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We prove that spatial Kerr solitons, usually obtained in the frame of a nonlinear Schrédinger equation valid in
the paraxial approximation, can be found in a generalized form as exact solutions of Maxwell’s equations. In
particular, they are shown to exist, both in the bright and dark version, as TM, linearly polarized, exactly in-
tegrable one-dimensional solitons and to reduce to the standard paraxial form in the limit of small intensities.
In the two-dimensional case, they are shown to exist as azimuthally polarized, circularly symmetric dark soli-
tons. Both one- and two-dimensional dark solitons exhibit a characteristic signature in that their asymptotic
intensity cannot exceed a threshold value in correspondence of which their width reaches a minimum sub-

wavelength value. © 2005 Optical Society of America

OCIS codes: 190.0190, 190.3270.

1. INTRODUCTION

The analytic description of spatial Kerr solitons, initiated
by the seminal paper of Chiao et al.,! has been continu-
ously evolving over the past forty years.®? This descrip-
tion basically hinges upon the use of the nonlinear
Schrodinger equation (NLS), which in turn follows from
the nonlinear Helmholtz equation once the paraxial ap-
proximation, limiting the size w of the propagating beam
to values large compared with the wavelength A\, is intro-
duced. This approximation becomes inappropriate if the
beam size w is comparable with \, a regime where non-
paraxial effects become important and are eventually able
to provide a mechanism for avoiding nonphysical behav-
iors (like, e.g., catastrophic collapse) in the beam evolu-
tion. Although many contributions have been produced in
this direction,* '3 they are typically based on some form of
asymptotic expansion in the smallness parameter 7%
=M/ w and are thus limited to the range 7<1. To overcome
this limitation, we start ab initio from Maxwell’s equa-
tions and look for exact soliton solutions. More precisely,
we solve Maxwell’s equations in the presence of a fully
vectorial Kerr polarizability and find a class of rigorous
optical solitons that inherently include all nonparaxial
contributions. This is separately performed for one-
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dimensional and two-dimensional spatial solitons, both in
the bright and dark configuration. In particular, the one-
dimensional case is dealt with by reducing Maxwell’s
equations to a system of first-order differential equations
and is handled by appealing to the usual formalism em-
ployed in the frame of dynamical systems. Our system is
shown to posses a first integral, so that its integrability is
proved and the boundary value problem, associated with
solitons, is solved in closed analytical form.

One of the main results obtained in this paper is the
proof of the existence of exact solutions of Maxwell equa-
tions in the form of linearly polarized one-dimensional
Kerr solitons; they do not suffer of any limitation on the
value of w and \ (apart from the obvious one associated
with the validity of the macroscopic model of Kerr polar-
izability), and their existence curve can be numerically
evaluated for all values of the beam intensity. Both bright
and dark TM solitons can be derived from an integrable
system of equations, and their existence curve shows
that, in the case of bright solitons, any value of the peak
intensity u%; is allowed, while dark solitons can exist only
if their asymptotic intensity uiw does not exceed a thresh-
old value completely determined by the Kerr coefficients.
In correspondence to this threshold, their width ap-
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proaches the minimum value of the order of a fraction of
\. In the two-dimensional case dark azimuthally polar-
ized solitons are found, and their existence curve implies
the same threshold behavior as that of the one-
dimensional dark solitons. Although one-dimensional soli-
tons reduce to the standard paraxial ones for small values
of the intensity, the two-dimensional azimuthal dark soli-
ton is a completely new entity that has never been stud-
ied in the paraxial regime.

We wish to note that the proof of the existence and deri-
vation of exact solitons requires, in the one-dimensional
case, the use of a rather sophisticated mathematical
analysis borrowed from the dynamical system formalism,
which we describe fully in Section 2.

2. ONE-DIMENSIONAL SPATTIAL SOLITONS

The electric and magnetic complex amplitudes E(r) and
B(r) of a monochromatic electromagnetic field Re[E
Xexp(—iwt)], Re[B exp(—-iwt)] propagating in a nonlinear
medium obey Maxwell’s equations

V XE=ioB,

w
\Y XB:—i—zngE—inoPnl’ (1)
c

where n is the linear refractive index and P, is the non-
linear polarizability. In the case of nonresonant isotropic
media, the vectorial Kerr effect is described by the
polarizability™*

4 1
P, = 560n0n2[|E|ZE + E(E . E)E*} , (2)

and ng is the nonlinear refractive index coefficient. After
eliminating B from Eq. (1) and taking advantage of Eq.
(2), we get

47’12 1 .
VXV XE=F’E+Ek>——| |[EPE+—(E-EE"|, (3)
3n0 2

where k=nyw/c. We now introduce a Cartesian reference
frame Oxyz with unit vectors &,, €, and &,, and look for
TM one-dimensional solitons propagating along the z
axis, that is for y-independent fields of the form

E(x,y,2) = exp(iaz)[U,(x)&, +iU,(x)&,], (4)

where U, and U, depend on x alone and « is a real con-
stant. Substituting Eq. (4) into Eq. (3) yields the system of
ordinary differential equations

dU, 2k%n, 1
a—=|(a?-k?) - U2+ -U%| |U,,
dx ng 3

d?U, dU, 2ny (1
o~ R |\ U U] |V )
N

whose unknowns U, and U, are real [as a consequence of
the 7/2 phase difference we introduced between the
transverse and longitudinal field components; see Eq. (4)].
Note that the field in Eq. (4) has a vanishing y component,
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a requirement not forbidden by Maxwell’s equations.
From Egs. (5), it is evident that the z component U, van-
ishes only if U,==[(n¢/2n)(a?/k?~1)]"2, a relation that
describes a family of solitary plane waves rather than
solitons.'® The fact that, in general, U, does not vanish is
a consequence of the vectorial coupling between the trans-
verse and the longitudinal components that cannot be rig-
orously neglected when describing spatially nonuniform
fields, like, for example, solitons. Note that the longitudi-
nal component is usually neglected in the paraxial regime
owing to the slow variation of the transverse component
as compared with the wavelength \=2#%/k, a circum-
stance that allows us to treat it as a perturbation for
slightly nonparaxial beams.'®!7 In the present paper, we
deal on equal footing with both transverse and longitudi-
nal components, and it is their simultaneous nonvanish-
ing and coupling that allow us to find exact solitons.

