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Abstract— We analyze the performance of an approximate distributed
Kalman filter proposed in recent work on distributed coordination.
This approach to distributed estimation is novel in that it admits a
systematic analysis of its performance as various network quantities such
as connection density, topology, and bandwidth are varied. Our main
contribution is a frequency-domain characterization of the distributed
estimator’s steady-state performance; this is quantified in terms of a
special matrix associated with the connection topology called the graph
Laplacian, and also the rate of message exchange between immediate
neighbors in the communication network.

I. INTRODUCTION

The possibility of large decentralized sensor networks has renewed
interest in parallel and distributed signal processing, especially as
regards tracking and estimation. Kalman filters form the bulk of
these applications, and admit various levels of decentralization under
appropriate assumptions. However, classical work on distributed
Kalman filters typically assumes perfect instantaneous communi-
cation between every node on the network and every other node.
While the resulting algorithms remain immensely useful even for
practical networks, they do not allow any straightforward analysis of
the degradation of their performance when communication is limited.
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Fig. 1. Typical behavior of the distributed Kalman filter as the number of
message exchanges increases. This paper provides analysis that allows one
to quantify this behavior as a function of network topology, bandwidth (or
messaging rate), and connection density.

Recent work in the control and systems community has examined a
strategy for dynamic iterative Kalman filtering. This approach imple-
ments a distributed filter in which each node dynamically tracks the
instantaneous least-squares fusion of the current input measurements.
This allows the nodes to run independent local Kalman filters using
the globally fused input, and (asymptotically) obtain the performance

of a centralized Kalman filter. The fact that only inputs (not estimates)
are shared allows a frequency-domain analysis of the performance of
this distributed estimation scheme. This characterization allows one
to understand the behavior depicted in Figure 1 in a quantitative way.

The main contribution of this article is a transfer function describ-
ing the error behavior of the distributed Kalman filter in the case of
stationary noise processes. The magnitude of this transfer function
goes to zero exponentially as the speed of the communication
network relative to the speed of the estimated process becomes large.
Specifically, we will show that the following quantity is particularly
relevant:

1− λ2

dmax + 1

n

.

Here, dmax is the maximal node-degree, λ2 is the algebraic con-
nectivity of the network (defined in the following section), and n is
the number of neighbor-to-neighbor message exchanges allowed per
update of the estimation process.

II. MOTIVATION

Kalman filtering is a fundamental tool in tracking and estimation,
and it will be essential to provide this functionality in sensor
networks. Multi-sensor filtering is fundamentally about information
propagation, and sensor networks pose important challenges in the
speed, reliability, and cost of this propagation. Power limitations will
force designers to keep communication to a minimum, and perhaps
also to put nodes into “sleep” modes intermittently. Simultaneously,
one will want maximum estimation performance subject to the con-
straints imposed by the network technology. Since the Kalman filter
is an intrinsically real-time algorithm, one would like to understand
the impact of the network parameters on the real-time performance of
distributed approximations to the optimal filter. This article provides
such an analysis for a recent design proposed in [1]; the intuitive
explanation for this analysis is based on the interconnection structure
shown in Figure 2, and amounts to understanding the transfer function
of a distributed low-pass filter.

Distributed and decentralized estimation has attracted much at-
tention in the past, and there is a large associated literature. The
classic work of Rao and Durrant-Whyte [2] presents an approach to
decentralized Kalman filtering which accomplishes globally optimal
performance in the case where all sensors can communicate with
all other sensors. Further, this design “fails gracefully” as individual
sensors are removed from the network due to its distributed design.
However, it is difficult to understand the performance of this algo-
rithm when point-to-point communication between each pair of nodes
is unavailable, as is likely to be the case in a large-scale sensor
network.

Much recent research effort has been dedicated to understanding
the networking and computational challenges associated with large
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Fig. 2. The structure of the distributed Kalman filter proposed in Spanos,
Olfati-Saber, and Murray [1].

sensor networks having only limited communication and routing
capabilities. The work of Estrin, Govindan, Heidemann, and Kumar
in [3], as well as that of Akyildiz, Su, Sankarasubramniam, and
Cayirci [4] present excellent surveys of the challenges associated
with this new technology. The work of Zhao, Shin, and Reich [5]
addresses similar challenges in dynamically fusing the information
collected by a large network of sensors, while incorporating the
costs associated with excessive communication and computation. This
problem has significant implications for networking protocols; this
aspect of sensor networks is addressed in the work of Heinzelman,
Kulik, and Balakrishnan [6].

