean widesense stationary (WSS) random process with a
power spectrum . The output of the filter is decimated
by to produce . For a fixed pair , the FIR energy
compaction problem is to maximize the output variancesub-
ject to the Nyquist( ) constraint on . The optimal
solution to the problem is termed an energy com-
paction filter. Since the decimator does not change the variance
of the filter output, is given by (1) with .
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Fig. 2. M -channel FIR orthonormal filter bank with scalar quantizers.

A quantitative measure of performance (the compaction gain) is
defined as follows:

(3)

where is the variance of . A compaction filter there-
fore maximizes the compaction gain. Note that by the Nyquist
constraint, . Note also that if the filter
order is unconstrained, i.e., ideal filter solutions are permitted,
an optimum filter has the following form [8], [11]–[13]: For all

if
otherwise

(4)

where :
for all . For more details, see any

of theabovereferences.

B. Background and Motivation

FIR energy compaction filters, as defined above, play a key
role in the statistical optimization of orthonormal filter banks
when subband quantizers are present. To see this, consider the

-channel FIR orthonormal filter bank shown in Fig. 2, where
the boxes labeled represent scalar uniform quantizers. Since
the filter bank is orthonormal, the filters satisfy the following
condition: [1], implying,
in particular, that is Nyquist( ) for each filter
(the superscript denotes complex conjugation). Given a fixed
budget of bits for the subband quantizers, the design of an op-
timum orthonormal subband coder (SBC) consists of simulta-
neously optimizing the analysis and synthesis filters as well as
choosing a subband bit allocation strategy such that the average
variance of the output error is minimized. Under thehigh
bit rate quantizer assumptions [14], and with the optimum bit
allocation, the objective function is the well-known coding gain
expression

(5)

where is the variance of theth subband signal. Since is
fixed, the optimization of the analysis filters consists of min-
imizing the geometric mean of the subband variances under
the orthonormality condition. For the unconstrained filter order
case, Vaidyanathan derives a set of necessary and sufficient con-
ditions for optimality of the filterbank and presents a proce-

Fig. 3. M -channel FIR principal component filter bank. Here only the first
two channels are retained in the synthesis part.

dure to obtain an optimum orthonormal SBC [12]. For the fi-
nite-order case, several design techniques have been proposed,
but global optimality of the resulting filters is not guaranteed.
One impetus for this is that the geometric mean is a concave
function, making the above problem a difficult one to solve
both theoretically and numerically. An alternative solution to
the direct minimization of the geometric mean is the design
of a so-called principal component filter bank (PCFB). PCFBs
were first introduced in the context of optimal signal represen-
tation and are defined as follows [8], [15]: Consider Fig. 3,
where channels are dropped in the synthesis part of
an -channel filter bank. A filterbank that minimizes the av-
erage mean square reconstruction error forall is called a
PCFB. For the ideal filter case, the solution to this problem
was first derived by Unser [11] for and then by Tsat-
sanis and Giannakis [8] for the general-channel case. While
Unser’s formulation imposesa priori the orthonormality con-
straint on the filterbank, the work in [8] does not. Neverthe-
less, it turns out that the optimum PCFB is indeed orthonormal
and therefore satisfies the so-calledmajorization property : An
(orthonormal) PCFB produces a decreasing arrangement of the
subband variances such that, for all

, is maximized. In particular, for ,
must be maximized, that is, the objective function in (1)

with must be maximized. Since we specif-
ically consider the class of orthonormal filterbanks in this paper,
the Nyquist constraint (2) is further imposed on the maximizing
filter. Note that for , and is there-
fore fixed. The set of subband variances generated by
a PCFB is said to “majorize” any other possible set of subband
variances . The connection between PCFB’s and optimum
orthonormal subband coders is established using a “majoriza-
tion” theorem [16]. The result states that the majorization prop-
erty of the subband variances of a PCFB implies, in particular,
that is minimized. Note that the converse is, in
general, not true. Therefore, instead of directly maximizing (5),
we can, in principle, obtain an optimum orthonormal SBC by
designing a PCFB. Unfortunately, the existence of a PCFB over
the class of finite-order orthonormal filter banks is not, in gen-
eral, guaranteed [17]. Nevertheless, if a PCFB exists, designing
an optimal FIR energy compaction filter is anecessaryfirst step
in finding such a filterbank [18]. Finally, in a recent develop-
ment, it is shown that a PCFB is optimal whenever the objective
function to be minimized is a concave function of the subband
variances produced by the orthonormal filter bank [19]. It fol-
lows that orthonormal PCFB’s are also optimal for a variety of
other signal processing applications, such as, for example, noise
reduction.
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Although we have introduced the notion of a PCFB through
its relation to the orthonormal subband coder problem, the topic
itself is an active and equally important area of research. PCFB’s
usually play a fundamental role in multirate signal modeling
[7], optimal signal representation [13], multitone digital com-
munications and CDMA [4], and sampling applications [20].
We also note the work of Strintzis [21], who extends the above
ideas to the class of multidimensional biorthogonal filterbanks
and shows a close connection between the energy compaction
problem and the problem of finding optimal analysis filters,
given an arbitrary set of synthesis filters. We emphasize, how-
ever, that the energy compaction problem statement differs from
the one proposed in this paper when the class of biorthogonal
filter banks is considered.

C. Contribution and Organization of the Paper

The main contribution of this paper is the development of an
efficient and numerically robust algorithm that finds theglobal
optimum solution for the FIR energy compaction problem.
The proposed method is universal in the sense that it works
for any , arbitrary filter length , and the whole class of
WSS random processes. The new method is expressed as a
multiobjective semidefinite program that is convex and can be
solved efficiently and with great accuracy using recently de-
veloped interior point methods [22]. The semidefinite program
finds the optimum product filter
corresponding to the compaction filter and, in gen-
eral, requires an additional spectral factorization step to obtain

. Spectral factorization is a procedure that is computa-
tionally expensive and numerically unstable. Nevertheless, we
will show that if the minimum-phase spectral factor is desired,
the spectral factorization step can be avoided. Finally, we be-
lieve that this paper has some tutorial value in the sense that
it brings to the attention of signal processing researchers im-
portant and newly developed convex optimization techniques
[22], particularly semidefinite programming. These optimiza-
tion tools have been extensively used by the control commu-
nity due to the natural occurrence of linear matrix inequalities
(LMI’s) (to be discussed shortly) in systems theory [23] but
seem to have not been fully exploited in the field of signal
processing.

The paper is organized as follows. In Section II, the difficulty
in solving the general problem described by (1) and (2) is out-
lined by a brief overview of previous work. In Section III, by
expressing the product filter as , we show
that the FIR compaction problem is completely characterized
by the state space realization of thecausalfunction . The
main advantage of this approach is that it fully exploits the ratio-
nality of the function to be optimized. The problem constraints
can be now satisfied using a finite number of parameters, per-
mitting the exact solution to be found. In Section IV, we study
in detail the minimum-phase spectral factor and its properties.
In particular, several theorems characterizing this special spec-
tral factor are derived. The results of this section are important
in order to avoid an additional spectral factorization step after
obtaining . Simplifications of some of the results of Sec-
tions III and IV for the particular FIR case under study are pre-

sented in Section V. In Section VI, we prove the convexity of
the new formulation and, in Section VII, we show how regu-
larity constraints can be formulated as linear matrix inequalities
and equality constraints in terms of the state space realization of

. Finally, in Section VIII, numerical examples are provided
to illustrate the performance of the proposed algorithm. Part of
this work has been presented in [24] and [25].