Equations (5) can be recast in a more symmetric form
by differentiating the first one and consequently eliminat-
ing d2U,/dx? (together with dU,/dx) from the second one,
thus getting

,82<1 - gyu2+2yu2> + f(y+ 2u? + EuQ>u2
dux 3 X 4 3 X 3 4 X

= u
d 2 ‘
¢ ,8{1+y(6uf+§u§>}

= Q.(uy,u.|B),

dv. 1 212<212> = 6
d§ _ﬂ (B - )_ Y ux+3uz ux_Qz(ux’uz|ﬁ)’ ( )

where we have introduced the dimensionless variables ¢
=kx, B=alk and (u,,u,)=(ns|/ng)"3(U,,U,), while y
=ny/|ns| (so that y=+1 and y=-1 for focusing and defo-
cusing media, respectively). Equations (6) form a system
of first-order differential equations describing any electro-
magnetic field of the form of Eq. (4), and they are equiva-
lent to Maxwell’s equation, provided the relation

2
1+ y<6u§ + gug) #0 (7

uniformly (i.e., for any &) holds. Equations (6) can be con-
veniently regarded as an autonomous dynamical system
(since @, and @, do not explicitly depend upon &), whose
solutions, or orbits, are &-parameterized curves u(é)
=[u, (&)u,(&)]T [belonging to the phase plane (u,,u,)], tan-
gent at each point to the vector field Q=(Q.Q.)7. Solitons
are particular orbits that, for suitable values of B, pass
through two special points of the phase plane imposed by
the boundary conditions pertinent to each soliton kind
(boundary value problem).

The most remarkable and general property of the sys-
tem shown in Egs. (6) is that it is a conservative system,
i.e., it admits a first integral F(u,,u,|B), defined over the
phase plane, satisfying the relation

dF oF du, oF du, oF oF

0=—= =— —Q,. 8
d¢  du, dé " du, d&¢ é’uxQx+ é’uzQZ ®

In fact, it is straightforward to prove that the function
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4 2 1
Flu,,u,|B) =2ul + guﬁuf + 5%% i- 57(3B2 ~4)ul

1 1 1
+ 57(2 - BHulul + Eyﬁzu;‘ - 5(/32 - Du?

1
202
+ o Pu 9)
obeys Eq. (8) whenever Eq. (7) is satisfied. This implies
that F is a first integral of the system of Egs. (6) whenever
this system is equivalent to Maxwell’s equations. Accord-
ing to Eq. (8), any solution of Egs. (6) is constrained to
move along a single level set

F(ux5u2|:8) =F0' (10)

Inverting Eq. (10) furnishes u,=u,(u,,F, ) which, once
inserted into the first part of Egs. (6), yields a first-order
differential equation solvable by quadratures, thus prov-
ing the integrability of Eqs. (6). Note that the first inte-
gral in Eq. (9) contains only even powers of u, and u,, so
that any level set of Eq. (10) is invariant under the inver-
sion of the phase plane (u,,u,) — —(u,,u,).

Exploiting the properties of the first integral found
above, we are now in a position to solve in a direct way
the soliton boundary value problem, that is, to find suit-
able values of B (if any) for which a solution u,(¢), u,(£) of
Eqgs. (6) satisfies the general boundary conditions

(ugm> (uw)_ <ug+wv (uw)_
uz(O) - Uzo — U u2(+oc) - Uzoo — e

where u, and u,, are defined by the kind of soliton, bright
or dark, we wish to consider. From a geometrical point of
view, this implies that the associated integral curve on
the phase plane (u,,u,) has to pass through the points u,
and u,, or, using Eq. (10),

F(ux05u20|:8) =F0a

(11)

F(uxw7uz°°|18) =IPO- (12)

Since u., has to be reached for ¢— +, it is obvious that
u., has to be an equilibrium point of Eqgs. (6), that is

Qx(uxm uzw|ﬁ) =0 ’

Q- (U, U/ ) = 0. (13)

Equations (12) and (13) in the unknowns B and F are
necessary conditions for the soliton existence. They be-
come also sufficient if, once B and F;, are determined, one
is able to prove that the integral curve actually reaches
the point u.,. Following the outlined procedure, the exis-
tence of both bright and dark solitons will be proved and
the corresponding existence conditions and propagation
constants B will be found.

