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We prove that spatial Kerr solitons, usually obtained in the frame of a nonlinear Schrödinger equation valid in
the paraxial approximation, can be found in a generalized form as exact solutions of Maxwell’s equations. In
particular, they are shown to exist, both in the bright and dark version, as TM, linearly polarized, exactly in-
tegrable one-dimensional solitons and to reduce to the standard paraxial form in the limit of small intensities.
In the two-dimensional case, they are shown to exist as azimuthally polarized, circularly symmetric dark soli-
tons. Both one- and two-dimensional dark solitons exhibit a characteristic signature in that their asymptotic
intensity cannot exceed a threshold value in correspondence of which their width reaches a minimum sub-
wavelength value. © 2005 Optical Society of America
OCIS codes: 190.0190, 190.3270.
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. INTRODUCTION
he analytic description of spatial Kerr solitons, initiated
y the seminal paper of Chiao et al.,1 has been continu-
usly evolving over the past forty years.2,3 This descrip-
ion basically hinges upon the use of the nonlinear
chrödinger equation (NLS), which in turn follows from
he nonlinear Helmholtz equation once the paraxial ap-
roximation, limiting the size w of the propagating beam
o values large compared with the wavelength l, is intro-
uced. This approximation becomes inappropriate if the
eam size w is comparable with l, a regime where non-
araxial effects become important and are eventually able
o provide a mechanism for avoiding nonphysical behav-
ors (like, e.g., catastrophic collapse) in the beam evolu-
ion. Although many contributions have been produced in
his direction,4–13 they are typically based on some form of
symptotic expansion in the smallness parameter h
l /w and are thus limited to the range h,1. To overcome

his limitation, we start ab initio from Maxwell’s equa-
ions and look for exact soliton solutions. More precisely,
e solve Maxwell’s equations in the presence of a fully
ectorial Kerr polarizability and find a class of rigorous
ptical solitons that inherently include all nonparaxial
ontributions. This is separately performed for one-
0740-3224/05/071384-11/$15.00 © 2
imensional and two-dimensional spatial solitons, both in
he bright and dark configuration. In particular, the one-
imensional case is dealt with by reducing Maxwell’s
quations to a system of first-order differential equations
nd is handled by appealing to the usual formalism em-
loyed in the frame of dynamical systems. Our system is
hown to posses a first integral, so that its integrability is
roved and the boundary value problem, associated with
olitons, is solved in closed analytical form.

One of the main results obtained in this paper is the
roof of the existence of exact solutions of Maxwell equa-
ions in the form of linearly polarized one-dimensional
err solitons; they do not suffer of any limitation on the
alue of w and l (apart from the obvious one associated
ith the validity of the macroscopic model of Kerr polar-

zability), and their existence curve can be numerically
valuated for all values of the beam intensity. Both bright
nd dark TM solitons can be derived from an integrable
ystem of equations, and their existence curve shows
hat, in the case of bright solitons, any value of the peak
ntensity ux0

2 is allowed, while dark solitons can exist only
f their asymptotic intensity ux`

2 does not exceed a thresh-
ld value completely determined by the Kerr coefficients.
n correspondence to this threshold, their width ap-
005 Optical Society of America
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roaches the minimum value of the order of a fraction of
. In the two-dimensional case dark azimuthally polar-
zed solitons are found, and their existence curve implies
he same threshold behavior as that of the one-
imensional dark solitons. Although one-dimensional soli-
ons reduce to the standard paraxial ones for small values
f the intensity, the two-dimensional azimuthal dark soli-
on is a completely new entity that has never been stud-
ed in the paraxial regime.

We wish to note that the proof of the existence and deri-
ation of exact solitons requires, in the one-dimensional
ase, the use of a rather sophisticated mathematical
nalysis borrowed from the dynamical system formalism,
hich we describe fully in Section 2.

. ONE-DIMENSIONAL SPATIAL SOLITONS
he electric and magnetic complex amplitudes Esrd and
srd of a monochromatic electromagnetic field RefE
exps−ivtdg, RefB exps−ivtdg propagating in a nonlinear
edium obey Maxwell’s equations

¹ 3 E = ivB,

¹ 3 B = − i
v

c2n0
2E − ivm0Pnl, s1d

here n0 is the linear refractive index and Pnl is the non-
inear polarizability. In the case of nonresonant isotropic

edia, the vectorial Kerr effect is described by the
olarizability14

Pnl =
4

3
e0n0n2FuEu2E +

1

2
sE · EdE*G , s2d

nd n2 is the nonlinear refractive index coefficient. After
liminating B from Eq. (1) and taking advantage of Eq.
2), we get

¹ 3 ¹ 3 E = k2E + k2
4

3

n2

n0
FuEu2E +

1

2
sE · EdE*G , s3d

here k=n0v /c. We now introduce a Cartesian reference
rame Oxyz with unit vectors êx, êy, and êz, and look for
M one-dimensional solitons propagating along the z
xis, that is for y-independent fields of the form