The dynamics of coordination mechanisms in networks has at-
tracted much attention in the control and systems community; we
refer the reader to the works of Olfati-Saber and Murray [7], Jad-
babaie, Lin, and Morse [8], and references therein for an introduction
to recent developments in this area. The former article presents a
decentralized “diffusion” mechanism for obtaining weighted averages
of individual agent inputs in the face of delays and link loss. The work
of Mehyar et al. [9] shows that this can be successfully translated
to a truly asynchronous peer-to-peer system operating on a TCP/IP
network1. Finally, the averaging mechanism is generalized to develop
real-time tracking of optimally fused least-squares estimates and an
associated decentralized Kalman filter in Spanos, Olfati-Saber, and
Murray [1].

The convergence performance of these diffusion-based designs
depends on the algebraic connectivity of the network, which is the
smallest positive eigenvalue of the associated Laplacian matrix (see
the article by Merris [10] for graph-theoretic fundamentals regarding
the Laplacian). In the case where centralized topology information
is available a priori, the work of Xiao and Boyd [11] provides very
useful results for optimizing this convergence rate. Additional work
by Xiao, Boyd, and Lall [12] provides an analogous rate optimization
for the static least-squares fusion problem.

III. NOTATION AND ASSUMPTIONS

We consider a set V of N sensor nodes, each labeled i =
1, 2, . . . , N . These sensors communicate on a network modeled as

1An extension to a fully asynchronous lossy broadcast channel is available,
but it is fairly technical. Thus, despite its obvious relevance to sensor networks,
we omit discussion of this version of the algorithm due to length limitations.

a graph G = (V, E), where the edge (i, j) is in E if and only if
nodes i and j can exchange messages with each other. We denote the
neighborhood of node i by Ni. Note that this can represent either the
physical communication links or some other overlay network imposed
with routing. We again remark that this mechanism can be generalized
to a realistic fully asynchronous version (see [9]).

We assume that the graph G is connected, and for the sake of this
paper, static. See the work in [7], [13], [9], and [14] for extensions of
this mechanism to switching-topologies, randomly failing links, asyn-
chronous peer-to-peer operation, and arbitrary splitting and merging
of subnetworks.

A global physical process with state p ∈ Rm evolves according
to the discrete-time system

p(t + 1) = Ap + w(t)

where A ∈ Rm×m and w(t) is zero-mean Gaussian noise with
covariance matrix Qw. The process initial condition is also distributed
as a multivariate Gaussian with expectation p0 and covariance Q0.
We suppose that the process parameters A, Qw, Q0 and p0 are all
available to every member of the network, in order to run local
Kalman filters.

Each sensor takes measurements of the physical process according
to the equation

yi(t) = p(t) + ni(t).

The noise processes ni(t) ∈ Rm×m are each independent zero-mean
Gaussian with covariance Qi(t).

Our central assumption is that the network is “at least as fast
as the physical process”, in the sense that for each physical update
index t, the network carries out n > 1 message exchanges on each
edge. The work in [1] presents a mechanism for message exchange
and decentralized estimation that is equivalent to a purely local
Kalman filter for n = 0, and achieves the performance of the global
Kalman filter in the limit as n becomes large. This result stems from
the independence of the noise processes, which implies that it is
sufficient to perform the spatial fusion before the time-propagation.
It is thus sufficient for each sensor to run a local Kalman filter, taking
as inputs the instantaneous spatial least-squares fusion of the input
measurements

yLS(t) =
i∈V

Q−1
i (t)

−1

i∈V

Q−1
i (t)yi(t)

and the associated spatially-fused covariance

QLS(t) =
i∈V

Q−1
i (t)

−1

.

The distributed filter proposed in [1] provides a mechanism for
tracking the average of the inverse-covariance-weighted measure-
ments

ȳ(t) =
1

N
i∈V

Q−1
i (t)yi(t)

and the time-varying average inverse-covariance

Q̄(t) =
1

N
i∈V

Q−1
i (t) .