A. Bright Solitons

Bright solitons are localized nondiffracting beams, that is
solutions of Eqgs. (6) vanishing for |¢] — +%, which in turn
requires u,.=0. Note that Egs. (13) are automatically sat-
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isfied by this boundary condition, since the origin
(uy,u,)=(0,0) is always an equilibrium point of Egs. (6).
The second part of Eqgs. (12) directly gives Fy=0, so that
the remaining condition we must impose is the first part
of Eq. (12), that is

F(uxO’uZOLB) =0. (14)

To set the boundary condition u, we note that, because of
the invariance of the level set in Eq. (10) under inversion
of the phase plane, a soliton must be associated with an
integral curve starting from and ending at the origin and
that this curve must be symmetric under either the reflec-
tion u,— —u, or the reflection u,— -u,. Because of these
symmetry properties, we have uy=(0 u,0)T and wu,
=(uyo 0)T (where T stands for transposed) in the former
and in the latter case, respectively. In the first case, Eq.
(14) becomes B%u?,(yu%y+1)=0, which implies B=0, so
that soliton propagation is not allowed. We are left to con-
sider the case ug=(u,o 0)7, for which Eq. (14) furnishes

, (1 + 2yu?)?
=—". (15)
1+ 3Wx0

In Appendix A, we prove that bright solitons exist for all
the real values of u, in focusing media (y=1) and that
they never exist in defocusing media (y=-1) in agreement
with the intuitive behavior of Kerr nonlinearity, which
tends to focus and defocus the beam in these two cases,
respectively. Obviously, the above results about the exis-
tence of bright solitons are based on the validity of Eq. (2),
which fails either for intensities so large or for soliton
widths so small that the nonlinear refractive index satu-
rates. For y=1, Eq. (15) yields

2
1+2u,

+ (16)
(1 + 3u30)1/2

B:

which is the propagation constant of the exact bright soli-
tons [+ in Eq. (16) describes the two counterpropagating
solitons along the z axis].

Substituting Eq. (16) and Fy=0 into Eq. (10), we obtain
the equation for the integral curves on the phase plane
corresponding to bright solitons, and these are reported,
for some specific values of u,(, in Fig. 1. Note that, for
each |u,g|, the corresponding level set is a bow-tie-shaped
curve encompassing three orbits of Eqs. (6), that is the
origin (which is an equilibrium point) and the left and
right loops of the bow tie. These last two orbits correspond
to a pair of bright solitons, each of which can be obtained
from the other after the inversion of the x-axis, {——¢ (im-
plying the reflection u,— —u, also), as expected because of
the reflection invariance along any direction exhibited by
Kerr nonlinearity. Considering the right half-plane u,
>0 only, we observe that soliton curve u,(¢),u,(£) explores
the loop starting from the origin (for é=-x), reaching the
point (u,,u,)=(u.,0) (for £=0) and ending at the origin
(for é= +). From Egs. (6) it is evident that the loop is ex-
plored counterclockwise and clockwise for >0 and B
<0, respectively, so that, for counterpropagating solitons
[denoted with (+) and (—)], we have ui+)(§)=ui_)(§) and

u (e =-ul(9.
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Having proved the bright soliton existence and derived
the associated propagation constant 8, we are now in the
position to obtain the soliton shape for any given u,q by
numerically solving Egs. (6) with B given by Eq. (16) and
the initial conditions u,(0)=u,q, ©,(0)=0 [the numerical
approach being much simpler than integrating the sys-
tem Eqs. (6) by quadrature]. In Fig. 2, we report the plots
of the transverse u, and longitudinal u, components of
the bright solitons for the same u, as in Fig. 1. Note that,
as expected, the soliton width decreases for increasing
U0, while the longitudinal component u, increases. In
Fig. 3, we report the bright soliton existence curve, relat-
ing the FWHM (Apyight) to [uyo|. As |uyo| decreases, the
width increases indefinitely; on the other hand, as |u,| in-
creases, the width decreases monotonically, eventually
approaching zero.

-3

-4 1 L 1
-4 -3 -2 -1 0 1 2 3 4

Fig. 1. Plot of phase portrait of Egs. (6) associated to bright soli-
tons for |u,|=1,2,3,4. Each bow-tie-shaped curve is obtained by
plotting the level set defined in Eq. (14) with B given by Eq. (16).
Any piece of curve starting from and ending at the origin (left or
right loop of each bow tie) is associated with a single bright
soliton.

0 & 1 2 3 4

=4 3 2 -l
Fig. 2. Plot of (a) the transverse component u,(¢) and (b) longi-

tudinal component u,(¢) of bright solitons for u,(=1,2,3,4 (same
cases as in Fig. 1) and 8>0.
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30 T ! ! ' ! ! '

FWHM

Fig. 3. Bright soliton existence curve (solid curve), relating the
FWHM, Ay igni, of the amplitude u,(£) to |uy|. For very small and
very large |u,o|, the FWHM diverges and vanishes, respectively.

The dashed curve represents the FWHM, lbright, of paraxial
bright solitons. Note the complete overlapping of the two curves
for u,(<0.2.

B. Dark Solitons
In the scalar approximation, dark solitons are nondif-
fracting beams vanishing at £=0 and approaching an
asymptotic amplitude value for |§— +. In our vectorial
case, the natural extension of the previous definition is
identified with soliton solutions with uy=(0 u,)” and u.,
=(u,. 0)T [see Eqgs. (11)]. In fact, the above boundary con-
ditions will be proved to describe an exact dark soliton
that, in the paraxial limit, reduces to the standard scalar
dark one.

The chosen values of u., identically satisfy the first of
Eq. (13). The second part of Egs. (13) implies, with the
help of the second of Egs. (6),

Br=1+2y,. 17)

Substituting this value of 82 together with the boundary
conditions into Eqgs. (12), we get

Y
FO == 5(1 + 2'}’149%3;)”3%@,

uix =- yu?o - uﬁo. (18)

The first of these equations furnishes the value F of the
first integral along the dark soliton integral curve. The
second one is a necessary condition for soliton existence
from which we immediately obtain y=-1, in agreement
with the intuitive property that only defocusing media
can support dark solitons. In Appendix B, we prove that
dark solitons exist for u%,<1/6 only and that

B=+(1-2u2)"?

