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We calculate the equilibrium states of a two-dimensional inviscid fluid in disk and annular geometries
using the mean field equations that respect all conservation laws of the Euler equations. Axisymmetric
vorticity distributions and their bifurcations to asymmetric solutions are calculated for a wide range of
system parameters. Approximate zero-temperature compact vortices are also constructed and compared
to symmetric states. From these results, the parameter ranges leading to the formation of a coherent
vortex by the long time evolution from given initial conditions can be predicted without knowledge of
the intervening dynamics. Applications to models of Jupiter’s great red spot and experiments on one-

component plasmas in a magnetic field are discussed.

PACS number(s): 47.20. —k, 05.20.Gg, 52.25.Kn, 92.90. +x

I. INTRODUCTION

Long-time solutions of the inviscid two dimensional
fluid equations (the Euler equations) have been suggested
to be important in a number of interesting physical situa-
tions. These include the formation of coherent structures
in planetary atmosphere (Jupiter’s red spot is perhaps the
most famous example), two-dimensional large Reynolds
number turbulence, and the dynamics of a one-
component plasma in a strong magnetic field. Recently
two groups [1,2] have proposed that a new statistical
mechanical formulation, a consistent description of the
Euler system respecting the infinity of conserved quanti-
ties in this system, may be used to investigate these states
without the numerically expensive process of solving the
long time evolution of the dynamical equations.

In this paper we use these ideas to investigate the equi-
librium states of the two-dimensional inviscid fluid in a
disk and in an annulus—geometries that are relevant to
these physical systems. In particular, we use the relative
simplicity of the statistical mechanical approach to
broadly survey the range of system parameters for which
the formation of coherent blobs of vorticity is to be ex-
pected.

The great red spot of Jupiter is a remarkable
phenomenon that has excited astronomers and physicists
since its first observation. We can now say that this
structure has remained stable for over three hundred
years, a very long time compared to the time scale of the
small features of the flow in the turbulent background
that usually last for a few hours or a day. Although dissi-
pation and driving by the absorption of small scale vorti-
city must clearly be involved in a complete theory, the
tendency of an inviscid two-dimensional fluid to form
coherent spots of vorticity may be an important aspect of
the problem, so that an equilibrium description may be
used. Different models have been proposed to study the
outer layer of planetary atmospheres [3-8]; for example,
the coherent vortices in the quasigeostrophic regime and
the Rossby solitons in the intermediate geostrophic re-
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gime. Many time-dependent numerical simulations and
experiments on shallow water systems have suggested the
formation of spotlike coherent structures. In particular,
we make careful comparison with the dynamical simula-
tions of the two-dimensional Euler equation in an an-
nulus [6,9] where coherent vortices are formed under cer-
tain conditions of the background shear flow.

Coherent vortices are important in two-dimensional
turbulence as well. For the Navier-Stokes equations with
small viscosity, many high resolution dynamic integra-
tions have been done recently [10—15]. There is also a re-
cent experimental realization [16]. These results confirm
the formation of coherent vortices in the long time evolu-
tion, but there is still some debate on the decay rate of
the turbulence. Some papers favor the selective decay hy-
pothesis for the fluid [13—-15]. Another decay mechanism
has also been proposed [17,18] which assumes the conser-
vation of the peak vorticity value of the system. Smith
[19] has suggested that a statistical mechanics investiga-
tion of a vortex system can serve as a model and help to
understand the relaxation of two-dimensional turbulence
at very large Reynolds numbers.

The equilibrium states of the two-dimensional Euler
equation can also be compared to the results of experi-
ments on a pure electron plasma in strong magnetic fields
[20]. If the electron plasma is approximated by the guid-
ing center model, the governing equation is the Euler
equation. The experiments can be set up with arbitrary
initial electron distributions, and the dynamics and final
states can be studied. It will then be interesting to com-
pare the final distributions of electrons with the equilibri-
um descriptions of the Euler equation.