Esx,y,zd = expsiazdfUxsxdêx + iUzsxdêzg, s4d

here Ux and Uz depend on x alone and a is a real con-
tant. Substituting Eq. (4) into Eq. (3) yields the system of
rdinary differential equations

a
dUz

dx
= Fsa2 − k2d −

2k2n2

n0
SUx

2 +
1

3
Uz

2DGUx,

d2Uz

dx2 − a
dUx

dx
= − k2F1 +

2n2

n0
S1

3
Ux

2 + Uz
2DGUz, s5d

hose unknowns Ux and Uz are real [as a consequence of
he p /2 phase difference we introduced between the
ransverse and longitudinal field components; see Eq. (4)].
ote that the field in Eq. (4) has a vanishing y component,
requirement not forbidden by Maxwell’s equations.
rom Eqs. (5), it is evident that the z component Uz van-

shes only if Ux= ± fsn0 /2n2dsa2 /k2−1dg1/2, a relation that
escribes a family of solitary plane waves rather than
olitons.15 The fact that, in general, Uz does not vanish is
consequence of the vectorial coupling between the trans-
erse and the longitudinal components that cannot be rig-
rously neglected when describing spatially nonuniform
elds, like, for example, solitons. Note that the longitudi-
al component is usually neglected in the paraxial regime
wing to the slow variation of the transverse component
s compared with the wavelength l=2p /k, a circum-
tance that allows us to treat it as a perturbation for
lightly nonparaxial beams.16,17 In the present paper, we
eal on equal footing with both transverse and longitudi-
al components, and it is their simultaneous nonvanish-

ng and coupling that allow us to find exact solitons.
Equations (5) can be recast in a more symmetric form

y differentiating the first one and consequently eliminat-
ng d2Uz /dx2 (together with dUz /dx) from the second one,
hus getting

dux

dj
=

Fb2S1 −
2

3
gux

2 + 2guz
2D +

4

3
Sg + 2ux

2 +
2

3
uz

2Dux
2G

bF1 + gS6ux
2 +

2

3
uz

2DG uz

; Qxsux,uzubd,

duz

dj
=

1

b
Fsb2 − 1d − 2gSux

2 +
1

3
uz

2DGux ; Qzsux,uzubd, s6d

here we have introduced the dimensionless variables j
kx, b=a /k and sux ,uzd= sun2u /n0d1/2sUx ,Uzd, while g
n2 / un2u (so that g= +1 and g=−1 for focusing and defo-
using media, respectively). Equations (6) form a system
f first-order differential equations describing any electro-
agnetic field of the form of Eq. (4), and they are equiva-

ent to Maxwell’s equation, provided the relation

1 + gS6ux
2 +

2

3
uz

2D Þ 0 s7d

niformly (i.e., for any j) holds. Equations (6) can be con-
eniently regarded as an autonomous dynamical system
since Qx and Qz do not explicitly depend upon j), whose
olutions, or orbits, are j-parameterized curves usjd
fuxsjduzsjdgT [belonging to the phase plane sux ,uzd], tan-
ent at each point to the vector field Q= sQxQzdT. Solitons
re particular orbits that, for suitable values of b, pass
hrough two special points of the phase plane imposed by
he boundary conditions pertinent to each soliton kind
boundary value problem).

The most remarkable and general property of the sys-
em shown in Eqs. (6) is that it is a conservative system,
.e., it admits a first integral Fsux ,uz ubd, defined over the
hase plane, satisfying the relation

0 =
dF

dj
;

]F

]ux

dux

dj
+

]F

]uz

duz

dj
=

]F

]ux
Qx +

]F

]uz
Qz. s8d

n fact, it is straightforward to prove that the function
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Fsux,uzubd = 2ux
6 +

4

3
ux

4uz
2 +

2

9
ux

2uz
4 −

1

2
gs3b2 − 4dux

4

+
1

3
gs2 − b2dux

2uz
2 +

1

2
gb2uz

4 −
1

2
sb2 − 1dux

2

+
1

2
b2uz

2 s9d

beys Eq. (8) whenever Eq. (7) is satisfied. This implies
hat F is a first integral of the system of Eqs. (6) whenever
his system is equivalent to Maxwell’s equations. Accord-
ng to Eq. (8), any solution of Eqs. (6) is constrained to

ove along a single level set

Fsux,uzubd = F0. s10d

nverting Eq. (10) furnishes uz=uzsux ,F0 ,bd which, once
nserted into the first part of Eqs. (6), yields a first-order
ifferential equation solvable by quadratures, thus prov-
ng the integrability of Eqs. (6). Note that the first inte-
ral in Eq. (9) contains only even powers of ux and uz, so
hat any level set of Eq. (10) is invariant under the inver-
ion of the phase plane sux ,uzd→−sux ,uzd.

Exploiting the properties of the first integral found
bove, we are now in a position to solve in a direct way
he soliton boundary value problem, that is, to find suit-
ble values of b (if any) for which a solution uxsjd, uzsjd of
qs. (6) satisfies the general boundary conditions

Suxs0d

uzs0dD = Sux0

uz0
D ; u0, Suxs+ `d

uzs+ `dD = Sux`

uz`
D ; u`.

s11d

here u0 and u` are defined by the kind of soliton, bright
r dark, we wish to consider. From a geometrical point of
iew, this implies that the associated integral curve on
he phase plane sux ,uzd has to pass through the points u0
nd u`, or, using Eq. (10),

Fsux0,uz0ubd = F0,

Fsux`,uz`ubd = F0. s12d

ince u` has to be reached for j→ +`, it is obvious that
` has to be an equilibrium point of Eqs. (6), that is

Qxsux`,uz`ubd = 0,

Qzsux`,uz`ubd = 0. s13d

quations (12) and (13) in the unknowns b and F0 are
ecessary conditions for the soliton existence. They be-
ome also sufficient if, once b and F0 are determined, one
s able to prove that the integral curve actually reaches
he point u`. Following the outlined procedure, the exis-
ence of both bright and dark solitons will be proved and
he corresponding existence conditions and propagation
onstants b will be found.