1 1/2
U=+ 5[1 - (1-4u?)"? ¢
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1
Fy= 5(1 - 2u?)ut,, (19)

so that each soliton is completely specified by the value
Uy, only.

As in the case of bright solitons, the integral curves in
the phase plane associated with dark solitons are given by
Eq. (10), with g and F given in Egs. (19), few of them be-
ing reported in Fig. 4. For each |u,.| the level set is a
closed curve encompassing four orbits of Egs. (6), that is,
the two equilibrium points (-u,.,0) and (z,.,0) together
with the two curves joining these two points in the upper
and lower half planes, respectively. These last two orbits
are associated with a pair of dark solitons having opposite
longitudinal components. Limiting our attention to the
upper half-plane u,>0, the dark soliton curve u,(¢),u,(¢)
starts, for >0, from the point (-u,.,0) at £{=-o, reaches
the point (0,u,q) at ¢€&=0 and finally ends at the point
(Uyes,0) at = +0o (for B<0 it is sufficient to invert é—-§).

For any given value of u,.,, (in the range |u,.|<1/\6),
the shape of dark solitons can be obtained by numerically
integrating Eqs. (6) with B given by the first of Eqs. (19)
and initial conditions «,(0)=0 and u,(0)=u,, [the latter
being given by the second of Eqgs. (19)]. In Fig. 5, we plot
the transverse u, and longitudinal u, components of vari-
ous dark solitons for the same u,.. as in Fig. 4. Also in this
case, the soliton width decreases for increasing u,.. while
the longitudinal component increases. In Fig. 6 we report
the dark soliton existence curve relating the soliton
FWHM (Aga) t0 %y, in the range 0<u,,,<1/V6. Note
that, for very small u,., the FWHM grows indefinitely,
whereas in correspondence to the threshold value u,.
=1/V6, it attains its minimum value =4 corresponding to
physical value =(2/m)\=0.63\.

C. Optical Intensity

Having derived the electric field [see Eq. (4)] associated
with both bright and dark solitons, we can directly evalu-
ate the corresponding magnetic field by means of the per-

0‘2 (e , ........................ e AR

\ 5\‘|u | =02
A Xe
: i\\lu |=0.1
-0 : Y '
—'8.4 -0.2 0 u 0.2 04

X

Fig. 4. Plot of phase portrait of Eqgs. (6) associated with dark
solitons for |u,.|=0.1,0.2,0.3,0.4. Each loop is obtained by plot-
ting the level set defined in Eq. (10) with 8 and F, given in Eqs.
(19). Any piece of curve joining the points (-«,..,0) and (u,..,0) is
associated with a single dark soliton.
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0 5 10 15 20

Fig. 5. Plot of (a) the transverse component u,(¢) and (b) longi-
tudinal component u,(§) of dark solitons for «,,.=0.1,0.2,0.3,0.4
(same cases as in Fig. 4) and >0.

Cdark -

O0 005 01 015 02 PZ% 03 035 04
u_|

Fig. 6. Dark soliton existence curve (solid curve), relating the
FWHM, Ay, of the amplitude u,(é) to |u,.|. For very small |u,.|

the FWHM diverges, whereas at the threshold value u,..=1/6 it
attains its minimum value =3. The dashed curve represents the

FWHM, Ag,.,,, of paraxial dark solitons. Note the complete over-
lap for most of the values of u,...

tinent Maxwell equation. Substituting Eq. (4) into the
first part of Egs. (1) we easily deduce

ko ng\Y? du,
B(xyyyz) = ; m exp(l,Bkz) Bux - d_g éy-
2 &=kx

(20)

Note that the soliton magnetic field is parallel to the y
axis and therefore orthogonal to the electric field every-
where, a remarkable vectorial feature that exact solitons
share with plane waves (which are, as well, rigorously
nondiffracting fields). To describe the soliton energy flow,
we can now evaluate the averaged Poynting vector S
=Re(E XB")/(2u() which, using Egs. (4) and (20) and the
second part of Egs. (6), turns out to be
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IO[ ( 2 1 2):| 24 B
=—|1+2y| ui+—ul | |use, = —Ie,, (21)
B 3 B

where Iy=kng/(2wuolns|) and I, the modulus of the aver-
aged Poynting vector, is the optical intensity. The aver-
aged Poynting vector is everywhere parallel to the z axis,
and this is fully consistent with the nondiffracting nature
of the solitons we are considering. This result (which is
not rigorously valid in the paraxial limit) is a necessary
consequence of the exact description of any nondiffracting
field since a nonvanishing transverse component of the
averaged Poynting would imply a lateral emission of en-
ergy accompanied by a distortion of the field along the
propagation direction. Note that the expression in square
brackets of Eq. (21) is always positive [while this is trivial
in the case y=+1, in the case y=-1 all the orbits
u,(8),u,(é of Egs. (6) lie inside the ellipse defined in Eqgs.
(7), which is in turn contained within the ellipse 2(u92€
+%u§)=1, so that the expression in square bracket of Eq.
(21) is always positive]. This implies, as expected, that,
both for bright and dark solitons, the sign of 8 determines
whether S is parallel or antiparallel to the z axis. In Fig.
7 we report the plots of the normalized optical intensity
1/1, for the same bright and dark solitons examined in the
previous figures. From Eq. (21) we observe that the opti-
cal intensity is in general not proportional to the square
modulus of the electric field. However, in the paraxial
limit where uw,<1, u,<u, and B=1, Eq. (21) gives [
=Iou32C, reproducing the well-known result typical of
paraxial optics. We can also evaluate the maximum soli-
ton optical intensity, that is Eq. (21) at (=0 (and y=+1)
for bright solitons and at |& =+« (and y=-1) for dark soli-
tons, thus getting

