PHYSICAL REVIEW A

VOLUME 37, NUMBER 5

MARCH 1, 1988

Atomic response to strong laser pulses

D. A. Wasson and S. E. Koonin
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125
(Received 28 August 1987)

We formulate a semiclassical model for the collective response of an atom to a strong laser pulse
and use it to study the behavior of the valence shell of xenon. We find that, in a monochromatic
wave, a fraction of the shell ionizes rapidly and the rest is driven coherently. The energy distribu-
tions of the emitted electrons show reasonable agreement with experimental distributions that are
generated via single-particle ionization, indicating that the spectra are independent of the ionization
dynamics. The remaining part of the shell is driven coherently and expands with time, thus exerting
minimal effect on the core. We also analyze the effects of pulse shape, pulse duration, and the pon-
deromotive potential. In particular, we present results for femtosecond pulses.

I. INTRODUCTION

The study of the response of atoms to electromagnetic
radiation in the nonperturbative regime is now possible
experimentally. A variety of effects have been observed
or are predicted to occur in this novel situation, including
multiple ionization. In weak fields, this multi-ionization
occurs sequentially: one electron absorbs many photons
and escapes, followed by more electrons doing the same,
with the ion being in its ground state at each step. In
strong fields, however, a strong collective response is pos-
sible, that is, several electrons (possibly a whole shell)
respond at once to the applied field.

Several qualitative analysis of collective behavior have
been performed,' although it has not yet been observed
experimentally.? In these experiments, the shape of the
applied laser pulse plays an important role. For instance,
it has been shown that if the rise time of the pulse is slow
enough (as it is in the current experiments), then the ini-
tial ionization will occur in the perturbative regime.> To
study the true response of an atom to a strong field,
pulses with short rise times will have to be used, making
it necessary to understand the effect of the pulse en-
velope.

Experiments also show that the ionized electrons can
absorb many more photons than the minimum required
for ionization. The energy spectra that result are com-
pletely different from those predicted by perturbation
theory.* Data show that the structure of the spectra is
determined primarily by the intensity and frequency of
the applied field and not by the particular atom.’

An accurate description of these findings could be ob-
tained from solutions to the time-dependent many-body
Schrodinger equation, which are, of course, impossible at
present. Several approximate methods have been applied.
Perturbation theory has been used to study both the elec-
tron energy spectra® and the many-electron response,’
but it lacks the ability to study the strong-field regime
with any confidence. Direct numerical integration of the
Hartree equations shows promise for understanding the
ionization and excitation of the atom, but is as yet unable
to describe the emitted electrons or sufficiently large
atoms.?

We have approached the problem of atoms in intense
light using a semiclassical model. This allows us to de-
scribe all of the experimental observables simultaneously
for arbitrary pulse shapes. In particular, we are able to
study the characteristics of collective motion of the shell
and the envelope of the energy spectra of the ionized elec-
trons. In Sec. II we describe our model and its numerical
implementation, while in Sec. III we present some results.

II. SEMICLASSICAL MODEL OF THE VALENCE
SHELL

This section develops our model for analyzing the
response of the valence shell of an atom, assuming an in-
ert core. We restrict ourselves to the valence shell since
experiments studying multiple ionization indicate that it
is mainly the valence shell that interacts with the external
field,” although our model can be extended easily to
several shells or even to the whole atom. In Sec. ITA we
discuss the motivation behind our calculation and com-
pare it with related methods. To track the evolution of
the valence shell, we need both an initial classical approx-
imation to the valence shell and then a means of evolving
it in time. We discuss these two issues in Secs. II B and
II C, respectively.

A. The model

Our model, which has been previously used with suc-
cess in time-dependent nuclear physics problems,'? finds
a rigorous basis as a semiclassical expansion of the time-
dependent Hartree-Fock (TDHF) equations, with the ad-
dition of short-range correlation effects. The semiclassi-
cal approximation to TDHF equations describes collec-
tive motion in the time varying mean field of the atom.
Although we introduce additional correlation effects, our
model does not describe single-electron excitations.
Hence, our model is good for analyzing the process of
collective excitation, but not in deciding when this is the
dominant excitation mechanism. We now describe the
model.

The many-body wave function of the shell can be ap-
proximated in terms of single-particle wave functions 1,
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by a Slater determinant, W, «<det[¢;(x;)]. From this
we can construct the Wigner function, which behaves like
a classical phase-space distribution,

flp,= [ dse ™3 g (r—s/2,1)
XYPF(r+s8/2,t) . (1)

Integrating over the r dependence of f leads to the
momentum density, while integrating over the p depen-
dence of f leads to the spatial density. In addition, in the
semiclassical regime, the Wigner function evolves in time
via the Boltzmann equation,

) (2)
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as does the classical phase-space distribution.