II. SUMMARY OF PREVIOUS WORK

The general FIR optimization problem described in (1) and
(2) has been considered by a number of authors. The different
design approaches can be broadly classified into four main cat-
egories.

1) Optimizing the FIR Lattice Structure:It is well known
that the class of two-channel FIR orthonormal filter bank iscom-
pletely parameterized by a lattice structure [1, pp. 302–314].
One can therefore optimize the lattice coefficient, which is a
set of angles , to obtain the compaction
filter’s impulse response . Since the Nyquist condition (2)
is automatically enforced by the lattice structure, the problem
is unconstrained, and unlike other approaches described below,
no spectral factorization is required. The main drawback with
this formulation is that it is highly nonlinear and cannot be ex-
pressed as a convex program. The quasi-Newton method used
in [26] and the ring algorithm proposed in [27] both converge
to alocal maximum that depends on the starting point of the al-
gorithm. Taubman and Zakhor [28] propose to use a multistart
algorithm that generates several local optima over a subset of
the parameter space.

2) Quadratically Constrained Quadratic Programming
Method: The problem in this case is formulated in terms of the
impulse response of the filter as follows:

maximize (6)

subject to the Nyquist( ) constraint, which is now expressed
as

(7)

where is a Toeplitz Hermitian matrix with first row equal to
, and is the autocorrelation sequence

of , are the filter coefficients,
and are matrices with for and
zero otherwise. Note that , where is the
identity matrix. Since the matrices are singular, the
above quadratically constrained quadratic optimization problem
is nonconvex and is very hard to solve both theoretically and nu-
merically due to the existence of local minima. Several authors
have used the classical method of Lagrange multipliers, which
leads to an iterative augmented Lagrangian algorithm (see, for
example, [29] and [30] for and [2] for arbitrary ).

3) Optimizing the Product Filter:Instead of directly opti-
mizing the coefficients , the idea is to find the optimum
product filter , and then obtain

from by spectral factorization. This approach
was first introduced by Vaidyanathanet al. [6] as part of the de-
sign of an -channel FIR orthonormal filter bank. To obtain a
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TABLE I
QUALITATIVE COMPARISON BETWEEN THEDIFFERENTFIR DESIGN METHODS

low pass subband filter with a sharp frequency response, the au-
thors used the eigen filter method [6] which is not guaranteed to
converge to the global optimum. Moulinet al. [31] considered
the design of FIR energy compaction filters and observed that
the problem reduces to a linear semi-infinite (SIP) program. The
authors solve a “discretized” version of the SIP using standard
linear programming methods. Other discretization methods can
be found in [32], [33]. The main drawback with any discretiza-
tion approach is that global optimality is not guaranteed. We
emphasize again that in the product filter approach, a spectral
factorization step is required to obtain .

4) Analytical Methods:The goal in this case is to derive an
analytical procedure to obtain . The elegance of this ap-
proach lies in the fact that no iterative numerical optimization
is involved. For and (ideal low-
pass filter with cutoff frequency ), Aaset al. [9] were able to
identify the unit-circle zeros of . Once these are known,
the other zeros can be found using Gaussian quadrature theory.
Kirac and Vaidyanathan [33] extend the results of [9] for
and , where is the power spec-
trum of . Unfortunately, the method works only for a cer-
tain class of WSS random processes. Note that in both cases, a
spectral factorization step is still necessary at the end.

Table I provides a qualitative comparison between some pre-
vious work and the newly proposed method.

III. STATE-SPACE APPROACH

From (1) and (2), we can immediately observe that the op-
timum solution, if it exists, is only a function of . By
denotingthe product filter as , the output
variance in (1) can be rewritten as

(8)

and the constraint (2) becomes

(9)

(10)

where denotes theth autocorrelation coefficient of the
input . The problem is now linear in the real optimization
variables at the expense of an additional con-
straint, namely, (10), which we will refer to as the positivity con-
straint. The positivity constraint has to be satisfied at each fre-
quency and is therefore equivalent to an infinite number of in-
equality constraints. The above formulation has a finite number
of variables and an infinite number of constraints, hence, the
name semi-infinite programming (SIP). The semi-infinite pro-
gram can beapproximatedby samplingor discretizingthe con-
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tinuous frequency axis. We choose a finite set of discrete fre-
quencies that are often uniformly spaced and
enforce the positivity constraint only at those frequencies. This
approach was first suggested and analyzed in depth by Moulin
et al.[31]. The authors solve the “discretized” version of the SIP
using standard linear programming methods. Other discretiza-
tion methods were proposed by Pesquet and Combettes [32],
who use a projection onto convex sets (POCS) type of algo-
rithm, and Kirac and Vaidyanathan [33], who use a fast algo-
rithm called the window method. The main problem with the
sampling approach is that we can no longer guarantee the posi-
tivity of between the discrete frequencies, no matter
how large is. This, in turn, can create an infeasible spectral
factorization step. Indeed, the discretized version is an outer ap-
proximation of the original SIP problem; its feasible set includes
the feasible set of the original SIP problem. There are, of course,
several ways to get around this problem (see for example [1, pp.
219–220]), but the point is, no matter which method we choose,
global optimality of the SIP described by (8)–(10) cannot be
guaranteed. We show next, using the discrete-time KYP lemma,
that the positivity constraint can be satisfied over allby adding

additional optimization variables to the original
variables .

A. Discrete-Time KYP Lemma

Since , the product filter is a two sided
symmetric sequence, and we can therefore write as

, where is a causal function, and is an an-
ticausal one. Clearly, completely characterizes . It is
therefore natural to wonder whether the positivity condition on

can be reformulated in terms of some other condition(s)
on . The answer dates back to the work of Caratheodory
and Schur [34]: for all if, and only if, is
analytic in , and is a discrete time positive real
function. Moreover, Schur characterized all such functions in
terms of the so-called Schur parameters (which are also known
as the reflection coefficients). The results of Caratheodory and
Schur, however, apply to functions that are not necessarily ra-
tional. Since is rational and, furthermorecausal, it has
a state-space representation . The question
then becomes: Can the positive real property, which is anan-
alytic frequency domain constraint, be expressed in terms ofal-
gebraicconditions on the matrices ? The an-
swer, for the continuous time case, is in the affirmative and is
established by the famous KYP lemma. The discrete-time ver-
sion was derived by Hitz and Anderson [35] and is also known
as thediscrete time positive real lemma. To state the lemma,
we first start with the definition of discrete-timerational posi-
tive real functions.

Definition 1—Discrete-Time Positive Real Functions:A
square transfer matrix (function) whose elements are real
rational functions analytic in is discrete-time positive
real if, and only if, it satisfies all the following conditions:

poles of on are simple (11)

and

at which exists (12)

and furthermore, if , real is a pole of and if
is the residue matrix of at , the matrix
is Hermitian positive semi-definite.