Clearly, these two quantities are sufficient to reconstruct yLS(t)
by solving a linear system of equations at each time t. Further,
knowledge of the number of nodes (available, for example, from a
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distributed minimum spanning tree) allows one to find the associated
covariance signal.

The algorithm requires each node to maintain a vector variable
xi(t) ∈ Rm and a matrix variable Mi(t) ∈ Rm×m. These are all
initialized to Q−1

i (0)yi(0) and Q−1
i (0) respectively. The algorithm

run at each node is as follows:

for each time t

xi ← xi + Q−1
i (t)yi(t)−Q−1

i (t− 1)yi(t− 1)
Mi ←Mi + Q−1

i (t)−Q−1
i (t− 1)

for k = 1, 2, . . . , n

xi ← xi + γ j∈Ni
(xj − xi)

Mi ←Mi + γ j∈Ni
(Mj −Mi)

end

end

It was shown in [1] that this algorithm makes each xi and Mi track
ȳ and Q̄ respectively and so each node can thus locally compute
M−1

i xi and (NMi)
−1, treating these as approximations to yLS and

QLS . The algorithm described tracks ȳ and Q̄ with zero error in
“steady-state”2. This asymptotic result holds for arbitrary network
interconnection and for arbitrary n, but the transient performance of
the system depends on the network topology, connection density, and
the number of messages per unit time n (a proxy for bandwidth).

The parameter γ is a stepsize, and must be chosen to ensure
stability of the updating scheme. This is somewhat tricky in that
stability can, in principle, depend on the graph structure of the
network. A necessary and sufficient condition for stability under
arbitrary interconnection of the sensors is γdmax < 1, where dmax

is the maximum node-degree in the network. There is a “natural”
choice

γ =
1

dmax + 1

which has the property that if every sensor is connected to every
other sensor, the global Kalman filter performance is recovered with
a single message exchange per unit time, i.e. even with n = 1.
Thus, with γ as above and complete interconnection this scheme is
equivalent to that of Rao and Durrant-Whyte [2]. We will assume
hereafter that γ is chosen in this way. This will only affect the
constants entering the expressions to come, and not any of the
qualitative results.

Finally, we will make use of the Laplacian matrix associated with
the graph G. The Laplacian is defined as follows:

Lij = −1 if (i, j) ∈ E, else 0

Lii = −
j �=i

Lij .

This is a symmetric positive-semi-definite matrix, and the assumption
that G is connected implies that L has exactly one zero eigenvalue
and associated eigenvector 1 (the vector of all ones). Thus, repeated
multiplication of a vector by (I−γL), where I is the N×N identity,
drives each component of the vector to the average of the components
of the initial vector (see [7]).

Note that each component of the xi and Mi variables is updated
independently. If for any one such component, we consider all the

2Here “steady-state” means that both the measurements and the covariance
matrices approach a limit as t → ∞. For example, this assumption is rea-
sonable when estimating moving objects that occasionally halt for significant
periods of time.

associated values across the network stacked in a vector v ∈ RN ,
then the action of the inner update loop can be viewed as the
following multiplication:

v← (I − γL)n v. (1)

The inner loop is precisely a Laplacian updating scheme for tracking
the instantaneous average of the covariance-weighted measurements
and the inverse-covariance matrices. Thus, the eigenvalues of the
Laplacian matrix determine the convergence properties of the inner
update loop. In particular, the smallest positive eigenvalue of the
Laplacian, denoted λ2, allows us to derive a bound on the worst-
case convergence rate. This quantity is known in graph theory as the
algebraic connectivity, and is strongly tied to connectivity properties
of the graph (see [10] for a comprehensive exposition).

IV. PERFORMANCE ANALYSIS

In this section we will show a transfer function characterizing
the performance of the distributed estimator in the case where the
noise covariance has reached steady-state, i.e. all the covariance
matrices Qi(t) are hereafter assumed constant, and we assume that
the update loop for the Mi matrices has converged. This may seem
a trivializing assumption in the context of sensor networks where
estimated processes are likely to exhibit non-stationary statistics, and
so some comments are in order.