To see how this comes about, consider the TDHF ap-
proximation, in which the wave functions obey single-
particle equations of the form

‘ﬁz 2 . adJl
— 2mV +vlp(r,t),r,t] |¢;=i# ar
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plr,t)=73 | (r,t)| .
It follows that
8 P 2 |Fovur| r_
ot + m v.f 755 ViV, lof =0, (4)

which implies the Vlasov equation in the classical limit
(A—0),
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Correlations beyond the TDHF approximation can be
incorporated by adding a collision term that respects the
Pauli exclusion principle [ f (r,p) < 1]. However, there is
no unique prescription for determining this collision
term. We use the standard Uehling-Uhlenbeck form,
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which incorporates the effects of two-body elastic col-
lisions with cross section o, into the evolution of the
phase-space distribution subject to Pauli blocking.!! The
specific form used for the cross section is described in
Sec. II C.

This shows that in the semiclassical limit it is possible
to extract a quantum-mechanical quantity that has the
properties of (and evolves like) a classical phase-space dis-
tribution. In our simulations we generate an initial distri-
bution that approximates that of the shell and then
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evolve it classically. The specifics of how this is done are
discussed in Secs. II B and II C.

An alternate classical approach that we have investi-
gated is to perform molecular dynamics simulations.
Kirschbaum and Wilets'? have introduced classical
momentum-dependent electron-electron and electron-
nucleus potentials that simulate the Pauli exclusion prin-
ciple and Heisenberg uncertainty relation and have used
them to model atomic muon capture. One could similar-
ly evolve these atoms in an applied electromagnetic field.
In this type of simulation one is treating the physical
number of electrons as discrete classical particles in-
teracting with each other, while in our calculations we
evolve an entire phase-space distribution classically. As
there are an infinite number of classical configurations for
the ground state of the atom in the Wilets model, per-
forming molecular dynamics simulations for many of
these ground states will give results equivalent to those
obtained in our method. However, the computational
burden is more extensive and the method for dealing with
quantum mechanics has no rigorous justification. On the
other hand, an advantage of a molecular dynamics simu-
lation is that single-particle and collective excitations can
both occur, so that the competition between these two
modes of excitation can be studied,'® something that can-
not be studied in our model.

B. The initial distribution

In our calculations we approximate the initial phase-
space distribution by a Thomas-Fermi distribution, gen-
erated by assuming a uniform electron gas at each point
with Fermi momentum
172

k(r)= lzﬁ—T[Ef—v(r)] )

Here E; is the Fermi energy and v (r) is the electrostatic
potential obtained by solving Poisson’s equation self-
consistently,

Vo (r)= —4me? +47Ze?8(r) , (8)

1 3
3,”,2 kf

yielding a spherically symmetric charge distribution. E,
is zero for neutral atoms.

We will study the evolution of the valence shell in the
presence of a static core. Since there is no shell structure
in the Thomas-Fermi atom, we must introduce the dis-
tinction between valence shell and core artificially. We
separate the core from the valence shell by picking an en-
ergy E .. such that all electrons with energy below E .
are in the core and those with larger energy are in the
valence shell. The core is then assumed fixed in time,
generating a force F_ .(r) that is directed radially and is
spherically symmetric.

The primary advantage of the Thomas-Fermi phase-
space distribution is that it is very easy to work with (see
Sec. IIC). It also gives a good description of the core (ex-
cept for the smallest radii), which means that the core’s
influence on the valence electrons is well simulated. One
drawback, which we discuss below, is that the initial dis-
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tribution of the shell electrons is underbound, as the
phase-space distribution extends to zero binding energy.
Nonetheless, we believe it provides a good initial model
for studying the evolution of an atomic shell in a strong
applied field.

C. The evolution

The phase-space distribution discussed above evolves
in time via Eq. (2). We accomplish this by discretizing
the initial phase-space distribution into N pseudoparticles
that move in the mean field v and collide with the cross
section o, of Egs. (2) and (6). If the valence shell con-
tains Ny real electrons, then the shell (in the Thomas-
Fermi approximation) uniformly occupies a region of
phase space of volume [ d’p d’x =1Ngh°, where the
factor of 1 is due to the spin degeneracy of the electrons.
This implies that each pseudoparticle occupies a volume
in phase space of N4 /2N, which we take to be a cube
in coordinate space centered about the position of the
pseudoparticle and a cube in momentum space centered
about its momentum. This discretizes the initial phase
space exactly only in the limit that the number of pseu-
doparticles is infinite.