_ 2\1/2, 2
Lyright = Lo(1 + 3ugg) "“us,

Tgarc = To(1 = 2u2,) V22, (22)

From these equations we note that Iy,gh: > 1, oufo whereas
Ty <1, Ouiso so that, in general, bright and dark solitons

—%0 -5 -10 -5 0g 5 10 15 20

Fig. 7. Normalized optical intensity |S(¢)|/I, of (a) bright and (b)
dark solitons evaluated from Eq. (21) for the same soliton condi-
tions as in Fig. 1 (for bright solitons) and Fig. 5 (for dark
solitons).

Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. B 1389

are characterized by an optical intensity that is larger
and smaller, respectively, than the corresponding paraxial
prediction. This is associated with the fact that, in an ex-
tremely narrow soliton, the longitudinal component of the
electric field is as large as the transverse one.

D. Paraxial Limit

The above description of one-dimensional bright and dark
solitons is exact, with no approximation having been em-
ployed in their analytical derivation. As a consequence,
the solitons described above are expected to reduce, in the
paraxial limit where the soliton width is much larger
than the wavelength, to those predicted by the NLS. The
paraxial limit is obtained by considering the range of val-
ues

u, <1,

U, <<u,. (23)

In fact the soliton peak intensity is a decreasing function
of the width (see Figs. 3 and 6) so that the paraxial limit
corresponds to consider small amplitudes [see the first
part of Eq. (23)]. Besides, according to the first of Eq. (6),
u/u,~(1/u,)du,/d§ a quantity much smaller than one
in the paraxial approximation [see the second part of Eq.
(23)]. By differentiating the first of Egs. (6), using the sec-
ond of Egs. (6) to eliminate du,/d¢ and exploiting Eqgs.
(23) to retain only the first relevant order, we obtain

d?u,

d&

= (B = Du, - 2vu. (24)

Note that, in describing paraxial Kerr solitons, the elec-
tric field is usually expressed as E,(x,z)=exp[ik(1+p)z]
X (no/|ng))2u,(£), where the fundamental plane-wave car-
rier exp(ikz) is separated from the slowly varying ampli-
tude of the field. The comparison of this field expression
with Eq. (4) yields B=1+ 8 which, consistently with the
paraxial picture where the main plane-wave carrier is
slowly modulated (8<1), implies g%-1=2p. Introducing
this relation into Eq. (24), we get

1d%u,
g
2 d&

- :Bux

= -yl (25)

which coincides with the usual equation (obtained from
the NLS) describing paraxial Kerr solitons. Equation (25)
admits both bright soliton solutions (y=+1) of the form
u, (&) =u,osech(u,pé) and dark soliton solutions (y=-1) of
the form u,(¢) =u,. tanh(u,..£). The propagation constants

are respectively given by ,@:ufol 2 and B= —uiw, which can
also be found, mutatis mutandis, from Eqgs. (16) and the
first part of Egs. (19), whenever the paraxial conditions (
u,o<<1 for bright solitons and u,., <1 for dark solitons) are
satisfied. These solitons obviously coincide with the
asymptotic paraxial limit of the solitons described in this
paper. To make this comparison more quantitative, in Fig.
3 and Fig. 6 we have superimposed on the exact soliton
existence curves (solid curves) their paraxial counterparts
(dashed curves). More precisely, the FWHM of bright and

dark paraxial solitons are easily shown to be Zbright
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=2.6348/u,; and A =1.0986/u,.. As expected, the
paraxial and exact curves are practically indistinguish-
able for small u,q or u,.. Not surprisingly, for dark soli-
tons, the agreement between exact and paraxial predic-
tion is satisfactory almost everywhere, since the value of
U, is restricted to be less than 1/V6 corresponding to a
moderate nonparaxial regime.

E. Modulational Instability

The solitons we are considering are completely new enti-
ties (even if in the paraxial limit they coincide with NLS
solitons), so that an analysis of modulational stability is
in order since it dictates their feasibility. To this end, we
note that Eq. (3) (equivalent to Maxwell’s equations) ad-
mits the simplest solution in the form of a continuous
wave given by

_ v
E, (x,z) =V, exp ikF(— vx +z)

X

_ V.
E, (x,2)=V,exp ikI‘(— vx + z) , (26)

X
where V, and V, are two real constants and

2ny 2
(V2+V2)
no

I'= V2 . (27)

z
1+—

V2

X

1+y

While in focusing media (y=+1) these continuous waves
exist for any choice of the amplitudes V, and V, since I is
always real; in defocusing media (y=-1) the reality of I'
implies that continuous waves exist if the relation V?c
+V2<ny/(2|ny)) is satisfied. To investigate the linear sta-
bility of the exact solutions provided by Egs. (26) against
small perturbation, we look for solutions of Eq. (3) de-
scribing small variations around the exact solution, in the
form

_ V.
E (x,z) =[V,+v,(x,2)]exp ikT(— vx + z) ,

X

_ v .
E,(x,2) =[V, +v,(x,2)]exp ikI‘(— vx + z) ,  (28)

X

where the moduli of the complex fields v, and v, are as-
sumed to be small. Inserting Eqgs. (28) into Eq. (3) we ob-
tain, after linearization, a system of two linear equations
for v, and v, that are equivalent to four linear equations
for their real and imaginary parts. Looking for eigensolu-
tions of the form Re(v,),Im(v,),Re(v,),Im(v,) = exp[ik(Qx
+@®,z)] and considering only continuous waves with V,
=0 (in order to simplify the mathematical treatment), we
obtain the dispersion relation
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0.1+ .