. Bright Solitons
right solitons are localized nondiffracting beams, that is
olutions of Eqs. (6) vanishing for uju→ +`, which in turn
equires u =0. Note that Eqs. (13) are automatically sat-
`
sfied by this boundary condition, since the origin
ux ,uzd= s0,0d is always an equilibrium point of Eqs. (6).
he second part of Eqs. (12) directly gives F0=0, so that
he remaining condition we must impose is the first part
f Eq. (12), that is

Fsux0,uz0ubd = 0. s14d

o set the boundary condition u0 we note that, because of
he invariance of the level set in Eq. (10) under inversion
f the phase plane, a soliton must be associated with an
ntegral curve starting from and ending at the origin and
hat this curve must be symmetric under either the reflec-
ion ux→−ux or the reflection uz→−uz. Because of these
ymmetry properties, we have u0= s0 uz0dT and u0
sux0 0dT (where T stands for transposed) in the former
nd in the latter case, respectively. In the first case, Eq.
14) becomes b2uz0

2 sguz0
2 +1d=0, which implies b=0, so

hat soliton propagation is not allowed. We are left to con-
ider the case u0= sux0 0dT, for which Eq. (14) furnishes

b2 =
s1 + 2gux0

2 d2

1 + 3gux0
2 . s15d

n Appendix A, we prove that bright solitons exist for all
he real values of ux0 in focusing media sg=1d and that
hey never exist in defocusing media sg=−1d in agreement
ith the intuitive behavior of Kerr nonlinearity, which

ends to focus and defocus the beam in these two cases,
espectively. Obviously, the above results about the exis-
ence of bright solitons are based on the validity of Eq. (2),
hich fails either for intensities so large or for soliton
idths so small that the nonlinear refractive index satu-

ates. For g=1, Eq. (15) yields

b = ±
1 + 2ux0

2

s1 + 3ux0
2 d1/2

, s16d

hich is the propagation constant of the exact bright soli-
ons [6 in Eq. (16) describes the two counterpropagating
olitons along the z axis].

Substituting Eq. (16) and F0=0 into Eq. (10), we obtain
he equation for the integral curves on the phase plane
orresponding to bright solitons, and these are reported,
or some specific values of ux0, in Fig. 1. Note that, for
ach uux0u, the corresponding level set is a bow-tie-shaped
urve encompassing three orbits of Eqs. (6), that is the
rigin (which is an equilibrium point) and the left and
ight loops of the bow tie. These last two orbits correspond
o a pair of bright solitons, each of which can be obtained
rom the other after the inversion of the x-axis, j→−j (im-
lying the reflection ux→−ux also), as expected because of
he reflection invariance along any direction exhibited by
err nonlinearity. Considering the right half-plane ux
0 only, we observe that soliton curve uxsjd ,uzsjd explores

he loop starting from the origin (for j=−`), reaching the
oint sux ,uzd= sux0 ,0d (for j=0) and ending at the origin
for j̇= +`). From Eqs. (6) it is evident that the loop is ex-
lored counterclockwise and clockwise for b.0 and b
0, respectively, so that, for counterpropagating solitons

denoted with (1) and (2)], we have ux
s+dsjd=ux

s−dsjd and
s+dsjd=−us−dsjd.
z z
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Having proved the bright soliton existence and derived
he associated propagation constant b, we are now in the
osition to obtain the soliton shape for any given ux0 by
umerically solving Eqs. (6) with b given by Eq. (16) and
he initial conditions uxs0d=ux0, uzs0d=0 [the numerical
pproach being much simpler than integrating the sys-
em Eqs. (6) by quadrature]. In Fig. 2, we report the plots
f the transverse ux and longitudinal uz components of
he bright solitons for the same ux0 as in Fig. 1. Note that,
s expected, the soliton width decreases for increasing
x0, while the longitudinal component uz increases. In
ig. 3, we report the bright soliton existence curve, relat-

ng the FWHM sDbrightd to uux0u. As uux0u decreases, the
idth increases indefinitely; on the other hand, as uux0u in-

reases, the width decreases monotonically, eventually
pproaching zero.

ig. 1. Plot of phase portrait of Eqs. (6) associated to bright soli-
ons for uux0u=1,2,3,4. Each bow-tie-shaped curve is obtained by
lotting the level set defined in Eq. (14) with b given by Eq. (16).
ny piece of curve starting from and ending at the origin (left or

ight loop of each bow tie) is associated with a single bright
oliton.

ig. 2. Plot of (a) the transverse component uxsjd and (b) longi-
udinal component uzsjd of bright solitons for ux0=1,2,3,4 (same
ases as in Fig. 1) and b.0.
. Dark Solitons
n the scalar approximation, dark solitons are nondif-
racting beams vanishing at j=0 and approaching an
symptotic amplitude value for uju→ +`. In our vectorial
ase, the natural extension of the previous definition is
dentified with soliton solutions with u0= s0 uz0dT and u`

suz` 0dT [see Eqs. (11)]. In fact, the above boundary con-
itions will be proved to describe an exact dark soliton
hat, in the paraxial limit, reduces to the standard scalar
ark one.
The chosen values of u` identically satisfy the first of

q. (13). The second part of Eqs. (13) implies, with the
elp of the second of Eqs. (6),

b2 = 1 + 2gux`
2 . s17d

ubstituting this value of b2 together with the boundary
onditions into Eqs. (12), we get

F0 = −
g

2
s1 + 2gux`

2 dux`
4 ,

ux`
4 = − guz0

2 − uz0
4 . s18d

he first of these equations furnishes the value F0 of the
rst integral along the dark soliton integral curve. The
econd one is a necessary condition for soliton existence
rom which we immediately obtain g=−1, in agreement
ith the intuitive property that only defocusing media

an support dark solitons. In Appendix B, we prove that
ark solitons exist for ux`