Assume now that has the following state space realiza-
tion:

(13)

where
;
;
;
.

For our case, . Then, the following lemma can be estab-
lished.

Fact 1—Discrete Time KYP Lemma [35]:Let be a
square transfer matrix (function) with real rational elements that
is analytic in with only simple poles on .
Let be a minimal realization of . Then,

is discrete time positive real if, and only if, there exist a
real symmetric positive definite matrix and real matrices
and such that

(14)

(15)

(16)

The above equalities (14)–(16) can be rewritten as the following
“linear” matrix inequality (LMI)

(17)

and therefore represent an equivalent condition for the positivity
constraint to be satisfied. The symbolsand aregeneral-
ized inequalities, which are defined as follows: if, and
only if, is positive semi-definite. Similarly, if, and
only if, is positive definite. As usual with the product filter
formulation, the major difficulty at this point is to deal simul-
taneously with the positivity and Nyquist constraints. It turns
out that, in this case, the Nyquist constraint can be imposed as
an equality constraint in a simple manner. To see this, assume
that is implemented in a direct-form structure with the fol-
lowing state-space representation:

(18)

where is the zero vector, and is the
identity matrix. Clearly, this state-space realization

is minimal since the number of delay elements is equal to the
degree of . Then, the Nyquist constraint can be written as
a linear equality constraint:

(19)
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where is the zero vector, and is a diagonal matrix
with diagonal elements The positions of the unity ele-
ments are determined by and . For example, for and

, the diagonal elements are . Summarizing,
we can represent the positivity constraint as an LMI whose en-
tries are affine functions of the variables (and ), and the
Nyquist constraint as an equality constraint on. The com-
paction problem described by (8)–(10) can be rewritten as fol-
lows:

(20)

where and finds a symmetric positive def-
inite matrix such that

(21)

This new formulation is therefore a maximization problem in the
variable vector and a feasibility problem in the matrix and
can be solved usingsemidefinite programming(SDP). For more
details on SDP, see the excellent survey paper by Vandenberghe
and Boyd [36]. We would like to mention at this point that in-
dependent work in [37], which came to our attention after the
submission of this paper, briefly uses the positive real lemma in
a standard FIR filter design application. Nevertheless, the work
in [37] does not address the multirate case nor the spectral factor
analysis presented in this paper. More important, however, a dis-
cretization step is still necessary in [37]even afterthe use of the
positive real lemma, which, in turn, sacrifices the global opti-
mality of the resulting filter.

To summarize, the FIR energy compaction problem, which
is expressed in terms of the coefficients of the filter , is a
nonlinearnonconvexoptimization problem. The product filter
formulation is a semi-infinite, linear, and convex problem.
The discretized version of the SIP is linear, convex, and can
be solved using standard linear programming problem but is
an approximationof the original problem. The state-space
approach proposed in this paper is nonlinear, convex, and
semi-definite. Using the rationality of , the infinite set of
inequality constraints are replaced by a (finite-dimensional)
positive semi-definite constraint (17) with the auxiliary variable

, permitting a globally optimal solution to be found. In prin-
ciple, the problem as stated above can be solved. Specifically,
we can write a SDP that returns a global optimum vector

and a feasible matrix that will meet the constraints
(21) and maximize the objective function (20). We can then
spectrally factorize to obtain using any of the
well-known algorithms (see, for example, [1, pp. 854–856]).
It turns out, however, that this additional spectral factorization
step can be completely avoided if the minimum-phase spectral
factor is desired. Indeed, we show in the next section that
the state-space representation of theminimum-phase spectral
factor, can be expressed in terms of the matrices

and a particular , namely,the minimum
element of the convex cone of positive definite matrices
satisfying (21). Using this result, we then modify the objective

function (20) in order for the program to return, along with
a globally optimal vector , the specific matrix .
Once and are found, is readily obtained,
and the spectral factorization procedure is eliminated. It is
important to keep in mind that although is unique (as
we will show next), is not guaranteed to be so. The
characterization of the optimal set of solutions of an SDP is an
interesting and relevant issue but, due to space limitations, is
outside the scope of this paper. Related material can be found
at http://www.systems.caltech.edu/tuqan.

IV. M INIMUM -PHASE SPECTRAL FACTOR

We first derive an expression for a spectral factor.
Theorem 1: Assume that satisfies the discrete time

KYP lemma with a minimal realization .
Then, a transfer function in the form

(22)

is a spectral factor of .
Proof: The proof is given in Appendix A.

The above theorem is the discrete-time counterpart of the con-
tinuous-time result found in [38, pp. 220–221]. The theorem in-
dicates that if satisfies the discrete-time KYP lemma, a
spectral factor always exists and can be expressed in the form
(22). It is important to note that in Theorem 1, the number of
columns of and the number of rows of are unrestricted,
where the dimensions of and the other dimensions of and

are automatically fixed. For example, in the single-input
single-output (SISO) case, can be a scalar or a row vector.
The remainder of this section is dedicated to the study of the
SISO minimum-phase spectral factor . The motivation
for such a study was given at the end of the last section. We first
establish that the SISO minimum-phase spectral factor
can be expressed in the form (22) with being a scalar and

a row vector. We then present a characterization of
in terms of the matrices and the minimum
element . The development of these results follows by ap-
plying the bilinear transformation to
the continuous-time minimum-phase spectral factor and then
by using some deep results proved for the continuous-time case
by Willems [39] and Anderson [38], [40]. Unlike, however, the
work in [38]–[40], the discussions and proofs presented here
apply only to the scalar case, which is sufficient for the purpose
of this paper. We now introduce some well-established facts.

Fact 2—KYP Lemma [38]:Let be a square transfer
matrix (function) with real rational elements that is ana-
lytic in Re with only simple poles on Re . Let

be a minimal realization of . Then,
is positive real if, and only if, there exist a real symmetric

positive definite matrix and real matrices and such
that

(23)

(24)

(25)
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As in the discrete-time case, an equivalent condition for the
above equalities is the following matrix inequality:

(26)

The definition of positive real functions for the continuous-time
case can be found in [38, pp. 51–54].

Fact 3—Continuous-Time Minimum-Phase Spectral Factor
[39], [40]: Let be a minimal realization of
a positive real transfer matrix . Then, the set of symmetric
positive definite matrices satisfying the LMI
constraint (26) has a minimum element (see the defini-
tion below). This minimum element is associated with a min-
imum-phase continuous-time spectral factor , which is
expressed as

(27)

where and satisfy equations (23)–(25) with .
Using the above facts and for the special SISO case, it imme-

diately follows that the continuous-time minimum-phase spec-
tral factor is unique, stable, and has no zeros in the right half
plane Re . Furthermore, if

, then is a scalar, and is a row
vector. Finally, all the eigenvalues of have Re . The
following result can be then established.

Corollary 1: Assume that the continuous-time min-
imum-phase spectral factor is given in the
form (27). Then, by applying the bilinear transformation

, maps to theuniquediscrete-time
minimum-phase spectral factor , which can be ex-
pressed in the form (22), with

(28)

Furthermore, if is a minimal realization, then
is also a minimal realization.