0 1 ! ) 1
0 2 4Q6 8 10

Fig. 8. Values of f,=(|ny|/n¢)"?V, and @, (black region), where
no modulational instability is present in defocusing (y=-1)
media.

—3I2(2-3TY)QR* +T2(2 + THR + 2(3T* + 2I'% - 2)Q%Q*
+2I2(1-T?)(2+THQ? - 2T%(3T* + 512 - 2)Q%* =0
(29)

relating the dimensionless wave vector (@,,®,) of the per-
turbation to the normalized amplitude f,=(|ny|/n¢) 2V, of
the continuous wave through the coefficient I'=(1
+2yf§)1/2. Equation (29) furnishes four values of @,(Q,,f:)
so that the perturbation is unstable at the values of @,
and f, for which Im(Q,) # 0. It is possible to find analyti-
cally the four roots of Eq. (29), since it is biquadratic in
Q.. These roots turn out to be rather complicated and, for
simplicity, we report here only the main results. In focus-
ing media (y=1) the four values of @,(®Q,,f,) turn out to
all have a nonvanishing imaginary part for any (@,,f.), so
that perturbations are always unstable. This is related to
the feasibility (and hence the existence) of bright solitons
in focusing media, since a spatially localized solution
(with vanishing asymptotics) cannot be observed if the
plane-wave solution is stable. The case of defocusing me-
dia (y=-1) is a little more involved. In Fig. 8, we report
the region (in black) of the plane (@Q,,f,) where the imagi-
nary parts of all the solutions @,(Q.,f,) of Eq. (29) are
vanishing, i.e., the region where continuous plane waves
are stable. The existence of such a region in defocusing
media shows that stable plane-wave solutions do not ex-
ist, which is in turn related to the observability of dark
solitons; in fact, they can exist only if the continuous
plane wave does not break up into a multiplicity of dis-
tinct beams.

3. TWO-DIMENSIONAL CASE:
AZIMUTHALLY POLARIZED SPATIAL DARK
SOLITONS

To deal with the two-dimensional case, we introduce polar
cylindrical coordinates r,¢,z with unit vectors é,,é,,é, and
look for fields of the form

E(r,¢,2)=E(r,2)é,+E.(r,2)e,, (30)
describing a circularly symmetric configuration with van-

ishing radial component. Inserting Eq. (30) into Eq. (3),
we obtain
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PE,
araz
FPE, o(JE, E 4n
2“’+_(_‘”+_"’) =—k2E¢—k2——2
dz dz \ or r 3n

x{|E2E¢+ E(E-E)E(P},

#E, 10E, 4n,y 1 .
+——=-k’E,-k>-—| |E]’E,+ —(E-E)E, |.
3n0 2

ar? r or
(31)

Internal consistency of the set of Eqs. (31) (three equa-

tions in two unknowns) requires E,=0. As a consequence,

the second of Egs. (31) yields

#E, J(JE, E, ) 2
=-k°E, -2k n—0|E¢| E,. (32)

@
_— —

#=2 o\ ar r

We note that circular symmetry and polarization imposed
on the field, together with the symmetry properties of
Kerr effect, have allowed us to reduce Maxwell’s equa-
tions to the single Eq. (32). Equation (32) is conveniently
rewritten in the dimensionless form

FU a(aU U)

—+2 =-U-24UU, 33
2%, YUl (33)

— =
ap P

where p=\e“§kr, {=kz, U=(|ng|/no)Y?E, and y=ny/|ny|. If
we look for soliton solutions of the form

Ulp,¢) = expliadu(p), (34)
Eq. (33) becomes

d(du u) 1 24 5 a5
4 dp+p —2(a— Ju— yu®. (35)

Both the structure of Eq. (35) and the azimuthal field po-
larization dictate «(0)=0, so azimuthally polarized bright
solitons do not exist. To find dark solitons, we introduce
the further condition

lim u(p) = u.., (36)

p—®

together with the vanishing of all derivatives for p— .
Since focusing media (y=1, i.e., ny>0) are not able to sup-
port dark solitons, we consider hereafter defocusing me-
dia (y=-1, i.e., n9<0), so that Eq. (35) reads

d({du u 1
—|—+—|==(®-Du+u?, (37)
dp\dp »p 2

which implies, in view of the above boundary condition at
infinity,

a= +(1-2u2)¥2. (38)

Although positive and negative signs of « respectively re-
fer to forward and backward traveling solitons [see Eq.
(34)], u(p) depends on «? [see Eq. (35)]. Equation (38)
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shows the existence of an upper threshold for the soliton
asymptotic amplitude

Up < —=, (39)

since, otherwise, @ would become imaginary. If we now in-
sert Eq. (38) into Eq. (37), we obtain

d (du u
dp

d_p + ;) =w?-udu. (40)

We have carried out a numerical integration of Eq. (40)
with boundary conditions ©(0)=0 and u(«)=u, by em-
ploying a standard shooting-relaxation method for bound-
ary value problems. Our simulations show that dark soli-
tons can be obtained in the range of field amplitudes 0
<u.,<1/v2. Different soliton profiles are shown in Fig. 9.