First, let us provide some intuition for the distributed estimation
scheme. At each time instant, each node has an estimate of the
globally fused measurement inputs, and the globally fused covariance.
This allows the sensor to implement an approximation to the global
Kalman filter. For stationary noise, the global Kalman filter is just a
Linear Time-Invariant (LTI) system parametrized by the covariance
matrix and the process parameters. If the covariance matrices reach
a limit, the matrices Mi converge exponentially (in time) to the
average inverse covariance, and so each node rapidly “discovers”
the covariance matrix associated with the global steady-state Kalman
filter.

The distributed filter is inherently adaptive; if the covariance
matrices begin changing again, approaching another steady-state
value, the algorithm automatically tracks this change and finds the
new covariance matrix to be used in the Kalman filter. Thus, analysis
of the steady-state case is justified, either for slowly-varying error
statistics, or for processes where the time-variation of the statistics
is “bursty”, remaining constant for large periods of time (relative to
the update time-scale of the network).

Now, let us denote the transfer function of the global steady-
state Kalman filter K(z), an m × m matrix of transfer functions
(determined by QLS); under the assumptions of this section, each
sensor has already calculated QLS and can thus implement this filter
locally. The nominal input to the filter is yLS(t), but each node must
instead use the following local estimate as input:

M−1
i xi(t) = NQLSxi(t).

Since the quantity NQLS is just a constant matrix-gain for the
steady-state filter, it suffices to examine the dynamics of the local
estimates xi(t), and how these variables relate to the “desired value”
(NQLS)−1yLS . In order to do so, let us introduce the notation ỹ and
x̃ denoting the stacked vectors of the yi(t) and M−1

i xi(t) vectors,
i.e.

ỹ = yT
1 ,yT

2 . . .yT
N

T

x̃ = M−1
1 xT

1 , M−1
2 xT

2 . . . M−1
N xT

N

T

.
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Fig. 3. The steady-state behavior of the distributed filter is equivalent to a
global Kalman filter with a prefiltered input. The performance analysis of this
article is based on quantifying how close the prefilter is to unity.

Here the superscript T denotes transposition. Note that when the
covariance matrices are constant in time, the nominal input yLS is
related to the vector ỹ by a constant matrix multiplication:

yLS = PLSỹ = QLS Q−1
1 Q−1

2 . . . Q−1
N ỹ.

Now, the local estimates M−1
i xi are just the outputs of the spatial

averaging filter described in the previous section. Specifically, the
inputs to this filter are the local covariance matrices and the local
measurements; in general the spatial averaging filter is nonlinear in
an input-output sense because of the input nonlinearity Q−1

i (t)yi(t)
and the output nonlinearity M−1

i xi(t).
However, when the covariance matrices are constant and the update

of the Mi matrices has converged, the overall input-output behavior
of the spatial averaging filter is linear as a mapping from the local
measurement signals yi(t) to the local estimate signals M−1

i xi(t).
Thus, there is some Nm×Nm matrix of transfer functions, call it
H(z), such that

x̃(z) = H(z)ỹ(z).

This lets us make a simple but intuitively useful statement:

In steady-state, the performance loss associated with
the distributed estimation design is equivalent to premul-
tiplication of the global Kalman filter by a low-pass filter
determined by the network topology and speed.

This situation is depicted in Figure 3. In order to quantify the
performance loss, we simply need to understand the frequency
response of this low-pass filter. We will do so by characterizing the
error transfer function, which is a high-pass filter.

To do so, let us recall that each M−1
i xi tracks yLS with zero

steady-state error. This implies that the DC gain of H is just

H(1) = P T
LS P T

LS . . . P T
LS

T

.

Now, we want to consider the the error signal

e = x̃− yT
LS yT

LS . . . yT
LS

T

,

and the transfer function from ỹ to e(z)

Heỹ(z) = H(z)− P T
LS P T

LS . . . P T
LS

T

.

Note that this transfer function is zero at z = 1 by construction.
Furthermore, we know that this system has the structure of m
decoupled subsystems (one for each component of xi). Up to a
constant matrix scaling determined by the covariance matrices, each
such subsystem has transfer function of the following form

G(z) =
1

N
11T

−(1− z−1)(I − γL)n I − z−1(I − γL)n −1
.