The equilibrium description of two-dimensional invis-
cid fluid flow was first suggested by Onsager [21]. He
used a system of identical point vortices to model the
ideal fluid and applied statistical mechanics to the system
using the Hamiltonian H =—3,,0,;0;G(r;1;), first
written down by Kirchhoff [22], with G the Green’s func-
tion for the Laplacian. Onsager argued that in a bounded
system negative temperatures will be found at high
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enough system energy due to the finite nature of the
phase space, which here is the same as the system
volume.

The statistical equilibrium equation for a point vortex
system is the sinh-Poisson equation [23]. Calculations of
the equilibrium states have been done under various con-
ditions [23-28] and negative temperatures appear in
many of these solutions, with the appearance of coherent
vortices. However, in the point vortex model, where the
vorticity distribution is assumed to be a sum of many
singular 8 functions, the infinite number of conserved
quantities in the two-dimensional Euler flow, f odr ™(r1)
with n any integer and ) the total volume, are not
defined.

Equations for the statistical equilibrium states of the
Euler equation respecting all the conserved quantities
have been formulated in Refs. [1], [2], and [29]. In these
papers the vortex distribution is written in terms of a vor-
ticity distribution function n(r,o), with r the position
vector and o the vorticity level. This formulation elimi-
nates the singularity problem of the point vortex model
and will give a consistent description of the two-
dimensional Euler flow.

In this paper we use the vortex formulation respecting
all the conserved quantities to find the nature of the equi-
librium states in circular geometries resulting from initial
conditions described by two vorticity levels. Although
the restriction to two levels is a simple model, it preserves
the essence of the theory, namely, the infinite number of
conserved quantities, and corresponds to the initial con-
ditions chosen by previous workers [6,9]. First the ax-
isymmetric solutions with only radial dependence for the
vorticity distribution are computed. The solutions are
described by curves in the energy-entropy or energy-
temperature planes for fixed values of the other parame-
ters characterizing the system (the total vorticity Q, max-
imum vorticity level g, angular momentum M, and, in the
case of an annular geometry, the circulation around the
inner boundary —27C). We identify the tendency to-
wards coherent vortex formation as a bifurcation of the
axisymmetric solution towards nonaxisymmetric ones.
Where this bifurcation is continuous, we can accurately
calculate the energy at which the bifurcation occurs as a
function of the other parameters by a linear stability
analysis. For other parameter values the bifurcation
must be discontinuous (first order), and we do not have
good estimates in this case. Large energy, nonaxisym-
metric, states in the disk are calculated approximately by
a variational approach. Finally the zero-temperature
nonaxisymmetric vorticity distributions and their proper-
ties are approximately calculated. Together with the
linear stability analysis this sets limits (particularly on the
circulation parameter C) for which coherent vortex for-
mation is expected. We compare our results with previ-
ous results from numerical simulations of the long time
evolution.

II. VORTEX STATISTICAL EQUILIBRIUM

For a two-dimensional incompressible ideal fluid, the
equation of mass conservation becomes V-u(r)=0, with
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u(r) the velocity field. We can define the stream function
¥(r) to describe the fluid such that u(r)=VXyZz
=(dy/dy, —0¢/9x). Introducing the stream function
automatically satisfies the incompressibility condition.
The equation of motion of the fluid is

u
ot

Here p is the fluid pressure. Taking the curl of the above
equation and defining vorticity o(r)2=V Xu(r) yields the
equation of motion

%0 +(u-V)o=0.
ot
This equation implies that there are infinite numbers of

conserved quantities [ anf (@(r))d 2r for any path d7(¢)
moving with the fluid and f an arbitrary function. The
Hamiltonian of the system is H =1 [ |u(r)|?d*r. Under
the Hamiltonian and the constraints of the conserved
quantities, the statistical equilibrium states of the fluid
are determined self-consistently by [1,29]

exp{ —Blo(¥(r)—h(r))—u(o)]}
[ 7 do'exp{—Blo" (WD) —h(r)—p(a"]}

+(u-V)u=—Vp .

n(r,o)=

where the stream function #(r), with accompanying vor-
ticity w(r), is determined by n,

—Vy(n=o(r)=[ " doon(r,0).
The function (o) is determined by the g (o) constraint,
g(a)=fd2r n(r,o),

with g(o) the constant vorticity distribution fixed by ini-
tial conditions. The energies of the system may be calcu-
lated from

E=%fd2r|u(r)|2
=1[d* ¢m+%gsmm¢<vx¢>-d1 ,

and the inverse temperature S is determined by fixing the
energy. The function h(r) may be used to account for the
external fields and other conserved quantities in
geometries of special symmetry.