We now need to determine the mean field and the col-
lision cross section. To motivate our choice, consider the
fully classical calculation in which the pseudoparticles
evolve in time via

dp.
TE=Fln 0,
9)
dr; Pi
dt ~ m’
where
2
Fi({r},0)=— 1Zre|3r,-+Fc0,e(r,»)
N shen e?
—r;)—eE(1) .
~ 2 t—t, |3(r r;)—eE(1)
i;&]
(10)

Here F_.(r) is the force due to the static core and E(¢) is
the external field. We adopt the dipole approximation for
E (i.e., spatial independence) and ignore the magnetic
field. The external field is taken to point in the z direc-
tion, implying that the system will maintain azimuthal
symmetry in time as N— «. We construct the mean
field and collision cross section so as to mimic Eq. (10) as
closely as possible while maintaining the constraint of
Pauli blocking. This is accomplished by dividing the
electron-electron interaction term of Eq. (10) into a cylin-
drically symmetric mean field and then generating col-
lisions from the residual interaction.

We determine the mean field by solving Poisson’s equa-
tion for a smoothed, cylindrically symmetric charge den-
sity generated by the positions of the pseudoparticles. To
do this, we introduce a lattice and relax the discretized
Poisson’s equation. We calculate the force from the re-
sulting potential using the difference formula defined by
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the lattice. This force, together with the force due to the
nucleus, core, and external field, defines the net force due
to the mean fields Fyg(r,1).

The motion in the mean field is integrated by leap-
frogging the position and momentum with a time step A¢,

pi[(n +3)At]=p,[(n —1)At]+ AtFye(r; 1),

(11
r;[(n + DAt]=r,; [nAt]+—p,[(n +3)Ae] .

As both the mean field and the charge distribution are cy-
lindrically symmetric, only the p and z components of the
pseudoparticle motion in the mean field need to be in-
tegrated explicitly.

When two pseudoparticles become close, their mutual
Coulomb repulsion dominates over the mean field. This
generates the collisions discussed in Sec. Il A. We handle
these by specifying that when two pseudoparticles be-
come close (as determined by our initial phase-space
discretization), they scatter elastically, at a randomly
chosen impact parameter, through a truncated Coulomb
potential. We then check whether these phase-space lo-
cations are already occupied, either by other pseudoparti-
cles or by the core. If either phase-space volume is occu-
pied, scattering does not occur. This method corre-
sponds to a stochastic evaluation of the collision integral,
Eq. (6).

We end this section by giving the values of the various
parameters discussed above that we used in our computa-
tions. The simulations are typically performed for the
valence shell of xenon (Z =54), which contains eight
electrons. This corresponds to E_,,=—11.6 eV in our
Thomas-Fermi model. We discretize this shell with
N =1000 pseudoparticles. This is large enough to give a
good discretization of phase space, yet small enough to be
computationally tractable. Each pseudoparticle occupies
a volume 0.66> eV>fs® of phase space. We partition this
volume between real and momentum space so that each
pseudoparticle represents approximately equal portions
of each. This results in each pseudoparticle occupying a
cube of side 0.5 A in real space and a cube with sides cor-
responding to a velocity of 2 A/fs in momentum space.
Collisions are performed when pseudoparticles come to
within 0.5 A of each other. Significant collisions typical-
ly require an impact parameter of 0.1 A and a relative ve-
locity of less than 2 A/fs. This means that the time
scale over which a typical significant collision lasts is of
order 0.1 fs which corresponds to the time scale over
which we should evaluate successive collisions. In our
code, we actually check for collisions every 0.05 fs. The
lattice size we use for constructmg the mean field is
40 < 80 with a variable lattice spacing, typically 0.2 A, so
as to always sufficiently encompass the entire bound
atom. The time scale over which the mean field has to be
updated depends on the speed with which it is evolving;
typically it is updated every 0.05 fs. To successfully
evolve the system in time, we need a time step of 5X 107>
fs. It takes approximately 20 min of CPU time on a Cray
X/MP-48 to evolve the system for 10 fs. The computa-
tional burden is divided roughly equally among integrat-
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ing the equations of motion, solving Poisson’s equation,
and performing the collisions plus Pauli blocking.

III. RESULTS

We first consider the case in which the atom is exposed
to a monochromatic wave. We perform our calculations
for a xenon atom in which the shell is taken to be the
n =5 shell with eight electrons. We first expose the shell
to monochromatic waves of frequency w=10'"" Hz
(period =0.63 fs) corresponding to the frequency used in
Rhodes’s experiments.” We study the response up to a
peak field strength of 10 V/A, above which the pondero-
motive force begins to become important. These results
are discussed in Sec. III A. In Sec. III B we examine the
response of the lower half of the xenon shell, assuming
that the first half of the xenon shell has been previously
ionized leaving the bottom half undisturbed. This allows
us to examine the effect of separation energy on the ion-
ization dynamics. In Sec. III C, we consider the effects of
the ponderomotive potential and of pulse shape and dura-
tion.