2 ,1/6 only and that

b = ± s1 − 2ux`
2 d1/2,

uz0 = ± H1

2
f1 − s1 − 4ux`

2 d1/2gJ1/2

,

ig. 3. Bright soliton existence curve (solid curve), relating the
WHM, Dbright, of the amplitude uxsjd to uux0u. For very small and
ery large uux0u, the FWHM diverges and vanishes, respectively.
he dashed curve represents the FWHM, D̃bright, of paraxial
right solitons. Note the complete overlapping of the two curves
or ux0,0.2.
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F0 =
1

2
s1 − 2ux`

2 dux`
4 , s19d

o that each soliton is completely specified by the value
x` only.
As in the case of bright solitons, the integral curves in

he phase plane associated with dark solitons are given by
q. (10), with b and F0 given in Eqs. (19), few of them be-

ng reported in Fig. 4. For each uux`u the level set is a
losed curve encompassing four orbits of Eqs. (6), that is,
he two equilibrium points s−ux` ,0d and sux` ,0d together
ith the two curves joining these two points in the upper
nd lower half planes, respectively. These last two orbits
re associated with a pair of dark solitons having opposite
ongitudinal components. Limiting our attention to the
pper half-plane uz.0, the dark soliton curve uxsjd ,uzsjd
tarts, for b.0, from the point s−ux` ,0d at j=−`, reaches
he point s0,uz0d at j=0 and finally ends at the point
ux` ,0d at j= +` (for b,0 it is sufficient to invert j→−j).

For any given value of ux` (in the range uux`u,1/Î6),
he shape of dark solitons can be obtained by numerically
ntegrating Eqs. (6) with b given by the first of Eqs. (19)
nd initial conditions uxs0d=0 and uzs0d=uz0 [the latter
eing given by the second of Eqs. (19)]. In Fig. 5, we plot
he transverse ux and longitudinal uz components of vari-
us dark solitons for the same ux` as in Fig. 4. Also in this
ase, the soliton width decreases for increasing ux` while
he longitudinal component increases. In Fig. 6 we report
he dark soliton existence curve relating the soliton
WHM sDdarkd to ux`, in the range 0,ux`,1/Î6. Note
hat, for very small ux`, the FWHM grows indefinitely,
hereas in correspondence to the threshold value ux`

1/Î6, it attains its minimum value .4 corresponding to
hysical value .s2/pdl.0.63l.

. Optical Intensity
aving derived the electric field [see Eq. (4)] associated
ith both bright and dark solitons, we can directly evalu-
te the corresponding magnetic field by means of the per-

ig. 4. Plot of phase portrait of Eqs. (6) associated with dark
olitons for uux`u=0.1,0.2,0.3,0.4. Each loop is obtained by plot-
ing the level set defined in Eq. (10) with b and F0 given in Eqs.
19). Any piece of curve joining the points s−ux` ,0d and sux` ,0d is
ssociated with a single dark soliton.
inent Maxwell equation. Substituting Eq. (4) into the
rst part of Eqs. (1) we easily deduce

Bsx,y,zd =
k

v
S n0

un2u
D1/2

expsibkzdSbux −
duz

dj
D

j=kx

êy.

s20d

ote that the soliton magnetic field is parallel to the y
xis and therefore orthogonal to the electric field every-
here, a remarkable vectorial feature that exact solitons

hare with plane waves (which are, as well, rigorously
ondiffracting fields). To describe the soliton energy flow,
e can now evaluate the averaged Poynting vector S
ResE3B*d / s2m0d which, using Eqs. (4) and (20) and the
econd part of Eqs. (6), turns out to be

ig. 5. Plot of (a) the transverse component uxsjd and (b) longi-
udinal component uzsjd of dark solitons for ux`=0.1,0.2,0.3,0.4
same cases as in Fig. 4) and b.0.

ig. 6. Dark soliton existence curve (solid curve), relating the
WHM, Ddark of the amplitude uxsjd to uux`u. For very small uux`u
he FWHM diverges, whereas at the threshold value ux`=1/Î6 it
ttains its minimum value .3. The dashed curve represents the
WHM, D̃dark, of paraxial dark solitons. Note the complete over-

ap for most of the values of ux`.
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S =
I0

b
F1 + 2gSux

2 +
1

3
uz

2DGux
2êz ;

b

ubu
Iêz, s21d

here I0=kn0 / s2vm0un2ud and I, the modulus of the aver-
ged Poynting vector, is the optical intensity. The aver-
ged Poynting vector is everywhere parallel to the z axis,
nd this is fully consistent with the nondiffracting nature
f the solitons we are considering. This result (which is
ot rigorously valid in the paraxial limit) is a necessary
onsequence of the exact description of any nondiffracting
eld since a nonvanishing transverse component of the
veraged Poynting would imply a lateral emission of en-
rgy accompanied by a distortion of the field along the
ropagation direction. Note that the expression in square
rackets of Eq. (21) is always positive [while this is trivial
n the case g= +1, in the case g=−1 all the orbits
xsjd ,uzsjd of Eqs. (6) lie inside the ellipse defined in Eqs.