We solve the equations for a choice of the function
g(o) such that there are two levels of vorticity which
may be chosen to be 0 =¢q and o =0 on fractional areas a
and 1—a, respectively:

g(o)=(1—a)b(0)+abdlqg) 0<a=<1.

In the equilibrium state the vorticity distribution «(r)
will typically take on a continuum of values, always
bounded by the value g. Because both disk and annulus
which we consider are rotationally symmetric, A (r) in-
cludes a Lagrange multiplier term Qr? to impose conser-
vation of angular momentum. The entropy of the system
is calculated by

s=—fd2r[—‘;—1n =

-2 )
q9

1—-=
q

In (1)

21+
q
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With the given g (o) and h(r), the equation of vorticity
distribution becomes

V2Y(r)= —o(r)= o C)
Y= el = o (—Bla v+ 9 —p]] @

Here p and () are constants to be determined by conser-
vation of total vorticity and angular momentum,

Q=aqV= fwdzr ,
M= f rl’od*
The true fluid angular momentum is

frvodzr———ﬁbo 3—1£d9-— fr wd®r

in a circular geometry. It can be easily shown from the
Euler equations that the circulation on every boundary
& boundary8"d1 is a constant. This fixes the first term in the
angular momentum for circular geometries, so that only
the second term is used as the angular momentum M.
Equation (2) is the distribution of an ideal hard core gas
in an external potential with the size of the hard core de-
pending on a, the fractional filling of the vorticity g re-
gions.

We calculate the vorticity distributions in two
geometries, a unit disk and an annulus with ;... =1 and
T outer =2. Because the fluid cannot penetrate the bound-
ary, we have u,=(1/r)3y/36=0 on the boundary, and
so the stream function will be constant on every bound-
ary. In the disk the boundary conditions are that the
stream function is regular at » =0 and may be taken to be
zero at the boundary. The stream function in the annulus
can be set to zero on the outer boundary. Thus in the an-
nulus there may be a conserved circulating flow in addi-
tion to the flow induced by the vorticity within the an-
nulus. Although the constant value of the stream func-
tion on the inner disk will vary depending on the vortici-
ty distribution in the annulus, this circulation will not
change. We therefore define C such that, with constant
P(r=1,0),

undaries

d6 2wC .

Note that —27C will then be an effective vorticity at the
center of the inside cylinder.

The nonzero value of C also produces a background
shear in the system. For zero vorticity in the annulus,

®=0 with C =(34/dr)|,—,, ug=—C/r, and so the shear
becomes

o=r9 Yo |_2C

~or r?

The shear o has the same sign as C.

III. AXISYMMETRIC SOLUTIONS

First we consider the axisymmetric solutions. With no
6 dependence, Eq. (2) takes the form
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—q
1+exP{—B[¢I¢o(' )+Qri-pl)

We numerically integrate the equation using the bound-
ary conditions mentioned in the previous section. By us-
ing a standard root finding procedure, values of 3, 2, and
u are determined by fixing the total energy, total angular
momentum, and total vorticity. The solutions for the an-
nulus are shown in Fig. 1.