We complete our analysis evaluating both the magnetic
field and the Poynting vector. Recalling the expression of
the soliton electric field

ng \ V2 _
E= ﬁ exp(iakz)u(\2kr)é,, (41)
ng

we obtain, from the first part of Egs. (1) written in cylin-
drical coordinates,

ng \ V2 k —(du u
B=-|— exp(iakz)—| aueé, +i\2( —+— |, .
|n2‘ w dp p p=\§kr

(42)

The magnetic field has a radial component whose shape
coincides with that of the electric field and a vanishing
azimuthal component, so that E and B are mutually or-
thogonal. With the help of Eqgs. (41) and (42), the time-
averaged Poynting vector

0.7

Fig.9. Two-dimensional dark soliton profile u(p) for various val-
ues of u..
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Fig. 10. Normalized asymptotic optical intensity I../I, as a func-
tion of the asymptotic dimensionless field amplitude u.. Note
that two solitons exist for any allowed asymptotic optical
intensity.

1
S=—TRe(E X B") (43)
20

turns out to be given by
k no ak

2 [o A
= u*(\2kr)e, =
20u0 |1y 20pg

S(r) |E|%e,. (44)

We note that S is parallel to the z axis, consistent with
the shape-invariant nature of solitons. From an analytical
point of view, this corresponds to the 7/2 phase difference
between B, and E, [see Eqgs. (41) and (42)]. As expected,
the Poynting vector is either parallel or antiparallel to €,
according to the sign of «, while its amplitude is propor-
tional to |[E[2. The above plane-wave-like properties are
consistent with the nondiffractive nature of exact soli-
tons.

It is worthwhile to underline that, in the case of the azi-
muthal dark solitons we are considering, the asymptotic
optical intensity I,.=|S(«)| turns out to be not propor-
tional to u2. In fact, by using Eqgs. (38) and (44), one ob-
tains

Ioc(uoc) = IOuozo(]- - 2”?0)1/29 (45)

where Iy=kny/(2wug|ns|), whose profile is reported in Fig.
10. Equation (45) shows that the asymptotic optical inten-
sity is not a monotonically increasing function of the
asymptotic field amplitude but reaches its maximum
threshold value I7**=I,/3%? in correspondence to u..
=1/3. This is connected to the « dependence of the mag-
netic field [see Eq. (42)] whose radial part tends to vanish
for u.,— 1/72. A related and relevant consequence of Eq.
(45) is the existence of two solitons of different widths for
a given asymptotic optical intensity. The existence curve
relating the normalized half width at half maximum
(HWHM) of the soliton optical intensity profile |S(p)| to .,
is reported in Fig. 11. In particular, Fig. 11 shows the ex-
istence of a normalized minimum HWHM=2.1 (=0.24\)
for u.,=1/2. In addition, Fig. 10 shows that aj normalized
HWHM=2.7 (=0.3\) corresponds to u..=1/V3, for which
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the soliton attains the maximum asymptotic optical in-
tensity 172,

It is interesting to examine the behavior of our solution
in the limit of large p. To this end, neglecting in Eq. (40)
the term in u/p, we obtain

d%u
o W?-ul)u, (46)

which formally coincides with the equation describing
one-dimensional linearly polarized paraxial dark solitons.
Equation (46) admits the solution u=u. tanh(pu../\2).
This solution can be compared with the exact one. This is
done in Fig. 12, where the ratio R(p) between the hyper-
bolic tangent and the exact solution is showed as a func-
tion of p, for different values of u... The hyperbolic tangent
solution reproduces the exact one for large values of p, as
expected, while it at most differs by a factor =1.2 for
small values of p.

Finally, we wish to note that, for large values of |u|?,
other nonlinear contributions may become significant

Fig. 11. Existence curve relating the normalized soliton optical
intensity HWHM to u.,.

1288

115

1.1y

R(p)

1.05

Fig. 12. Plot of the ratio R(p)=u.. tanh(uxp/\E)/u(p) for differ-
ent values of u...
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enough to affect the validity of Eq. (2). However, in our
case, |u|? is limited by the upper value 1/2 [see Eq. (39)]
and these contributions are likely to be negligible. As an
example, we can compare the standard cubic term |u|?u
with the quintic one, which can be written as (1/2)«%|u|*u
(see Ref. 18), where k=1/(kw) (k and w being the wave
number and the beam width). The quintic term is obvi-
ously negligible when (1/2)x%|u.|?<1, i.e., assuming w
=\/4, for |u.|?<5.

4. CONCLUSIONS

In this paper, the problem of the existence of nonparaxial
spatial Kerr solitons has been solved rigorously. This has
been done by showing that spatial solitons can be derived
as exact solutions of Maxwell equations (thus making,
within our approach, the terms “paraxial” and “non-
paraxial” redundant). In the one-dimensional case, our
exact optical soliton represents the straightforward gen-
eralization of the paraxial one, the main difference being
that dark solitons exhibit, unlike their paraxial counter-
parts, a specific upper limit for the possible values that
their asymptotic intensity can assume. In the two-
dimensional case, the exact dark soliton is of a completely
new kind, and the difference between paraxial and non-
paraxial becomes rather meaningless. In any case, the
comparison between paraxial and exact solitons done, for
example, by inspecting the relative existence curves,
shows that our solitons are a definite entity, independent
of any approximation scheme; the transition between the
paraxial and the highly diffractive regime is very smooth
and does not exhibit any kind of dramatic catastrophic be-
havior, as implied by the standard paraxial theory.