Proof: maps to is a consequence of the
-plane to -plane mapping property of the bilinear transforma-

tion. The uniqueness of follows from the uniqueness
of . The proof of the other statements is given in Ap-
pendixes B and C, respectively.

Note that must be nonsingular. Otherwise, one of the
eigenvalues of is equal to one that contradicts the stability of

. Before stating the main theorem of this section, the
following definitions are required.

Definition 2—Convex Cone:A set is called a cone if for
every and scalar , . A cone is convex if
for and , . The set of
symmetric positive semi-definite matrices

is a convex cone.
Definition 3—Partial Order: The convex cone of symmetric

positive semi-definite matrices
defines a partial order on the space of symmetric matrices in the
following sense: if, and only if, is positive
semi-definite.

Definition 4—Minimum Element:We say that is
a minimum element of with respect to the generalized in-

equality if for every we have . If a set
has a minimum element, this element isunique.

Definition 5—Congruence:An real matrix is said
to be congruent to if there exits a nonsingular real matrix

such that . The following property of congru-
ence with respect to positive semi-definite matrices can be easily
proved:

The partial order induced by the positive semi-definite cone
is invariant under congruence, i.e.,

(29)

Assuming that is nonsingular, a similar relation holds for the
positive definite case with replacing . Note that by taking

, it follows that the cone of positive semi-definite ma-
trices is invariant under a congruence transformation.

Theorem 2—Discrete-Time SISO Minimum-Phase Spectral
Factor: Let be a real rational
function that is analytic in . Assume that sat-
isfies the discrete-time positive real lemma with a minimal
realization . Then, the minimum-phase
spectral factor can be expressed in the form

with

(30)

(31)

and is the minimum element in the convex set of sym-
metric positive definite matrices satisfying (21).

Proof: The fact that the minimum-phase spectral factor
has the form (22) has been established in Corollary 1. Equations
(30) and (31) are obtained from (15) and (16) by recalling that
for the SISO minimum-phase spectral factor, is a scalar, and

is a column vector. The proof that the LMI and Nyquist con-
straints are satisfied with for the case of
is established through the following series of steps.

1) The Nyquist constraint (19) can be incorporated in the
LMI by replacing in (17) with ,
where is the identity matrix. In the remainder of
the proof, we will therefore only consider the LMI con-
straint, keeping the above substitution in mind.

2) The set generating the cone of positive
semi-definite matrices, ,
defined by

(32)

is the same set of symmetric positive definite matrices
satisfying the following matrix inequality:

(33)

where is the identity matrix, is the
zero vector, and . To see this, ob-
serve that the left-hand side of (33) is congruent to.
Since the cone of symmetric positive semi-definite ma-
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trices is invariant under a congruence transformation and
since the congruence transformation is independent of,
the claim follows automatically.

3) By multiplying the three matrices in (33) and performing
the following substitutions:

(34)

it can then be shown (see Appendix D) that these opera-
tions produce the LMI (17) with

(35)

Equation (35) describes another nonsingular congruence
transformation applied this time on the set

. The congruence transformation preserves the positive
definiteness of the matrices as well as the partial order
induced on the set.

4) Using Fact 3 (with ) and steps 1) – 3)
described above, we have therefore proven that the set

satisfying the constraints (21) has a
minimum element and that minimum element is
given by . It now
remains to show that is the solution associated with

. This can be done by starting with (23)–(25)
with , applying the bilinear transformation on

, which produces the following relations:

(36)

making the additional substitutions

and simplifying to obtain (14)–(16). The conclusion that
these final equations are associated with fol-
lows from Corollary 1. The exact derivations of the above
steps are algebraic in nature and very similar to the proofs
found in Appendix D and are therefore omitted.

An alternative characterization of is given by the fol-
lowing theorem.

Theorem 3: Assume that . Then,
the minimum element in the convex set of symmetric
positive definite matrices satisfying the constraints (21) is the
uniquesolution to the followingalgebraic Riccati equations
(AREs):

(37)

where

(38)

where .

Proof: Equation (37) follows by substituting (31) in (14).
Equation (38) is derived from (37), assuming thatis positive
definite, and the proof can be found in Appendix E.

Corollary 2: can be obtained from using the
congruence relation (35) and the fact is the unique so-
lution to the following equations:

(39)

where

(40)

and are given by (34). The proof that
is the unique solution to (39) and (40) can be found in [38].

V. SOME SIMPLIFICATIONS FOR THESISO FIR CASE

Assume that the positive real function has the following
minimal state-space realization:

(41)

where is the zero vector. The minimum-phase
spectral factor is then given by

(42)

The second equality follows by analogy with the transfer func-
tion of , and the third equality is obtained by direct substi-
tution of (41). It is interesting to note that among all the elements
of , only the last row affects the coefficients of .
Closed-form expressions for the continuous-time system,

, can be also derived and are given by

...
...

...

...
...

. . .
(43)
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...
...

...
...

...
(44)

(45)

The above follows by noticing that is an Jordan
block. It is easy to show that its inverse is equal to an upper tri-
angular Toeplitz matrix with first row .
The knowledge of the form of equations (43)–(45) is useful
in order to avoid computing inverses during the optimization
process (if the continuous-time characterization of Corollary 2
is to be used).

Corollary 3: For the special SISO FIR case under consider-
ation, the minimum element has the following form:

(46)

where denotes the observability matrix of the realiza-
tion . The above result follows from the fact that
has to satisfy a discrete-time Lyapunov equation (14). The so-
lution of a discrete time Lyapunov equation can be found in
[1, pp. 684–685] and can be further simplified for this case
using the fact that to obtain (46). It also follows that
Tr and that (16) is the unit energy con-
straint enforced on the optimum filter.

Corollary 4: For the special SISO FIR case under consider-
ation, the discrete-time positive real lemma is equivalent to the
following condition: There exists an matrix

such that

Tr if
otherwise

(47)

with , where
zero vector;

identity matrix;
zero matrix;

th element of the vector .
The above conditions mean, in particular, that the trace of

and that the sum of the elements of each lower (or upper)
diagonal of is equal to a coefficient . The result follows
by substituting (41) into (17), which simplifies to the following
form:

(48)

where
0 scalar;

zero vector;
zero matrix.

Since , Tr . The other conditions are
obtained by direct evaluation. The above corollary produces a
more compact form for the positivity constraint and can be used
to increase thecomputational efficiencyof the SDP program
[47]. Moreover, Corollary 4 can be used to generate new “theo-
rems” and “forms” for the spectral factorization of polynomials
[47]. The next example, while easily handled using elementary
methods, serves to demonstrate the main points of the previous
discussions.