A. Response of full valence shell

We expose the full shell to monochromatic waves of
varying amplitudes

E(t)=EyZsin(wt) (12)

and examine the evolution of the shell with time. We
first look at the ionization of the atom. In our model,
ionization is determined by examining the individual en-
ergies of the pseudoparticles, with positive-energy pseu-
doparticles being defined as ionized. The individual ener-
gies €; are calculated as

2
pi Ze?
€ = 2”n - r +Vcore(

I

r)+Vue(r) (13)

where V. and Vg are the potentials due to the core
and shell mean field, respectively.

Figure 1 shows the fraction of positive-energy pseu-
doparticle as a function of time for various values of E
during the first 20 fs of evolution. For strong fields, ion-
ization occurs at a uniform rate followed by a rapid level-
ing off of the fraction of positive-energy pseudoparticles.
The leveling occurs at later times and becomes less
abrupt as the strength of the field is decreased. By the
time the field has decreased to 0.5 V/A the kink has al-
most disappeared with the ionization rate becoming near-
ly uniform. We also observe fluctuations in the fraction
of ionized pseudoparticles after the ionization has leveled
off. These are associated with the oscillating field, and
will be further discussed in Sec. III C.

We now examine several properties of the calculated
ionization. Figure 2 shows the fraction of the shell ion-
ized after 20 fs at various field strengths. The error bars
reflect the previously mentioned fluctuation. One can
think of this graph as giving the average charge state that
will be observed if a pulse with a square 20-fs envelope is
applied. Figure 1 shows that the fraction ionized is in-
dependent of the pulse length for fields greater than ~1
V/A and pulse lengths greater than 5 fs. For smaller
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FIG. 1. Fraction of a xenon valence shell ionized as a func-

tion of time fgr peak field strengths of (a) 0.5, (b) 1, (c) 2, (d) 3,
and (e) 10 V/A.

fields, the fraction ionized continues to rise beyond 20 fs.
Hence, one prediction of our model is that, in strong
fields, the fraction of the shell ionized is independent of
the pulse length.

Figure 3 shows the initial ionization rate (slope of Fig.
1 at ¢ =0) for various field strengths. This can be inter-
preted as the rate at which the initial electron is removed.
It varies linearly for fields less than ~3 V/A and then
gradually levels off. This is to be contrasted with the re-
sult from quantum-mechanical perturbation theory in
which the ionization rate scales as E3", where N is the
number of photons required to ionize the first electron.
In our model, the shell extends to zero binding energy so
N =1. Hence, the scaling of the ionization rate in this
collective model is less severe than for single-particle ex-
citation in perturbative quantum mechanics. In Sec.
III B, we will see the effect of increasing the binding ener-
gy on this scaling.

We now examine the spectra of the emitted electrons,
defined as those pseudoparticles with positive energy. In
Fig. 4 we show the electron energy spectra for a variety
of field strengths after 20 fs of exposure. For large fields,
the spectra oscillate with time due to the interaction of
the unbound electrons with the field. Thus, we have
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FIG. 2. Fraction of the valence shell ionized after 20 fs as a
function of field strength.
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FIG. 3. Initial ionization rate as a function of field strength.

determined the spectra by letting the field strength fall
linearly to zero over the final 2 fs (~3 periods). We ob-
serve that the shapes of the spectra are roughly indepen-
dent of the strength of the field. At the lowest strength,
0.5 V/A, there is a small uniform high-energy tail that is
not seen in the others and at the highest field strength, 10
V/A, there is a flattening at low energies. Both of these
will be commented on later.

The upper panel in Fig. 5 shows the average energy,
maximum energy, and energy of the half maximum point
of the spectra of the ionized pseudoparticles at various
field strengths. This shows that the spectra vary linearly
with E, except at the lowest field strength plotted. The
slope, however, depends on which attribute of the spectra
is being observed. For low fields, the maximum energy
becomes independent of the field strength. This is be-
cause these ionized pseudoparticles are generated by col-
lisions and so their energy is determined by the momenta
of the bound pseudoparticles and not the strength of the
field. This process occurs because the evolution of the
shell opens up phase space, which diminishes the Pauli

o] 3]
i (a) ] (d)
i al
| -
= q
~ = ™
: - —
El ; (b) H 5 (e)
2 | I a
| i
S| L
f= T —~
s ]
& - Ty
s 1L L
o ‘ L
3 N — b
B P
Z T @ ®
‘bL L L_\_'
i 9
L L
D |
= I} i L\'*\
s . . . ibuvern B
0 5 10 15 0 10 20 30 40 50

electron energy (eV)