This follows from the inner-loop Laplacian update operation (1), and
the first-order differencing operation in the outer loop. We will further
decompose these subsystems by exploiting the fact that the Laplacian
is a symmetric matrix, and admits a spectral decomposition

L = 0 · 11T +
i>1

λiPi

where the Pi terms are orthogonal projections onto mutually orthog-
onal subspaces and the λi terms are strictly positive eigenvalues
(ordered from smallest to largest). Recall that the first term, cor-
responding to the nullspace of L, is known a priori because of the
structure of the Laplacian matrix. Applying this formula for L in the
above equation, we obtain

G(z) =
i>1

(1− γλi)
n(z − 1)

z − (1− γλi)n
Pi.

Note that all of these terms are zero at z = 1, in accordance with
our previous statement regarding Heỹ(z).

We have now decomposed the error transfer function (up to a
block-diagonal matrix scaling) into Nm independent subsystems,
each with trivial pole-zero structure. Specifically, they all share a
common zero at z = 1, and each have a single pole of the form
z = (1−γλi)

n. Our assumption regarding γ implies that the largest
such term is (1− γλ2)

n. This allows us to bound the error transfer
function as follows:

‖Heỹ(z)‖ ≤ C(1− γλ2)
n(z − 1)

z − (1− γλ2)n
(2)

where C is a constant determined by the covariance matrices.

V. THE IMPACT OF THE NETWORK: TOPOLOGY, DENSITY, AND

BANDWIDTH

The bound we have derived in the previous section allows us to
quantify the performance of the distributed estimation scheme as
a function of the network parameters λ2, γ, and n. As a simple
verification of our claim that the distributed scheme reduces to perfect
estimation under complete interconnection, we will make use of the
fact that for a complete graph

λi = dmax + 1

for all i > 1. Combining this fact, our choice of γ from before, and
the bound from the previous section, we obtain

Heỹ = 0

for all n > 1, which implies that the global Kalman filter performance
is achieved with a single message exchange on each link per unit time.

In general, we can understand the performance of this system by
the following quantity:

1− λ2

1 + dmax

n

.
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Fig. 4. The algebraic connectivity λ2 for a few graphs. This quantity plays
a central role in analyzing the performance of the distributed estimator.

As this quantity tends to zero, the performance of the distributed
estimator approaches that of a centralized Kalman filter. Specifically
we can study this quantity as a function of the three factors that are
likely to vary across real-world sensor networks: topology, connection
density, and bandwidth. The first aspect is captured in the eigenvalues
of the Laplacian matrix, and in particular the algebraic connectivity
λ2. A comprehensive explanation of this quantity is beyond the scope
of this paper (we again refer the reader to Merris [10]), but we
can build some intuition with a simple example: a ring topology to
which we sequentially add long-distance links. As more long-distance
links are added, the algebraic connectivity grows, indicating better
performance for the distributed Kalman filter (see Figure 4). This
suggests an interesting use for routing in sensor networks, relative to
the distributed estimation scheme: routing can be used to implement
a few long-distance connections in order to improve λ2 (see [15]
for much more on this subject). In addition, for topologies that are
fixed and known a priori, we also remind the reader of the results
in [11] and [12] which allow one to optimize λ2 using semi-definite
programming.

The second aspect one must consider in the network is the
density of connections. This has a dual effect on the distributed
estimator. First, high connection-density influences the eigenvalues
of the Laplacian matrix in relatively complicated ways, but overall
it tends to influence the large eigenvalues more than the small ones.
Second, it limits the stepsize parameter γ due to stability concerns.
Thus, if one has control over the topology on which this distributed
estimation scheme will be implemented, care should be taken to
balance “high-connectivity” in the sense of λ2 against small stepsize,
as parametrized by the reciprocal of the maximum degree.

Finally, we see the dominating influence of the connection band-
width, as represented by n. As n increases, the magnitude of the
error transfer function shrinks exponentially. Considered in the light
of a low-pass prefilter multiplying the Kalman filter, as n becomes
large, the prefilter rapidly approaches unity for all frequencies.