7), which is in turn contained within the ellipse 2sux
2

1
3uz

2d=1, so that the expression in square bracket of Eq.
21) is always positive]. This implies, as expected, that,
oth for bright and dark solitons, the sign of b determines
hether S is parallel or antiparallel to the z axis. In Fig.
we report the plots of the normalized optical intensity

/I0 for the same bright and dark solitons examined in the
revious figures. From Eq. (21) we observe that the opti-
al intensity is in general not proportional to the square
odulus of the electric field. However, in the paraxial

imit where ux!1, uz!ux and b.1, Eq. (21) gives I
I0ux

2, reproducing the well-known result typical of
araxial optics. We can also evaluate the maximum soli-
on optical intensity, that is Eq. (21) at j=0 (and g= +1)
or bright solitons and at uju= +` (and g=−1) for dark soli-
ons, thus getting

Ibright = I0s1 + 3ux0
2 d1/2ux0

2 ,

Idark = I0s1 − 2ux`
2 d1/2ux`

2 . s22d

rom these equations we note that Ibright.I0ux0
2 whereas

dark,I0ux`
2 so that, in general, bright and dark solitons

ig. 7. Normalized optical intensity uSsjdu /I0 of (a) bright and (b)
ark solitons evaluated from Eq. (21) for the same soliton condi-
ions as in Fig. 1 (for bright solitons) and Fig. 5 (for dark
olitons).
re characterized by an optical intensity that is larger
nd smaller, respectively, than the corresponding paraxial
rediction. This is associated with the fact that, in an ex-
remely narrow soliton, the longitudinal component of the
lectric field is as large as the transverse one.

. Paraxial Limit
he above description of one-dimensional bright and dark
olitons is exact, with no approximation having been em-
loyed in their analytical derivation. As a consequence,
he solitons described above are expected to reduce, in the
araxial limit where the soliton width is much larger
han the wavelength, to those predicted by the NLS. The
araxial limit is obtained by considering the range of val-
es

ux ! 1,

uz ! ux. s23d

n fact the soliton peak intensity is a decreasing function
f the width (see Figs. 3 and 6) so that the paraxial limit
orresponds to consider small amplitudes [see the first
art of Eq. (23)]. Besides, according to the first of Eq. (6),
z /ux,s1/uxddux /dj, a quantity much smaller than one

n the paraxial approximation [see the second part of Eq.
23)]. By differentiating the first of Eqs. (6), using the sec-
nd of Eqs. (6) to eliminate duz /dj and exploiting Eqs.
23) to retain only the first relevant order, we obtain

d2ux

dj2 = sb2 − 1dux − 2gux
3. s24d

ote that, in describing paraxial Kerr solitons, the elec-
ric field is usually expressed as Exsx ,zd=expfiks1+ b̃dzg
sn0 / un2ud1/2uxsjd, where the fundamental plane-wave car-

ier expsikzd is separated from the slowly varying ampli-
ude of the field. The comparison of this field expression
ith Eq. (4) yields b=1+ b̃ which, consistently with the
araxial picture where the main plane-wave carrier is
lowly modulated sb̃!1d, implies b2−1.2b̃. Introducing
his relation into Eq. (24), we get

− b̃ux +
1

2

d2ux

dj2 = − gux
3, s25d

hich coincides with the usual equation (obtained from
he NLS) describing paraxial Kerr solitons. Equation (25)
dmits both bright soliton solutions sg= +1d of the form
xsjd=ux0 sechsux0jd and dark soliton solutions sg=−1d of
he form uxsjd=ux` tanhsux`jd. The propagation constants
re respectively given by b̃=ux0

2 /2 and b̃=−ux`
2 , which can

lso be found, mutatis mutandis, from Eqs. (16) and the
rst part of Eqs. (19), whenever the paraxial conditions (
x0!1 for bright solitons and ux`!1 for dark solitons) are
atisfied. These solitons obviously coincide with the
symptotic paraxial limit of the solitons described in this
aper. To make this comparison more quantitative, in Fig.
and Fig. 6 we have superimposed on the exact soliton

xistence curves (solid curves) their paraxial counterparts
dashed curves). More precisely, the FWHM of bright and
ark paraxial solitons are easily shown to be D̃
bright
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2.6348/ux0 and D̃dark=1.0986/ux`. As expected, the
araxial and exact curves are practically indistinguish-
ble for small ux0 or ux`. Not surprisingly, for dark soli-
ons, the agreement between exact and paraxial predic-
ion is satisfactory almost everywhere, since the value of
x` is restricted to be less than 1/Î6 corresponding to a
oderate nonparaxial regime.

. Modulational Instability
he solitons we are considering are completely new enti-
ies (even if in the paraxial limit they coincide with NLS
olitons), so that an analysis of modulational stability is
n order since it dictates their feasibility. To this end, we
ote that Eq. (3) (equivalent to Maxwell’s equations) ad-
its the simplest solution in the form of a continuous
ave given by

Exsx,zd = Vx expFikGS−
Vz

Vx
x + zDG ,

Ezsx,zd = Vz expFikGS−
Vz

Vx
x + zDG , s26d

here Vx and Vz are two real constants and

G = 31 + g
2un2u

n0
sVx

2 + Vz
2d

1 +
Vz

2

Vx
2

4
1/2

. s27d

hile in focusing media sg= +1d these continuous waves
xist for any choice of the amplitudes Vx and Vz, since G is
lways real; in defocusing media sg=−1d the reality of G
mplies that continuous waves exist if the relation Vx

2

Vz
2,n0 / s2un2ud is satisfied. To investigate the linear sta-

ility of the exact solutions provided by Eqs. (26) against
mall perturbation, we look for solutions of Eq. (3) de-
cribing small variations around the exact solution, in the
orm

Exsx,zd = fVx + vxsx,zdgexpFikGS−
Vz

Vx
x + zDG ,

Ezsx,zd = fVz + vzsx,zdgexpFikGS−
Vz

Vx
x + zDG , s28d

here the moduli of the complex fields vx and vz are as-
umed to be small. Inserting Eqs. (28) into Eq. (3) we ob-
ain, after linearization, a system of two linear equations
or vx and vz that are equivalent to four linear equations
or their real and imaginary parts. Looking for eigensolu-
ions of the form Resvxd,Imsvxd,Resvzd,Imsvzd~expfiksQxx
Qzzdg and considering only continuous waves with Vz
0 (in order to simplify the mathematical treatment), we
btain the dispersion relation
− 3G2s2 − 3G2dQx
4 + G2s2 + G2dQz