FIG. 4. Energy spectra of ionized pseudoparticles for
Ey,=(a) 0.5, (b) 1.0, (c) 2.0, (d) 3.0, (e) 6.0, and () 10.0 V/A.

blocking. When two pseudoparticles collide with mo-
menta characteristic of their binding energy, the collision
can ionize one of the particles. This mechanism is more
dominant in the Thomas-Fermi atom than in a real atom
because the pseudoparticles have kinetic energies greater
than their binding energies while in a real atom they have
kinetic energies equal to their binding energies. The
linear variation of the energy with field for larger fields is
because the field changes the kinetic energy of each pseu-
doparticle at a rate proportional to the field strength,

dT,

e
pr =—LE(t)-p;

field M

(14)

where T is the kinetic energy of the ith pseudoparticle.
Thus, when the energy of the ionized electron is created
by the field pushing it from being bound into the continu-
um, the energy should vary linearly with the field. For
higher fields the electron energy spectra is also affected
significantly by the field after ionization, as the oscillato-
ry motion of the electron in the free field generates an
average energy that becomes equal to and greater than

o — —
50 — o (c) —
40— —
[ ]

o~ r o 4

3 SOT ]

> o 4

ol

g o

§ 20 f— ]

< 4
o x  (a)
<o
10— —
o X
© o
- X
- N N I N I B
0 2 4 6 8 10 12
E, (V/R)
30 [ BEm
25— o (c)
20 — o (b)
£ [

~ 15 b— o

) X (a)

L3 <o

g
10
r x
r g
5 o

o X
= x
o A I B [P R S
0 2 4 6 8 10 12
E, (V/X)

FIG. 5. Upper panel: (a) average energy, (b) energy of half
maximum, and (c) maximum energy of the ionized pseudoparti-
cles. Lower panel: Energy of electrons emitted within a core
making an angle 6= (a) 90°, (b) 45°, and (c) 30° with the z axis as
a function of peak field strength.
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the energy absorbed during the ionization. This gives a
quadratic variation of the energy with field and will be
discussed in Sec. III C. This effect begins to become im-
portant in our results near E,=10 V/A, where the aver-
age energy of fluctuation is 4 eV.

We note that the energy distributions discussed above
are for electrons emitted in all directions. To study the
variation of the spectra with emission angle, we restrict
our spectra to those ionized pseudoparticles emitted at
angles less than 45° and 30° with respect to the z axis;
smaller angles cannot be analyzed due to poor statistics.
Figure 6 shows the average energy for these two opening
angles for different field strengths. The average energy
increases with decreasing opening angle, as would be ex-
pected from the ionization mechanism discussed previ-
ously. Figure 5 shows the scaling of the average energy
with the electric field for these two opening angles and
the entire spectra. The spectra all scale linearly with the
electric field, although the slope becomes steeper with de-
creasing angle. Finally, Fig. 7 shows the variation of the
electron energy spectra with opening angle for a field
strength of 2 V/A, which is representative of the varia-
tion of the other energy spectra. We observe that the
spectra become more uniform for smaller opening angles,
which is consistent with the observation that the faster
pseudoparticles tend to have their motion aligned with
the z axis.

In Fig. 8 we show experimental electron energy spectra
measured by Kruit et al.* covering all angles of emission.
These experiments were performed at a frequency ap-
proximately one-fifth of ours using pulses with peak elec-
tric fields in the range of 1 V/A. At this low frequency
the ponderomotive force is significant and indeed is be-
lieved to be what is responsible for the elimination of the
low-energy peaks. In Sec. III C, we will see that the pon-
deromotive force can be incorporated into our energy
spectra by adding the ponderomotive energy to each ion-
ized pseudoparticle. The effect of this is to add an E3
scaling on top of the E scaling already discussed. Since
Kruit’s data do not extend to the end of the spectra, we
cannot compute the average energy of the emitted elec-
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FIG. 6. Average energy of ionized pseudoparticles emitted
within an angle 0 of the z axis for pegk field strengths of (a) 10.0,
(b) 6.0, (c) 3.0, (d) 2.0, and (e) 1.0 V/A.
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trons. Instead, we read off the energy at which the en-
velope of the spectra has dropped to one-half of its peak
value and then subtract the ponderomotive energy. This
is plotted in Fig. 8. We observe a linear relation with a
slope comparable to the slopes of the curves in Fig. 5.