VI. SIMULATION EXAMPLE: A SONAR ARRAY

This section presents simulations for the distributed filter on an
array of sonar-like sensors in a non-stationary noise environment,
in order to illustrate that the qualitative behavior indicated by the
analysis of the previous section carries over to the non-stationary case.
Note that we do not make any claim about analytical performance

Fig. 5. A solid object moving through an array of sonar-like sensors. The lines
indicate communication links between the individual sensors. The variance of
the measurements taken by each sensor increases with distance.

bounds for the non-stationary case, but the simulations indicate
seemingly good correlation between the estimator’s non-stationary
performance and the stationary error bounds.

The sensors report range and bearing at each time instant, with the
variance of the bearing measurement set at ten times the variance in
the range measurement. The range variance increases quadratically
with distance from the target. The target moves in a circle centered
at the central sensor, and the process model is a discretized double-
integrator driven by white Gaussian noise. The measurements taken
by the sensors are deliberately made very noisy (see Figure ??) to
illustrate the performance of this algorithm in an adversarial setting.

The simulations are carried out using the nine-node sensor network
depicted in Figure 5, with γ chosen as 1

1+dmax
. We show the results

for two topologies, one as shown in Figure 5, and one where we
add all the “diagonal” connections (i.e. very limited local routing).
We simulate the algorithm for n = 5, 10, 20 message exchanges per
estimator update3 and show these results alongside the results from
a centralized implementation of the Kalman filter. These are shown
in Figures 6 and 7 (the trajectories shown in each figure are chosen
from the sensor with the worst mean-square error). Figures 8 and 9
show the associated error transfer functions, based on the analysis in
Section IV.

VII. SUMMARY AND CONCLUSIONS

We have examined the performance of an approximate distributed
Kalman filter based on an iterative spatial averaging algorithm.
This algorithm is of particular interest because parallel work has
demonstrated that it has excellent robustness properties regarding
various network imperfections, including delay, link loss, and net-
work fragmentation. This spatial averaging procedure has also been
verified in a truly asynchronous environment, and a version exists for
asynchronous lossy broadcast settings.

Our performance analysis shows a simple bound for the error
transfer function which incorporates the network topology, connec-
tion density, and communication bandwidth (or messaging rate). We
have shown simulations demonstrating this dependence, alongside the
bounds for this error transfer function. The analytical bounds, though
derived for steady-state estimation, seem to provide some useful intu-
ition in understanding the quality of estimation in the non-stationary

3Obviously, 10 and 20 messages per unit time are unrealistic. We merely
include these cases to show the exponential improvement of the algorithm’s
performance as a function of messaging rate.
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Fig. 6. The simulation results from the topology shown in Figure 5. The
trajectory shown is the worst among all sensors, in the mean-square error
sense. As the number of messages per unit time increases, the performance
of the distributed estimator improves dramatically.
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Fig. 7. The simulation results from the topology shown in Figure 5 with all
“diagonal” connections added. Note that the improved communication topol-
ogy has significantly improved the performance of the distributed estimation
scheme.
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Fig. 8. The bound on the error transfer function for the network depicted
in Figure 5, in logarithmic scale. Note the drastic improvement in tracking
low-frequency signals as n increases.
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Fig. 9. The bound on the error transfer function for the network with
“diagonal” connections. We see the same qualitative dependence on the
number of message exchanges, but this network has significantly larger λ2.
This is verified by improved performance in the simulation results, as shown
in Figure 7.

case. Further, the interpretation of the distributed estimator as a
concatenation of an optimal filter with a low-pass prefilter provides
additional intuition for the performance of distributed estimation as
a function of the speed of the process dynamics. This is, we believe,
a novel contribution to distributed estimation, which typically does
not allow systematic analysis of performance under realistic network
conditions. This kind of analysis and intuition may prove useful in
the future for designers of large-scale sensor networks to be used for
dynamic tracking applications.

The simulation results do not speak to the full power of this
approach, in that this distributed filtering mechanism is naturally and
simply scalable to arbitrarily large networks, while maintaining ana-
lytical performance bounds that are directly related to the underlying
sensor network. Of course, bounds on the error transfer function
are not necessarily appropriate for all applications of distributed
estimation, but it is likely that this will be useful for distributed
tracking applications where quantitative performance measures are
essential.
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