Example— KLT: Assume that and that
. The state-space representation for in this

case is and .
Using (37) and this particular state-space realization, the
optimization problem can be simplified and recast as fol-
lows. Maximize subject to the equality constraint

, where . Note
that by using (38) instead of (37) with and

, the same formulation is obtained. The problem
can be reexpressed as an “unconstrained” problem in the
variable , namely, maximize ,
where . Using the AM-GM inequality, the
convex objective function is upper bounded by ,
which is independent of . The bound is achieved if,
and only if, , i.e., . From

, it then follows that .
Using (22), (30), and (31) with the above state-space repre-
sentation, the minimum phase spectral factor has the form

. By sub-
stituting , we get ,
which corresponds to the first row of the universal KLT.
We also note that could have been obtained from
Corollary 3 by using the two equations
and , where and are the filter coefficients
of . Neither the product filter nor the spectral factor
coefficients depend on the value of . The compaction gain
is, however, equal to . To check Corollary 2,
note that
and with , , (39)
and (40) reduce to , where

. The problem can be put in the following
form. Maximize and solve in
the same way as the discrete-time case. The final result is

and . We also note
that . Finally, the
continuous-time spectral factor is equal to .
It can be easily verified that this is the result we obtain by
applying the bilinear transformation to

.
Although the above example uses conditions (37) and (38)

(which are nonlinearnonconvex) and/or their continuous-time
equivalents to solve the maximization problem, it is actually the
LMIs in (17) and in (26) that come into play when
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using a SDP to solve the general case, as we discuss
next.

VI. SPECTRAL FACTOR FORMULATION

The minimum-phase spectral factor is determined by
and . Since and are

fixed by the choice (18), and since is determined by
the program, we can also include in the objective function
(20) to obtain . Minimizing directly will produce a
vector-valued objective function. To avoid this situation, we
can instead minimize a scalar-valued function of, and this
can be established by the following observation.

Observation 1: Assume that is the minimum element
in the convex set of symmetric positive definite matrices satis-
fying the LMI constraint (17). Then, if, and only
if, Tr is minimum for any diagonal positive definite ma-
trix .

Proof: The necessary part is obvious because
implies that Tr Tr . For the sufficiency part,
we proceed as follows: Assume there exists a matrixand
a minimum element such that Tr Tr

Tr over all . Note that by the definition of the
minimum element, . We will show that must
be equal to . From Tr Tr , it follows that
Tr . Since is a diagonal matrix with
positive elements, then the diagonal elements of the positive
semi-definite matrix are equal to zero. Using the fact
that the principal minors of a positive semi-definite matrix must
be non-negative, it follows that must be identically
zero.

The optimization problem formulated at the end of Section III
now reduces to the following final form:

Tr (49)

where , and is a diagonal positive
definite weight matrix such that

(50)

and is therefore a maximization problem in the variable vector
and a minimization problem in the matrix . The particular

choice of the trace function Tr was intentional in order to use
SDP. The weight matrix is included in the objective function
because, unlike in Section III, we now have two separate and
competingobjectives, namely, and Tr . The idea
is to choose the weight so that optimality of is never com-
promised, i.e., in order to prohibit Tr from becoming the
dominant factor in (49). Finally, note that the continuous-time
characterization can also be used. In particular, with the contin-
uous-time state-space realization described in (43) and (44) and,
with , the optimization problem becomes

Tr (51)

where and are defined as before such that

(52)

The matrix is then obtained from using (35).
Observation 2: The multiobjective optimization problems

described, respectively, by (49) and (50) and by (51) and (52)
are convex programs with respect to the variablesand
and and .

Proof: Since the two problems are identical in form, we
only provide a proof for the discrete-time formulation (49) and
(50). The objective function (49) is linear in both and
and is therefore a convex function. The constraint set defined
by (50) is a convex set with respect to the optimization variable

since for all and and for all

The same argument holds for . The equality constraint is
linear in and is therefore convex.

It follows that any local solution to these programs is also a
global one.

Initialization and Strict Feasibility: The LMI control
toolbox and the software package in [41] require a strictly
feasible primal or dual problem (the so-called Slater conditions)
to converge. Indeed, this is a sufficient condition for the duality
gap to be zero [36]. For the design of compaction filters, we can
use the followingstrictly feasible pointas an initial solution to
the primal problem:

(53)

By definition, . With the above choice, the LMI
in (50) is diagonal and positive definite.

VII. REGULARITY CONSTRAINTS

The regularity property is important in wavelets applications
such as image coding, numerical analysis, and computer
graphics, to name a few. An orthonormal wavelet scaling
function is obtained by cascading subband filters ,
where is an FIR filter with a Nyquist( ) magnitude
squared response. For certain applications, it is important that
the product converges to a “smooth” function.
The degree of smoothness or regularity is characterized by
the number of zeros that has at the aliasing frequencies

for . For , this amounts
to forcing zeros at ( ). The first of these
zeros ( ) is simply obtained from [because

, will automatically have a double zero
at ]. The second zero is obtained by differentiating

twice with respect to , evaluating the result at ,



2832 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

and setting it to zero. Repeating this procedure, we derive the
following equation:

...
...

. . .

(54)

For general , the regularity condition can be expressed as the
following linear constraint on the filter product coefficients:

...

(55)

In the remainder of this section, we will discuss only the case of
. Most of the results can be easily extended for .

We next show, using the continuous-time formulation (52), that
the LMI in (50) becomes singular when adding (54) to the SDP.
We then derive a new formulation for which a strict feasible
solution (primal or dual) always exists for the case of a single
zero at ( ).

Theorem 4—SDP Formulation with the Regularity Con-
straint: Assume that (54) is satisfied for any . Then, the
LMI in (50) is always singular. Nevertheless, the primal problem
defined by (49) and (50) can be re-expressed as follows:

Tr (56)

where , and is a diagonal positive def-
inite weight matrix subject to the following constraints:

...
...

. . .

(57)

Proof: The key idea is to observe that for , the LMI
(52) in the continuous-time formulation reduces to the following
form:

(58)

The above follows from (24), (25), and (45). By applying (34),
(58) can be rewritten as follows:

(59)

Substituting (59) in the LMI (50) and simplifying, we get
(60), shown at the bottom of the page. The above matrix is
singularfor all because the last column of is a linear
combination of the previous ones. To see this, observe that

, where
the notation defines the columns of ,
starting with column . Some of the variables are therefore
linearly dependent and have to be eliminated. This can be
done by using (59), and the new formulation of Theorem 5 is
immediately obtained.

Even in this more simplified form, the existence of a strictly
feasible solution is still not guaranteed for , and an SDP
software package (such as SDPT3 [42]) that does not require
strict feasibility should be used. For , however, we propose
the following initialization procedure.

i) Start with a vector
with .

ii) Assume that the matrix is block diagonal with the first
block being a scalar (a block) and the remaining
blocks of size . Since must be positive definite,
it follows that all its diagonal elements, as well as the
determinants of the block matrices, are positive.

iii) Choose such that
and . It can be shown

(with a good amount of matrix algebra) that we can al-
ways obtain a strictly feasible starting point by following
the above process.

Compaction Gain Bounds in the Presence of Regularity Con-
straints: An upper bound for the compaction gain can be com-
puted by running the SDP with . A strictly feasible point
always exists, and the SDP converges to a global optimum.
On the other hand, with all free zeros at, a lower bound is
obtained by solving the linear system of equations defined by
(54) with . These bounds determine the range

(60)
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Fig. 4. Compaction gain curves for an AR(1) process forN = 2; 3 and1
with M = 2.

of all possible compaction gains as we increase the regularity
degree.