A discrepancy between our results and the experimen-
tal data is the scaling of the total ionization rate with ap-
plied field strength. The experimental rate scales roughly
as the intensity raised to the number of photons required
for single-particle ionization and hence cannot be directly
compared with our rates since our simulations are at a
different frequency. However, as will be seen in Sec.
III B, our collective model never generates ionization
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FIG. 8. Experimental electron spectra of Kruit et al.* (left)
and the scaling of the half-full energy of the spectra. The pon-
deromotive energy has been subtracted from the latter values
(right).
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rates as extreme as those generated by single-electron
response. What is interesting is that although the experi-
ment is dominated by single-electron response and we are
calculating the coherent response, the resulting electron
energy spectra are similar. This indicates that the shape
of the spectra is largely determined at the end of the ion-
ization, as the electron leaves the atom, and is not
affected by how the electron was initially excited. It fol-
lows that the envelope of the electron energy spectra can-
not be used as an indicator of collective ionization.

We now analyze the behavior of those pseudoparticles
that remain bound. From Fig. 1 we see that the number
of bound pseudoparticles remains essentially constant
with time, except for fluctuations. The total energy of
the bound particles as a function of time is shown in Fig.
9. The particles are constantly absorbing energy at a rate
that diminishes with time. We note that the total energy
of the bound particles fluctuates in time due to the fluc-
tuation in the number of bound particles (Fig. 1). There
is no evidence that these bound pseudoparticles will ever
ionize. In Fig. 10 we plot the rms radius of the bound
pseudoparticles against time and observe a uniform ex-
pansion. The large fluctuations are due to the fluctua-
tions in the number of ionized particles seen in Fig. 1.
The expansion is large even for the strength of 0.5 V/A
where the ionization is the smallest. This happens be-
cause as the atom ionizes the Coulomb potential extends
far away from the atom. For instance, a net atomlc
charge of 1 yields a potential 1.4 eV deep at 10 A.
Hence, as the field pumps energy into the shell, it has a
large region of space into which it can (and does) expand.
Thus, our conclusion is that the bound particles absorb
energy and expand in time without ionizing, although the
expansion means that at some point in time they will
have effectively ionized. A steady coherent oscillation is
not set up.

Finally, we examine the effect of collisions on the ion-
ization dynamics. Figure 11 shows the fraction ionized
as a function of time for E;=0.5 eV/A, both with and
without collisions. As expected, the collisions increase
the fraction of the atom ionized, but the qualitative be-
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havior of the curve is unchanged. All other aspects of
the ionization dynamics also behave qualitatively the
same with and without collisions. As the field strength is
increased, the quantitative effect of the collisions becomes
smaller since the more rapid ionization results in fewer
collisions.

B. Response of a half-full valence shell

It is not clear which of the results above will remain
true for a more realistic atomic model, and which are
peculiar to the Thomas-Fermi approximation. The most
glaring error in the Thomas-Fermi model is the lack of
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FIG. 11. Effect of collisions on the evolution of the shell.

The graph §hows fraction ionized as a function of time for
E,=0.5 V/A. The solid line represents the evolution with col-
lisions and the dashed line the evolution without collisions.
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separation energy, which clearly has a major effect on the
ionization dynamics.

We can investigate the effect of separation energy by
removing the top half of the valence shell. This decreases
the mean Coulomb field due to the shell, changing the
average binding energy per electron from 5 eV to 45 eV.
We analyze the response of this half shell and compare it
with the response of the full shell.

The ionization as a function of time is shown in Fig.
12. One clearly sees the effect of the separation energy,
which requires that a finite amount of energy be put in
the system to ionize it. When the field strength is Eg=3
V/A, the atom requires 5 fs to begin ionizing, achieving a
uniform ionization rate from 15 to 40 fs and then gradu-
ally leveling off at around 60 fs. The 10- V/A curve rises
linearly after about 1 fs and then gradually levels out.
Similar behavior is shown by the 6- V/A curve. The
abrupt end of ionization that was seen in the full-shell
case is not seen here. We have not integrated far enough
in time to see whether or not the entire atom is actually
ionized.

In Fig. 13 we show the ionization rates for various field
strengths. In this case, the ionization rate is defined as
the slope of the linear part of the ionization curve. The
scaling of the rate with E|, is slightly greater than for the
full shell, but negligible compared to the scaling that
would be expected from quantum-mechanical perturba-
tion theory (the ionization order is 7). We therefore con-
clude that the scaling of the rates with which the collec-
tively excited shell ionizes is fairly insensitive to the ini-
tial binding energy. The magnitude of the ionization
rates, however, is very sensitive to the separation energy,
the rates being slower for greater separation energy.

Many features of the atomic response are the same for
the half and full shells. The half-shell electron energy
spectra at a given field strength are quantitatively identi-
cal with those of the full shell, despite the different excita-
tion dynamics. This leads us to believe that our electron
spectra are independent of the exact atomic model used.
The energy and rms radius of the bound pseudoparticles
show the same qualitative behavior as those for the full
shell.
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FIG. 12. Fraction of shell ionized as a function of time for an
initially half-full outer shell for field strengths of (a) 3, (b) 6, and
(©) 10 V/A.
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outer shell.