Finally, we note that many attempts have been made in
the past few years to deal with fully nonparaxial spatial
solitons, both in the unsaturated'®?? and in the
saturated,'®?>?* nonlinear regime. In particular, TM soli-
tons have been considered in Refs. 19-21, where predic-
tions have been made about the fundamental limitation
on the FWHM of bright and dark solitons, that is, the
minimum width they can achieve (\/2 and \/4, respec-
tively). However, none of the above approaches deals with
the analytic integrability of Maxwell’s equations (which is
the main contribution of our paper) and, besides, they all
rely on a scalar approximated description of the nonlinear
response of the medium. Our description of unsaturated
Kerr nonlinearity, on the contrary, is fully tensorial [see
Eq. (2)] and thus includes all possible vectorial effects.
Consequently, their prediction about the minimum width
of the bright solitons is not correct; indeed, our exact ap-
proach predicts that the width of the bright soliton can
approach zero for increasing intensities (see, e.g., Fig. 3).
In Ref. 23 a saturable nonlinear model is adopted that is
apt to deal with the very high intensity regime, and the
associated numerical solution can be compared with our
analytic description only when the intensities are such
that the purely cubic nonlinear model is correct. In par-
ticular, in the two-dimensional case we describe a new
kind of azimuthally polarized dark solitons and show that
they exist only if their asymptotic intensity does not ex-
ceed a threshold value that turns out to be such that satu-
ration effects are not relevant.
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APPENDIX A: EXISTENCE OF BRIGHT
SOLITONS IN FOCUSING MEDIA

To tackle the problem of the existence of bright solitons
we have to prove that the curve defined in Eq. (14), with
B? given by Eq. (15), actually reaches the origin of the
phase plane (u,,u,). To this end, it is convenient to intro-
duce the polar coordinate defined by u,=pcos ¢ and u,
=psin ¢, so that Eq. (14) becomes

4 2
pz{p4 cos? (]{2 cos® ¢+ g cos® ¢psin® ¢+ 5 sin* ¢:|
1 1
+ yp? 5(4 - 38%)cos ¢+ 5(2 - B?)cos® ¢ sin? ¢

1 1
+ 5[32 sin? ¢:| + 5[(1 - B?)cos? ¢ + B2 sin® ¢]} =0.

(47)

This equation is trivially satisfied by setting p=0, and
this is consistent with the fact that the origin is in itself
an orbit of Eqs. (6). Therefore the integral curve associ-
ated with solitons is described by the vanishing of the ex-
pression within the curly brackets. Requiring that this
curve reaches the origin yields

1 4ul +y
tan®? po=1-—=us ———, (48)
B2 1+ 2yu?)?

where ¢=¢(p=0) and 82 has been obtained from Eq. (15).
For y=1, the right-hand side of Eq. (48) is positive, so this
equation can always be solved, together with the fact that
Eq. (7) is always satisfied for y=1, implying that bright
soliton exists in focusing media for any value of u,. In the
case y=-1, the right-hand side of Eq. (48) is positive for
|teo.|>1/2, so the curve actually reaches the origin. How-
ever, in this case, the curve joining the points (u,,u,)
=(0,0) and (u,,u,)=(u,,0) unavoidably crosses the el-
lipse 6u§+ 2/ 3)u§= 1, since its semiaxis along the x axis is
1/V6<1/2. Therefore, for y=-1, a point belonging to the
integral curve such that Eq. (7) fails to be satisfied always
exists, with the consequence that, in defocusing media,
bright solitons never exist.

APPENDIX B: CONDITIONS FOR THE
EXISTENCE OF DARK SOLITONS

As already explained in Section 2, Egs. (17) and (18) are
necessary for the existence of dark solitons, so we have to
find when they are also sufficient. From Eq. (17) (with y
=-1) it is evident that solitons can exist for uzw <1/2. The
equation for the dark soliton integral curve on the phase
plane [Eq. (10), with 8 and F given in Eqgs. (19)] can be
solved for uf thus yielding
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X

—8u4——2(1+2u2 wl+(1-2u)
3 3 e e
+
3

8
§u§ -2(1-4%)

X[4ub - (1 +6u>)ut + 2u? u? - (1 -2u>)ul,]

which furnishes uf as a function of uf (parametrically de-
pendent on ufw) along the dark soliton integral curve.
Here, the plus sign between the two terms has been cho-
sen in order to satisfy the boundary condition uz(uiw)zo.
Evaluating Eq. (49) at u,=0 and taking the square root of
the result, we obtain the second of Egs. (19), which is con-
sistent with the boundary conditions since it satisfies the
second part of Egs. (18) (with y=-1). Therefore, in order
to prove soliton existence, we are left with proving that
the curves in Eq. (49) actually reach the point wu.
=(uy 0)T [i.e., that the right-hand side of Eq. (49) is a
positive real number] and that such curves do not cross
the ellipse 6u%+(2/3)u?=1, thus leaving Eq. (7) satisfied.
Since the expression raised to the 1/2 power is always
positive for ugzm< 1/2, we have only to ensure that the
right-hand side of Eq. (49) is positive. It is not difficult to
show that this is the case whenever

4ub - (1 +6ul )ut + 2u® u? - (1-2u>)ut, <0. (50)

Imposing that the maximum of the polynomial in the left-
hand side of this inequality is negative, we obtain the con-
dition ui, <1/6. The existence of dark solitons in this
range for ufm is finally proved by noting that any integral
curve associated with these solitons globally lies within
the ellipse 6uf+(2/3)u§= 1, so Eq. (7) is always satisfied.
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