VIII. N UMERICAL RESULTS

The results described here are obtained using the MATLAB
LMI control toolbox. Due to space limitations, all the FIR
energy compaction filter design programs and corresponding
documentation can be found at http://www.systems.cal-
tech.edu/tuqan. For all the following examples, ,
where .

Example 1—AR(1) Process:Assume that the input
is a zero-mean AR(1) process with an autocorrelation se-
quence in the form , where . Let

. The optimum compaction gain curves for 2
and 3 as a function of are shown in Fig. 4. The curve for

coincides with the theoretical compaction gain formula
derived in [33]. The precise

difference is actually on the order of . The last curve
denotes the compaction gain when (ideal lowpass
filter case). A closed-form expression for the compaction gain
can be obtained by evaluating the integral in (1) since the
integrand is a Poisson kernel [43, p. 308]. The final result
is . From
Fig. 4, it is therefore very clear that for an AR(1) process,
the margin of gain versus filter length is very small. Assume
now that , , and . The theoretical
optimum filter , which is obtained from [33], is the
same as the SDP one (the difference in the numerical accuracy
of the coefficients is in the order of ) and is given by

.
The compaction gain in both cases is equal to 1.922.
The minimum-phase filter in this case is

. Note
that , indicating a
numerically accurate spectral factor. The positivity of

Fig. 5. Double roots on the unit circle, indicating the positivity of the product
filter F (z) (a) as the output of the program (b) as a result of convolvingh (n)
with its flipped version.

Fig. 6. Magnitude squared responses of the optimum compaction filters
corresponding to the multiband AR(5) process (dashed curve) of orderN = 7,
17, and 27 withM = 2.

is demonstrated by the double roots in the-plane plot
of Fig. 5(a). The compaction gain of
remains equal to 1.922, and the positivity property of

is not lost, as we can clearly see in
Fig. 5(b).

Example 2—Multiband AR(5) Process:Assume that the
input is a zero-mean multiband AR(5) process (dashed
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Fig. 7. Magnitude squared responses of the optimum compaction filters
corresponding to the multiband AR(5) process (dashed curve) of orderN = 7,
17, and 27 withM = 3.

Fig. 8. Nonmonotone behavior of the compaction gain as a function of the
number of channelsM with a filter of fixed orderN = 17.

curve in Figs. 6 and 7). The magnitude squared responses
of the resulting optimum compaction filters are shown in
Fig. 6 for 7, 17, and 27 and . The corresponding
compaction gains are 1.5243, 1.5633, and 1.5748. Similarly,
the magnitude squared responses of the resulting optimum
compaction filters with 7, 17, 27, and are shown
in Fig. 7. In this case, the compaction gains are 1.866, 2.007,
and 2.045. With a fixed filter order , a plot of as
a function of is shown in Fig. 8, indicating a nonmonotonic

behavior. When , the Nyquist constraint reduces
to a unit energy constraint, and the optimum compaction
filter is the eigenvector corresponding to the largest eigen
value of the Toeplitz symmetric autocorrelation matrix with
first row . The maximum eigenvalue
of the Toeplitz symmetric autocorrelation matrix
is therefore an upper bound on the compaction gain as
increases from 2 to 17. The overall incremental behavior of
the compaction gain should be intuitively acceptable because
as increases with fixed, the constraints on the filter
coefficients become less stringent. In fact, we can easily prove
that .

Example 3—Regularity versus Compaction Gain:Consider
again the AR(5) process of Example 2 with .
The compaction gain is 1.387 with no zeros atand 1.374
with one or two zeros at . The compaction filter converges to
the same solution , in the latter
two cases. For , the compaction gain is 1.453 with
no regularity constraints and drops to 1.384 when forcing a
single zero at . However, it (almost) remains constant, even
when forcing all three zeros at. In general, we have found
that the compaction gain can drop substantially when forcing a
zero at but then usually remains constant as we increase the
smoothness degree.

IX. CONCLUDING REMARKS

Using state-space theory, we have proposed a new approach
for designing globally optimal FIR energy compaction filters.
The design of such filters is important because they are the basic
building blocks of an -channel FIR orthonormal PCFB. In
particular, for the two-channel case ( ), the optimum com-
paction filter determines the optimum orthonormal filterbank.
Therefore, by using any of the proposed formulations in this
paper,the optimal two-channel FIR PCFBis found [24]. The
issue regarding which spectral factor to choose is, however, un-
clear. Different spectral factors exhibit different subband decor-
relation properties. For the -channel case, some progress re-
garding the design of the filterbank has been reported in [18],
but the problem, in its full generality, remains open at the mo-
ment of this writing.

The tradeoff between any global optimum algorithm and a
suboptimal one is typically complex. In general, SDP’s im-
plemented using interior point methods are more computa-
tionally expensive than (for example) linear programs. One
way to see this is to note that a linear program is a spe-
cial case of an SDP, where the matrices defining the LMI
are diagonal. The added structure produces more efficient al-
gorithms. Nevertheless, SDP’s come in all sorts of different
forms and implementations. We have already displayed several
formulations of the same problem in a single paper, and we
certainly have not tried all of them in our simulations (see,
however, additional documentation at http://www.systems.cal-
tech.edu/tuqan/). Since the main goal was to validate our new
approach, we felt that finding more efficient semidefinite pro-
grams, although important, plays a secondary role with respect
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to the other results of the paper. Indeed, changing the form
of an SDP to another is usually not that difficult. Moreover,
there is a whole community of numerical analysis researchers
looking for faster implementations of SDPs, and substantial
speedups are expected in the future.

APPENDIX A
PROOF OFTHEOREM 1

Substituting (14)–(16) in the expression of , we can
write the following sequence of equations:

Now, note that

(61)

This result is obtained by simply multiplying out the matrices
on the left in (61). By using (61) and (14)

APPENDIX B
PROOF OF THEDISCRETETIME MINIMUM PHASE SPECTRAL

FACTOR FORM

Substituting into
and simplifying, we obtain

(62)

Now, the expression
implies the power series

(63)

Equating the constant terms in the above expressions, we obtain
. The coefficient of in (62)

can be simplified to so that
. Finally, since the th term in the power series (62) has

the form for constant and , the
choice , ,
yields a realization of .

APPENDIX C
PROOF OFMINIMALITY

A state-space realization is minimal if and only if it is jointly
observable and controllable. Assuming the minimality of the
triple , we use the (PBH) test [44, pp. 135–136] to
prove the minimality of the triple given by (28).
In particular, since is controllable, then there does not
exist a row vector such that and . Now,
assume that is not controllable. Then, there exists a
row vector such that and

. Let . Then,
and . By observing

that the matrices commute, the last expression
therefore simplifies to . This in turn
implies that . If , then
, which is a contradiction. If , then the assumption that

is not controllable implies that is also not
controllable, which is again a contradiction. The observability
of can be established in a similar way.