One prominent difference between the evolution in the
half- and full-shell cases is the shape of the oscillating
shell. We analyze the shape through the dimensionless
quadrupole moment,

(222 —Q2> 15
=" 43

A distribution that is strongly concentrated in the z
direction has Q =2, an isotropic distribution has Q =0,
and a distribution concentrated in the p direction has
Q = —1. The evolution of Q for the full and half shells is
shown in Fig. 14. In the half-shell case, the shell becomes
much more peaked in the z direction, while in the full-
shell case it stays fairly isotropic. This is because an os-
cillation can be set up against the increased depth of the
potential. In the full-shell case, the shallow potential
means that all pseudoparticles that experience significant
interaction with the field are ionized by it; the particles
that remain bound have their motion only slightly per-

half shell full shell
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FIG. 14. Dimensionless quadrupole moments of the bound
pseudoparticles as a function of time for both the initially full
(right) and half-full (left) shells for E,= (a) 10.0, (b) 6.0, and (c¢)
3.0 V/A.
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turbed by the applied field. In the half-shell case, the po-
tential is deeper and severely perturbed orbits can remain
bound which allows a strong oscillation in the z direction
to be built up. Thus, the magnitude of the driven oscilla-
tion is very sensitive to the potential and the starting dis-
tribution. However, the overall expansion of the shell, as
shown by the increase of the rms radius with time is not.

In conclusion, the electron energy spectra and overall
expansion of the bound shell with time appear to be in-
dependent of the details of the starting distribution. On
the other hand, the details of the time evolution of the
shell vary strongly with the initial configuration.

C. Effects of the ponderomotive potential and pulse shape

In the above sections we have considered the atomic
response to a laser pulse whose amplitude is independent
of time and position. In reality, the laser pulse has spatial
and temporal dependence:

E(x,t)=Eq(x,t)Zsin(wt) . (16)

The time variation of the envelope of the pulse causes
it to deviate from being monochromatic. If the variation
is slow compared to the period of the pulse then one can
approximate the pulse as being monochromatic at each
point during the evolution and hence calculations which
make this assumption can be used to study the evolution.
The primary effect of this slow variation in current exper-
iments is to make significant amounts of the ionization
occur before the pulse has reached its peak value, thus
making it difficult to expose an atom to the strong fields
discussed in Secs. III B and IIIC. Rapid rise times are re-
quired to accomplish such a feat, which results in great
deviations from monochromaticity. The effect of this
must be understood.

The spatial variation of the pulse also has significant
effects. One effect is that the field an atom feels depends
on its location, so that when a pulse is applied to a
volume of atoms, the results are the superposition of
responses to a range of strengths. More importantly, the
spectrum of electrons emitted by a single atom is affected
by the spatial variation of the pulse, as we now discuss in
some detail.

In current experiments, the time scale over which the
pulse varies is long compared to the time it takes an ion-
ized electron to escape from the spatial extent of the
pulse, so one can regard the strength of the pulse as being
time independent as the electron exits it. For frequencies
large compared to the time scale of the electron’s motion,
the effect of the spatial variation is to introduce an
effective potential known as the ponderomotive potential,
1 E3(x,t)

VPond(x!t)= e

, 17
am o (17)

which corresponds to the average energy of oscillation of
a particle in a monochromatic field of frequency w and
strength E,. If one averages out the fast (frequency w)
fluctuations of the velocity of the particle to find a drift
velocity {v), then the quantity

Am VY2 +V ona(x,1) (18)
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is a constant of the motion.'*

It follows that an electron ionized at a point (x,¢) will
gain an energy V q,q(X,?) in exiting the pulse if we inter-
pret the kinetic energy of the electron within the pulse as
being 1m(v)? as opposed to m{v?). By computing
our energy spectra after slowly lowering the strength of
our pulse to zero, our energy spectra should roughly cor-
respond to the former case. Thus, we can approximate
the effect of the ponderomotive force by adding in energy
Vpona to each ionized pseudoparticle. We saw in Sec.
IIT A that this gives good agreement with experimental
data. Of course, to account for the effect of a spatially
varying pulse in our simulations exactly, we need to in-
sert explicitly a spatially varying electromagnetic field.
This is complicated by the fact that the variation of {v)
is influenced as much by the magnetic field as the electric
field, so simply putting a spatially varying electric field
into our calculation would not give a correct description
of ponderomotive force. For discussions of the pondero-
motive force within the context of quantum mechanics
see Ref. 15.