4 + 2s3G4 + 2G2 − 2dQx
2Qz

2

+ 2G2s1 − G2ds2 + G2dQx
2 − 2G2s3G4 + 5G2 − 2dQz

2 = 0

s29d

elating the dimensionless wave vector sQx ,Qzd of the per-
urbation to the normalized amplitude fx= sun2u /n0d1/2Vx of
he continuous wave through the coefficient G= s1
2gfx

2d1/2. Equation (29) furnishes four values of QzsQx , fxd
o that the perturbation is unstable at the values of Qx
nd fx for which ImsQzdÞ0. It is possible to find analyti-
ally the four roots of Eq. (29), since it is biquadratic in
z. These roots turn out to be rather complicated and, for

implicity, we report here only the main results. In focus-
ng media sg=1d the four values of QzsQx , fxd turn out to
ll have a nonvanishing imaginary part for any sQx , fxd, so
hat perturbations are always unstable. This is related to
he feasibility (and hence the existence) of bright solitons
n focusing media, since a spatially localized solution
with vanishing asymptotics) cannot be observed if the
lane-wave solution is stable. The case of defocusing me-
ia sg=−1d is a little more involved. In Fig. 8, we report
he region (in black) of the plane sQx , fxd where the imagi-
ary parts of all the solutions QzsQx , fxd of Eq. (29) are
anishing, i.e., the region where continuous plane waves
re stable. The existence of such a region in defocusing
edia shows that stable plane-wave solutions do not ex-

st, which is in turn related to the observability of dark
olitons; in fact, they can exist only if the continuous
lane wave does not break up into a multiplicity of dis-
inct beams.

. TWO-DIMENSIONAL CASE:
ZIMUTHALLY POLARIZED SPATIAL DARK
OLITONS
o deal with the two-dimensional case, we introduce polar
ylindrical coordinates r,w,z with unit vectors êr,êw,êz and
ook for fields of the form

Esr,w,zd = Ewsr,zdêw + Ezsr,zdêz, s30d

escribing a circularly symmetric configuration with van-
shing radial component. Inserting Eq. (30) into Eq. (3),
e obtain

ig. 8. Values of fx= sun2u /n0d1/2Vx and Qx (black region), where
o modulational instability is present in defocusing sg=−1d
edia.
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]2Ez

]r]z
= 0,

]2Ew

]z2 +
]

]z
S ]Ew

]r
+

Ew

r
D = − k2Ew − k2

4

3

n2

n0

3FuEu2Ew +
1

2
sE · EdEw

*G ,

]2Ez

]r2 +
1

r

]Ez

]r
= − k2Ez − k2

4

3

n2

n0
FuEu2Ez +

1

2
sE · EdEz

*G .

s31d

nternal consistency of the set of Eqs. (31) (three equa-
ions in two unknowns) requires Ez=0. As a consequence,
he second of Eqs. (31) yields

]2Ew

]z2 +
]

]r
S ]Ew

]r
+

Ew

r
D = − k2Ew − 2k2

n2

n0
uEwu2Ew. s32d

e note that circular symmetry and polarization imposed
n the field, together with the symmetry properties of
err effect, have allowed us to reduce Maxwell’s equa-

ions to the single Eq. (32). Equation (32) is conveniently
ewritten in the dimensionless form

]2U

]z2 + 2
]

]r
S ]U

]r
+

U

r
D = − U − 2guUu2U, s33d

here r=Î2kr, z=kz, U= sun2u /n0d1/2Ew and g=n2 / un2u. If
e look for soliton solutions of the form

Usr,zd = expsiazdusrd, s34d

q. (33) becomes

d

dr
Sdu

dr
+

u

r
D =

1

2
sa2 − 1du − gu3. s35d

oth the structure of Eq. (35) and the azimuthal field po-
arization dictate us0d=0, so azimuthally polarized bright
olitons do not exist. To find dark solitons, we introduce
he further condition

lim
r→`

usrd = u`, s36d

ogether with the vanishing of all derivatives for r→`.
ince focusing media (g=1, i.e., n2.0) are not able to sup-
ort dark solitons, we consider hereafter defocusing me-
ia (g=−1, i.e., n2,0), so that Eq. (35) reads

d

dr
Sdu

dr
+

u

r
D =

1

2
sa2 − 1du + u3, s37d

hich implies, in view of the above boundary condition at
nfinity,

a = ± s1 − 2u`
2d1/2. s38d

lthough positive and negative signs of a respectively re-
er to forward and backward traveling solitons [see Eq.
34)], usrd depends on a2 [see Eq. (35)]. Equation (38)
hows the existence of an upper threshold for the soliton
symptotic amplitude

u` ,
1

Î2
, s39d

ince, otherwise, a would become imaginary. If we now in-
ert Eq. (38) into Eq. (37), we obtain

d

dr
Sdu

dr
+

u

r
D = su2 − u`

2du. s40d

We have carried out a numerical integration of Eq. (40)
ith boundary conditions us0d=0 and us`d=u` by em-
loying a standard shooting-relaxation method for bound-
ry value problems. Our simulations show that dark soli-
ons can be obtained in the range of field amplitudes 0
u`,1/Î2. Different soliton profiles are shown in Fig. 9.
We complete our analysis evaluating both the magnetic

eld and the Poynting vector. Recalling the expression of
he soliton electric field

E = S n0

un2u
D1/2

expsiakzdusÎ2krdêw, s41d

e obtain, from the first part of Eqs. (1) written in cylin-
rical coordinates,

B = − S n0

un2u
D1/2

expsiakzd
k

v
Fauêr + iÎ2Sdu

dr
+

u

r
DêzG

r=Î2kr

.