APPENDIX D
SIMPLIFYING (33)

It is not difficult to see that by multiplying the matrices in
(33), we get the LMI as shown at the bottom of the next page,
where
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Making the substitutions (34) and (35), the first term in the
above matrix becomes

Similarly, the second term simplifies as follows:

The third term is simply the transpose of the second term. Fi-
nally, the fourth term reduces to

APPENDIX E
PROOF OFCONDITION (38)

Since and are positive definite, the following identity
can be established:

(64)

The identity is obtained by applying twice the matrix inversion
lemma [44, p. 656]. Starting with (38)

other terms

other terms

where the last equation follows from (64). Substituting now the
other terms, we get

(65)

We only simplify one of the cross terms [last two lines of (65)]
since they are the transpose of each other. Recalling that
(by assumption), we can then write

(66)

By substituting (66) and its transpose into (65), (37) is easily
obtained, and the result follows.



TUQAN AND VAIDYANATHAN: STATE SPACE APPROACH TO THE DESIGN OF GLOBALLY OPTIMAL FILTERS 2837

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Boyd (Stanford
University) and Prof. L. Vandenberghe (UCLA) for generously
making available their SDP software which was used to validate
earlier versions of our results. They would also like to thank
Prof. M. G. Strintzis for sending a preprint of [21].

REFERENCES

[1] P. P. Vaidyanathan,Multirate Systems and Filter Banks. Englewood
Cliffs, NJ: Prentice-Hall, 1993.

[2] P. R. Chevillat and G. Ungerboeck, “Optimum FIR transmitter and re-
ceiver filters for data transmission over band-limited channels,”IEEE
Trans. Commun., vol. COMM-30, pp. 1909–1915, Aug. 1982.

[3] J. Tuqan and P. P. Vaidyanathan, “Globally optimal FIR filters with ap-
plications in source and channel coding,” inProc. Int. Symp. Inform.
Theory, Cambridge, MA, 1998, p. 475.

[4] J. Tuqan, “Global optimization of orthogonal FIR transmitter and re-
ceiver filters for data transmission over noisy channels,” inProc. 33rd
Asilomar Conf. Signals, Syst., Comput., vol. 1, 1999, pp. 202–206.

[5] Q. Jin, Z.-Q. Luo, and K. M. Wong, “Optimum filter banks for signal
decomposition and its applications in adaptive echo cancellation,”IEEE
Trans. Signal Processing, vol. 44, pp. 1669–1689, July 1996.

[6] P. P. Vaidyanathan, T. Q. Nguyen, Z. Doganata, and T. Saramaki, “Im-
proved technique for design of perfect reconstruction FIR QMF banks
with lossless polyphase matrices,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. 37, pp. 1042–1056, 1989.

[7] J. Tuqan and P. P. Vaidyanathan, “Oversampling PCM techniques
and optimum noise shapers for quantizing a class of nonbandlimited
signals,” IEEE Trans. Signal Processing, vol. 47, pp. 389–407, Feb.
1999.

[8] M. K. Tsatsanis and G. B. Giannakis, “Principal component filter banks
for optimal multiresolution analysis,”IEEE Trans. Signal Processing,
vol. 43, pp. 1766–1777, Aug. 1995.

[9] K. C. Aas, K. A. Duell, and C. T. Mullis, “Synthesis of extremal wavelet-
generating filters using Gaussian quadrature,”IEEE Trans. Signal Pro-
cessing, vol. 43, pp. 1045–1057, May 1995.

[10] M. K. Tsatsanis and G. B. Giannakis, “Time-varying system identifi-
cation and model validation using wavelets,”IEEE Trans. Signal Pro-
cessing, vol. 41, pp. 3512–3523, Dec. 1993.

[11] M. Unser, “On the optimality of ideal filters for pyramid and wavelet
signal approximation,”IEEE Trans. Signal Processing, vol. 41, pp.
3591–3596, Dec. 1993.

[12] P. P. Vaidyanathan, “Theory of optimal orthonormal subband coders,”
IEEE Trans. Signal Processing, vol. 46, pp. 1528–1543, June 1998.

[13] M. G. Strintzis, “Optimal biorthogonal wavelet bases for signal decom-
position,” IEEE Trans. Signal Processing, vol. 44, pp. 1406–1416, June
1996.

[14] N. S. Jayant and P. Noll,Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, 1984.

[15] M. Unser, “An extension of the Karhunen–Loeve transform for wavelets
and perfect reconstruction filter banks,”SPIE Math. Imag., vol. 2034,
pp. 45–56, 1993.

[16] A. W. Marshall and I. Olkin,Inequalities: Theory of Majorization and
its Applications. New York: Academic, 1979.

[17] A. Kirac and P. P. Vaidyanathan, “On existence of FIR principal
component filter banks,”Proc. ICASSP, vol. 3, pp. 1329–1332, May
1998.

[18] P. Moulin and M. K. Mihcak, “Theory and design of signal adapted FIR
paraunitary filter banks,”IEEE Trans. Signal Processing, vol. 46, pp.
920–929, Apr. 1998.

[19] S. Akkarakaran and P. P. Vaidyanathan, “On optimization of filter banks
with denoising applications,” inProc. ISCASS, 1999.

[20] M. Unser and A. Aldroubi, “A general sampling theory for nonideal
acquisition devices,”IEEE Trans. Signal Processing, vol. 42, pp.
2915–2925, Nov. 1994.

[21] M. G. Strintzis, “Optimal pyramidal and subband decompositions for
hierarchical coding of noisy and quantized images,”IEEE Trans. Image
Processing, vol. 7, pp. 155–166, Feb. 1998.

[22] Y. Nesterov and A. Nemirovskii,Interior Point Polynomial Algorithms
in Convex Programming. Philadelphia, PA: SIAM, 1994, vol. 13.

[23] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan,Linear Matrix
Inequalities in System and Control Theory. Philadelphia, PA: SIAM,
1994, vol. 15.

[24] J. Tuqan and P. P. Vaidyanathan, “Globally optimal two-channel FIR
orthonormal filter banks adapted to the input signal statistics,”Proc.
ICASSP, vol. 3, pp. 1353–1356, May 1998.

[25] , “The role of the discrete-time Kalman–Yakubovich–Popov (KYP)
lemma in designing statistically optimum FIR orthonormal filter banks,”
in Proc. ISCAS, vol. 5, June 1998, pp. 122–125.

[26] P. P. Vaidyanathan and P. Q. Hoang, “Lattice structures for optimal de-
sign and robust implementation of two channel perfect reconstruction
QMF banks,”IEEE Trans. Acoust., Speech, Signal Processing, vol. 36,
pp. 81–94, Jan. 1988.

[27] P. Delsarte, B. Macq, and D. T. M. Slock, “Signal-adapted multiresolu-
tion transform for image coding,”IEEE Trans. Inform. Theory, vol. 38,
pp. 897–904, Mar. 1992.

[28] D. Taubman and A. Zakhor, “A multi-start algorithm for signal adaptive
subband systems,”Proc. ICASSP, vol. 3, pp. 213–216, 1992.

[29] H. Caglar, Y. Liu, and A. N. Akansu, “Statistically optimized PR-QMF
design,”SPIE, Visual Commun. Image Process., vol. 1605, pp. 86–94,
1991.

[30] L. Vandendorpe, “CQF filter banks matched to signal statistics,”Signal
Process., vol. 29, pp. 237–249, 1992.