For pulses that vary quickly in either time or space, the
above analysis no longer holds. For instance, if the pulse
envelope varies slowly in time compared to the period of
the wave then no energy will be transferred to a free elec-
tron. If, instead, the pulse envelope varies quickly in
time then one can transfer energy of order the pondero-
motive energy to the electron. Similarly, if the pulse en-
velope varies rapidly in space then the energy transfer to
the electron cannot be described via a simple potential.'®

We now analyze the effect of short pulse lengths on the
ionization of the full xenon shell. Using Gaussian en-
velopes

(t —t 00 )?

max

Eq(t)=E,exp 3 sin(wt +¢) , (19)
o

we present results for ®=10'" sec™! and E,=10 V/A
with o and ¢ varying. We start integrating the equations
of motion at t =0 with ¢, =30.

In Fig. 15 we show the fraction of pseudoparticles ion-
ized as a function of o for $=0 and 7 /2. The amount of
ionization levels off at around 1 fs corresponding to about
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FIG. 15. Fraction of ionized pseudoparticles as a function of
pulse width for phases ¢ =0 (diamonds) and ¢ =7 /2 (crosses).
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four periods of the pulse. We see from Fig. 1 that this is
less than the ionization created by a monochromatic field
of the same peak strength, which is expected since most
of the ionization occurs when the pulse is less than its
peak value. The results are reasonably insensitive to the
phase of the pulse. Figure 16 shows the total ionization
as a function of time superimposed on the pulse envelope.
We see that as the pulse length becomes larger, ionization
occurs earlier with respect to the peak. By the time o =1
fs all of the ionization has occurred before the pulse
reaches its peak.

We now examine the energy spectra of the ionized
pseudoparticles. In Fig. 17 we show the average energy
as a function of E, for the two different phases. For
short pulses, the average energy is very sensitive to the
phase. The average energy peaks at about 0.25 fs and
then decreases with increasing pulse width. This is un-
derstood because as the pulse length increases, the ioniza-
tion is occurring earlier in the pulse and therefore at
lower field strengths, which implies less electron energy.
On the other hand, at small widths, the pulse is not on
long enough and hence does not have the time to transfer
as much energy as a longer pulse. Figure 18 shows the
actual electron energy spectra. Comparing the spectra of
the long pulses with that of the monochromatic waves,
we see that the pulses have caused the spectrum to have a
larger region of uniformity before the decaying tail sets
in. This is presumably an effect of the ionization occur-
ring for a range of strengths. As the pulses become short-
er one sees significant dependence of the shape of the
spectra on both pulse length and phase.

We also observe that the state of the remaining bound
part of the atom varies strongly with the pulse width.
Figure 19 shows the average energy of a bound pseu-
doparticle as a function of pulse length and phase. The
results are insensitive to the phase. We see that there is a
minimum over 0.25 fs.
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FIG. 16. Fraction of ionized pseudoparticles as a function of
time for o= (a) 0.125, (b) 0.25, (c) 0.5, and (d) 1.0 fs. The solid
line represents the shape of the applied pulse.
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IV. CONCLUSIONS

We have investigated the evolution of an atomic shell
in a strong, external field using a collective, semiclassical
model and considering both monochromatic waves and
short pulses. For the case of the monochromatic applied
field, although many of the specifics of the evolution of
the atom with time are sensitive to the initial conditions
chosen for the shell, several features appear to be in-
dependent of the initial conditions. One of these is the
expansion of the coherently driven shell with time. This
occurs because as the shell ionizes, the potential in which
the shell exists extends further in space. The external
field pumps energy into the shell, causing it to expand out
into the potential. Another is the envelope of the spectra
of the ionized electrons. The shape and scaling of the
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FIG. 18. Energy spectra of the ionized pseudoparticles for
o= (a) 0.125, (b) 0.25, (c) 0.50, and (d) 1.0 fs with ¢=0.
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FIG. 19. Average energy of bound pseudoparticles as a func-
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electron spectra, generated from collective ionization,
also behave similar to the envelope of experimental spec-
tra generated from single-electron ionization.

We have also examined the effect of pulsed waves on
the atoms. As the rise time becomes of order the period
of the wave, the response becomes very sensitive to the

pulse length and phase, especially the ionized energy
spectra. Finally, for longer pulse lengths, we have ob-
served the ionization occurring earlier along the pulse.
This is manifested in the declining average energy of the
ionized electrons with pulse length.

Future calculations with this model could be improved
by generating the initial electron distribution from the
Wigner transformation rather than the Thomas-Fermi
distribution. This would allow us to examine the effect of
separation energy on the evolution of a neutral atom.
Such calculations would be the best calculations possible
with this model, and would allow direct comparisons
with experimental data and with TDHF calculations.
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