s42d

he magnetic field has a radial component whose shape
oincides with that of the electric field and a vanishing
zimuthal component, so that E and B are mutually or-
hogonal. With the help of Eqs. (41) and (42), the time-
veraged Poynting vector

ig. 9. Two-dimensional dark soliton profile usrd for various val-
es of u .
`
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S =
1

2m0
ResE 3 B*d s43d

urns out to be given by

Ssrd =
ak

2vm0

n0

un2u
u2sÎ2krdêz =

ak

2vm0
uEu2êz. s44d

e note that S is parallel to the z axis, consistent with
he shape-invariant nature of solitons. From an analytical
oint of view, this corresponds to the p /2 phase difference
etween Bz and Ew [see Eqs. (41) and (42)]. As expected,
he Poynting vector is either parallel or antiparallel to êz
ccording to the sign of a, while its amplitude is propor-
ional to uEu2. The above plane-wave-like properties are
onsistent with the nondiffractive nature of exact soli-
ons.

It is worthwhile to underline that, in the case of the azi-
uthal dark solitons we are considering, the asymptotic

ptical intensity I`= uSs`du turns out to be not propor-
ional to u`

2. In fact, by using Eqs. (38) and (44), one ob-
ains

I`su`d = I0u`
2s1 − 2u`

2d1/2, s45d

here I0=kn0 / s2vm0un2ud, whose profile is reported in Fig.
0. Equation (45) shows that the asymptotic optical inten-
ity is not a monotonically increasing function of the
symptotic field amplitude but reaches its maximum
hreshold value I`

max=I0 /33/2 in correspondence to u`

1/Î3. This is connected to the a dependence of the mag-
etic field [see Eq. (42)] whose radial part tends to vanish
or u`→1/Î2. A related and relevant consequence of Eq.
45) is the existence of two solitons of different widths for

given asymptotic optical intensity. The existence curve
elating the normalized half width at half maximum
HWHM) of the soliton optical intensity profile uSsrdu to u`

s reported in Fig. 11. In particular, Fig. 11 shows the ex-
stence of a normalized minimum HWHM.2.1 s.0.24ld
or u`=1/Î2. In addition, Fig. 10 shows that a normalized
WHM.2.7 s.0.3ld corresponds to u =1/Î3, for which

ig. 10. Normalized asymptotic optical intensity I` /I0 as a func-
ion of the asymptotic dimensionless field amplitude u`. Note
hat two solitons exist for any allowed asymptotic optical
ntensity.
`

he soliton attains the maximum asymptotic optical in-
ensity I`

max.
It is interesting to examine the behavior of our solution

n the limit of large r. To this end, neglecting in Eq. (40)
he term in u /r, we obtain

d2u

dr2 = su2 − u`
2du, s46d

hich formally coincides with the equation describing
ne-dimensional linearly polarized paraxial dark solitons.
quation (46) admits the solution u=u` tanhsru` /Î2d.
his solution can be compared with the exact one. This is
one in Fig. 12, where the ratio Rsrd between the hyper-
olic tangent and the exact solution is showed as a func-
ion of r, for different values of u`. The hyperbolic tangent
olution reproduces the exact one for large values of r, as
xpected, while it at most differs by a factor >1.2 for
mall values of r.

Finally, we wish to note that, for large values of uuu2,
ther nonlinear contributions may become significant

ig. 11. Existence curve relating the normalized soliton optical
ntensity HWHM to u`.

ig. 12. Plot of the ratio Rsrd=u` tanhsu`r /Î2d /usrd for differ-
nt values of u .
`
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nough to affect the validity of Eq. (2). However, in our
ase, uuu2 is limited by the upper value 1/2 [see Eq. (39)]
nd these contributions are likely to be negligible. As an
xample, we can compare the standard cubic term uuu2u
ith the quintic one, which can be written as s1/2dk2uuu4u

see Ref. 18), where k=1/ skwd (k and w being the wave
umber and the beam width). The quintic term is obvi-
usly negligible when s1/2dk2uu`u2!1, i.e., assuming w
l /4, for uu`u2!5.

. CONCLUSIONS
n this paper, the problem of the existence of nonparaxial
patial Kerr solitons has been solved rigorously. This has
een done by showing that spatial solitons can be derived
s exact solutions of Maxwell equations (thus making,
ithin our approach, the terms “paraxial” and “non-
araxial” redundant). In the one-dimensional case, our
xact optical soliton represents the straightforward gen-
ralization of the paraxial one, the main difference being
hat dark solitons exhibit, unlike their paraxial counter-
arts, a specific upper limit for the possible values that
heir asymptotic intensity can assume. In the two-
imensional case, the exact dark soliton is of a completely
ew kind, and the difference between paraxial and non-
araxial becomes rather meaningless. In any case, the
omparison between paraxial and exact solitons done, for
xample, by inspecting the relative existence curves,
hows that our solitons are a definite entity, independent
f any approximation scheme; the transition between the
araxial and the highly diffractive regime is very smooth
nd does not exhibit any kind of dramatic catastrophic be-
avior, as implied by the standard paraxial theory.
Finally, we note that many attempts have been made in

he past few years to deal with fully nonparaxial spatial
olitons, both in the unsaturated19–22 and in the
aturated,18,23,24 nonlinear regime. In particular, TM soli-
ons have been considered in Refs. 19–21, where predic-
ions have been made about the fundamental limitation
n the FWHM of bright and dark solitons, that is, the
inimum width they can achieve (l /2 and l /4, respec-