[31] P. Moulin, M. Anitescu, K. Kortanek, and F. A. Potra, “The role of linear
semi-infinite programming in signal dapted QMF bank design,”IEEE
Trans. Signal Processing, vol. 45, pp. 2160–2174, Sept. 1997.

[32] J.-C. Pesquet and P. L. Combettes, “Wavelet synthesis by alternating
projections,”IEEE Trans. Signal Processing, vol. 44, pp. 728–732, Mar.
1996.

[33] A. Kirac and P. P. Vaidyanathan, “Theory and design of optimum
FIR compaction filters,”IEEE Trans. Signal Processing, vol. 46, pp.
903–919, Apr. 1998.

[34] I. Gigberg,Methods in Operator Theory and Signal Processing, I. Schur,
Ed. Boston, MA: Birkhauser-Verlag, 1986.

[35] B. E. L. Hitz and B. D. O. Anderson, “Discrete positive-real functions
and their application to system stability,”Proc. Inst. Elect. Eng., pp.
153–155, Jan. 1969.

[36] L. Vandenberghe and S. Boyd, “Semidefinite programming,”Siam Rev.,
vol. 38, pp. 49–95, Mar. 1996.

[37] S.-P. Wu, S. Boyd, and L. Vandenberghe, “FIR filter design via semidef-
inite programming and spectral factorization,” inProc. IEEE Conf. De-
cision Contr., 1996.

[38] B. D. Anderson and S. Vongpanitlerd,Network Analysis and Synthesis:
A Modern System Theory Approach. Englewood Cliffs, NJ: Prentice-
Hall, 1973.

[39] J. C. Willems, “Least squares stationary optimal control and the
algebraic Ricatti equation,”IEEE Trans. Automat. Contr., vol. 7, pp.
621–634, Dec. 1971.

[40] B. D. Anderson, “Algebraic properties of minimal degree spectral fac-
tors,” Automatica, pp. 491–500, June 1973.

[41] L. Vandenberghe and S. Boyd, “SP: Software for semi definite program-
ming, beta version,”, Oct. 1994.

[42] K. C. Toh, M. J. Todd, and R. H. Tutuncu, “SDPT3—A Matlab software
package for semi definite programming,” version 2.1, Sept. 1999.

[43] R. V. Churchill,Complex Variables and Applications. New York: Mc-
Graw-Hill, 1990.

[44] T. Kailath,Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[45] D. Xuan and R. Bamberger, “Complete FIR principal component filter

banks,” inProc. ISCAS, 1996, pp. 417–420.
[46] W.-S. Lu and A. Antoniou, “Optimized orthogonal and biorthogonal

wavelets using linear parametrization of half band filters,”Proc. ISCAS,
vol. 5, pp. 102–105, June 1998.

[47] J. Tuqan, “On the design of optimal orthogonal finite order transmitter
and receiver filters over noisy channels,”Proc. 34th Asilomar Conf. Sig-
nals, Syst., Comput., Nov. 2000.



2838 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000

Jamal Tuqan (S’91–M’98) received the B.Sc.
degree (with honors) in electrical engineering
from Cairo University, Cairo, Egypt in 1989, the
M.S.E.E. degree from the Georgia Institute of
Technology, Atlanta, in 1992, and the Ph.D. degree
in electrical engineering from the California Institute
of Technology (Caltech), Pasadena, in 1997.

From September 1989 to July 1990, he worked at
the IBM Research Center, Cairo, writing software for
Arabic speech compression based on linear predic-
tive coding techniques. From July 1994 to December

1997, he was a Research and Teaching Assistant at Caltech. From January until
March 1998, he has been a Technical Staff Member with the Digital Signal Pro-
cessing Group at the same university. During the spring quarter 1998, he was
appointed as a Lecturer at Caltech to teach a class on linear estimation theory
and adaptive filtering. He is currently with the Image and Video Communica-
tions Department at the IBM Thomas J. Watson Research Center, Yorktown
Heights, NY. His main research interests are in the general area of digital and
statistical signal processing, signal processing applications in emerging commu-
nication technologies, data compression, and applied mathematics. The focus of
his Ph.D. dissertation research was on the optimization of multirate systems and
filterbanks according to the input signal statistics for compression and commu-
nication applications.

Dr. Tuqan is a member of the Technical Program Committee for the 2000
IEEE International Conference on Multimedia and Exposition.

P. P. Vaidyanathan(S’80–M’83–SM’88–F’91) was
born in Calcutta, India, on October 16, 1954. He
received the B.Sc. (Hons.) degree in physics and the
B.Tech. and M.Tech. degrees in radiophysics and
electronics, all from the University of Calcutta, in
1974, 1977, and 1979, respectively, and the Ph.D.
degree in electrical and computer engineering from
the University of California, Santa Barbara (UCSB),
in 1982.

He was a Post-Doctoral Fellow at UCSB from
September 1982 to March 1983. In March 1983,

he joined the Electrical Engineering Department, California Institute of
Technology (Caltech), Pasadena, as an Assistant Professor, and since 1993, he
has been Professor of Electrical Engineering there. His main research interests
are in digital signal processing, multirate systems, wavelet transforms, and
adaptive filtering.

Dr. Vaidyanathan served as Vice Chairman of the Technical Program Com-
mittee for the 1983 IEEE International Symposium on Circuits and Systems
and as the Technical Program Chairman for the 1992 IEEE International
Symposium on Circuits and Systems. He was an Associate Editor for the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS ffrom 1985 to 1987 and
is currently an Associate Editor for the IEEE SIGNAL PROCESSINGLETTERS

and a Consulting Editor for the journalApplied and Computational Harmonic
Analysis. He has been a Guest Editor in 1998 for special issues of the IEEE
TRANSACTIONS ON SIGNAL PROCESSING and the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS II on the topics of filter banks, wavelets, and subband
coders. He has authored a number of papers in IEEE journals and is the author
of the bookMultirate Systems and Filter Banks(Englewood Cliffs, NJ: Pren-
tice-Hall, 1993). He has written several chapters for various signal processing
handbooks. He was a recipient of the Award for Excellence in Teaching at
Caltech for the years 1983–1984, 1992–1993 and 1993–1994. He also received
the NSF’s Presidential Young Investigator award in 1986. In 1989, he received
the IEEE ASSP Senior Award for his paper on multirate perfect-reconstruction
filter banks. In 1990, he was recipient of the S. K. Mitra Memorial Award
from the Institute of Electronics and Telecommuncations Engineers, India, for
his joint paper in theIETE Journal. He was also the coauthor of a paper on
linear-phase perfect reconstruction filter banks in the IEEE TRANSACTIONS ON

SIGNAL PROCESSINGfor which the first author (T. Nguyen) received the Young
Outstanding Author award in 1993. He received the 1995 F. E. Terman Award
of the American Society for Engineering Education, sponsored by Hewlett
Packard Co., for his contributions to engineering education, especially the
book Multirate Systems and Filter Banks. He has given several plenary talks,
including at the Eusipco’98, Asimolar’88, and SPCOM’95 conferences on
signal processing. He has been chosen a Distinguished Lecturer for the IEEE
Signal Processing Society for 1996–1997. In 1999, he received the IEEE CAS
Society’s Golden Jubilee Medal.