ively). However, none of the above approaches deals with
he analytic integrability of Maxwell’s equations (which is
he main contribution of our paper) and, besides, they all
ely on a scalar approximated description of the nonlinear
esponse of the medium. Our description of unsaturated
err nonlinearity, on the contrary, is fully tensorial [see
q. (2)] and thus includes all possible vectorial effects.
onsequently, their prediction about the minimum width
f the bright solitons is not correct; indeed, our exact ap-
roach predicts that the width of the bright soliton can
pproach zero for increasing intensities (see, e.g., Fig. 3).
n Ref. 23 a saturable nonlinear model is adopted that is
pt to deal with the very high intensity regime, and the
ssociated numerical solution can be compared with our
nalytic description only when the intensities are such
hat the purely cubic nonlinear model is correct. In par-
icular, in the two-dimensional case we describe a new
ind of azimuthally polarized dark solitons and show that
hey exist only if their asymptotic intensity does not ex-
eed a threshold value that turns out to be such that satu-
ation effects are not relevant.
PPENDIX A: EXISTENCE OF BRIGHT
OLITONS IN FOCUSING MEDIA
o tackle the problem of the existence of bright solitons
e have to prove that the curve defined in Eq. (14), with
2 given by Eq. (15), actually reaches the origin of the
hase plane sux ,uzd. To this end, it is convenient to intro-
uce the polar coordinate defined by ux=r cos f and uz
r sin f, so that Eq. (14) becomes

r2Hr4 cos2 fF2 cos2 f +
4

3
cos2 f sin2 f +

2

9
sin4 fG

+ gr2F1

2
s4 − 3b2dcos4 f +

1

3
s2 − b2dcos2 f sin2 f

+
1

2
b2 sin4 fG +

1

2
fs1 − b2dcos2 f + b2 sin2 fgJ = 0.

s47d

his equation is trivially satisfied by setting r=0, and
his is consistent with the fact that the origin is in itself
n orbit of Eqs. (6). Therefore the integral curve associ-
ted with solitons is described by the vanishing of the ex-
ression within the curly brackets. Requiring that this
urve reaches the origin yields

tan2 f0 = 1 −
1

b2 ; u0x
2

4u0x
2 + g

s1 + 2gux0
2 d2

, s48d

here f0=fsr=0d and b2 has been obtained from Eq. (15).
or g=1, the right-hand side of Eq. (48) is positive, so this
quation can always be solved, together with the fact that
q. (7) is always satisfied for g=1, implying that bright
oliton exists in focusing media for any value of u0x. In the
ase g=−1, the right-hand side of Eq. (48) is positive for
u0xu.1/2, so the curve actually reaches the origin. How-
ver, in this case, the curve joining the points sux ,uzd
s0,0d and sux ,uzd= sux0 ,0d unavoidably crosses the el-

ipse 6ux
2+ s2/3duz

2=1, since its semiaxis along the x axis is
/Î6,1/2. Therefore, for g=−1, a point belonging to the

ntegral curve such that Eq. (7) fails to be satisfied always
xists, with the consequence that, in defocusing media,
right solitons never exist.

PPENDIX B: CONDITIONS FOR THE
XISTENCE OF DARK SOLITONS
s already explained in Section 2, Eqs. (17) and (18) are
ecessary for the existence of dark solitons, so we have to
nd when they are also sufficient. From Eq. (17) (with g
−1) it is evident that solitons can exist for ux`

2 ,1/2. The
quation for the dark soliton integral curve on the phase
lane [Eq. (10), with b and F0 given in Eqs. (19)] can be
olved for u2 thus yielding
z
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uz
2 = −

8

3
ux

4 −
2

3
s1 + 2ux`

2 dux
2 + s1 − 2ux`

2 d

8

9
ux

2 − 2s1 − ux`
2 d

+ HF8

3
ux

4 −
2

3
s1 + 2ux`

2 dux
2 + s1 − 2ux`

2 dG2

− F16

9
ux

2 − 4s1 − 2ux`
2 dG

3f4ux
6 − s1 + 6ux`

2 dux
4 + 2ux`

2 ux
2 − s1 − 2ux`

2 dux`
4 gJ1/2YF8

9
ux

2 − 2s1 − 2ux`
2 dG , s49d
1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

hich furnishes uz
2 as a function of ux

2 (parametrically de-
endent on ux`

2 ) along the dark soliton integral curve.
ere, the plus sign between the two terms has been cho-

en in order to satisfy the boundary condition uzsux`
2 d=0.

valuating Eq. (49) at ux=0 and taking the square root of
he result, we obtain the second of Eqs. (19), which is con-
istent with the boundary conditions since it satisfies the
econd part of Eqs. (18) (with g=−1). Therefore, in order
o prove soliton existence, we are left with proving that
he curves in Eq. (49) actually reach the point u`

sux` 0dT [i.e., that the right-hand side of Eq. (49) is a
ositive real number] and that such curves do not cross
he ellipse 6ux

2+ s2/3duz
2=1, thus leaving Eq. (7) satisfied.

ince the expression raised to the 1/2 power is always
ositive for ux`

2 ,1/2, we have only to ensure that the
ight-hand side of Eq. (49) is positive. It is not difficult to
how that this is the case whenever

4ux
6 − s1 + 6ux`

2 dux
4 + 2ux`

2 ux
2 − s1 − 2ux`

2 dux`
4 , 0. s50d

mposing that the maximum of the polynomial in the left-
and side of this inequality is negative, we obtain the con-
ition ux`

2 ,1/6. The existence of dark solitons in this
ange for ux`

2 is finally proved by noting that any integral
urve associated with these solitons globally lies within
he ellipse 6ux

2+ s2/3duz
2=1, so Eq. (7) is always satisfied.
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