The first two rows of Fig. 1 show the states of the sys-
tem characterized by the energy, entropy, and inverse
temperature 8 for Q =2, g =1, M =4 (so that a=2/37),
and various values of the circulation C. The energies are
bounded for both small and large values. Contrary to the
point vortex system, where the vorticity is unbounded so
that energies can go to infinite values, the maximum vor-
ticity here is finite due to the hard core property. The
two limiting energy states corresponding to B going to
+ o are clearly seen in the second row of Fig. 1. The sys-
tems have maximum entropy when B is zero, consistent
with the thermodynamic relation 8=9S /3E. The entro-
pies usually go to zero when B goes to + «, or equivalent-
ly when the temperature goes to zero. This is because in
these low and high energy limits the vorticity will satu-
rate at value ¢ in a finite region of space and then Eq. (1)
will give zero entropy. The vorticity distributions in
these limits are shown in the bottom row of Fig. 1. The
distributions can be understood as follows. In (ii) and (iii)

4+ <4 -+ -
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= 2+ 4 -+
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i
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FIG. 1. Axisymmetrical solutions in the annulus with total
vorticity Q =2, angular momentum M =4, and initial vorticity
level ¢ =1. The three columns are with circulation C equal to O,
1, and —1, respectively. On the bottom row showing the vorti-
city distributions, solid lines are for large positive inverse tem-
perature B; dashed lines for large negative B. The solid circles
are the bifurcation points.
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the dominating forces are the interactions between the
effective vorticity at the center and the vorticity distribu-
tion in the annulus. With negative values of B, the in-
teraction is repulsive in (ii) and attractive in (iii), and the
vorticity distributions (dashed lines) become a top hat
distribution centered away from the walls in (ii) and two
distinct regions on the walls in (iii). The reason for the
two regions in (iii) is that the circulation inside attracts
vorticity to the inner wall, with the rest sent to the outer
wall to conserve angular momentum. With positive
values of B, the interactions change sign and the distribu-
tions (solid lines) just reverse the situation for the dashed
lines. In (i) with zero circulation inside, there are only
the self-interactions between the vortices. The dashed
line distribution comes from the self-attraction of the vor-
tices at the negative inverse temperature. The reason for
the distribution (solid line) at positive B is explained in
the next paragraph.

The results for the disk geometry are shown in Fig. 2.
They are similar to the case in the annulus with no circu-
lation inside. The interesting case is when 8— . In this
limit, the system becomes equivalent to an electrostatic
problem V2=0 with an external potential —pr2, im-
posed by the constraint of total angular momentum. This
potential can also be produced by a uniform charge dis-
tribution —p in the disk. Thus, to minimize the energy,
the vortices will tend to neutralize the uniform negative
charge distribution. This will produce a step vorticity
distribution and the constant vorticity not equal to ¢g im-
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FIG. 2. Axisymmetrical solutions in the disk with Q =1 and
M =0.1. The two columns are with ¢ =20 and g =100, respec-
tively. On the bottom row, solid lines for large positive B;
dashed lines for large negative B. The solid circles are the bifur-
cation points. The dashed lines in entropy-energy and B-energy
spaces are for the compact spot approximation.
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plies a nonzero entropy at zero temperature, as seen in
Figs. 2(a) and 2(b). Because numerically it is hard to ap-
proach this limit, the solid lines in Figs. 2(e) and 2(f) for
the vorticity distribution with large B do not show true
steps.

IV. LINEAR PERTURBATION

At high energies or large negative 8 the vortex system
is likely to be an asymmetrical distribution instead of a
symmetrical one. In a Monte Carlo simulation [1], the
high energy state for the vortex distribution is indeed
shown to be localized. A neutral vortex system dynami-
cal simulation also shows the formation of a single vortex
[6,9]. This behavior has also been studied in the point
vortex model [27,28]. Here we use the formulation
respecting all conserved quantities to study the bifurca-
tion. Qualitatively speaking at large negative B the effects
of the self-attraction between vortices are stronger. This
self-attraction will eventually break the axisymmetric dis-
tribution and a bifurcation will occur. To study the bi-
furcation of the axisymmetric vortex distribution to
asymmetric ones, we now add a small perturbation
6y(r,0) and Sw(r,0) to the axisymmetric equilibrium
states Y(r) and wy(r):

P(r)=1ho(r)+6¢(r,0)
=yo(r)+[8d(r)e®+c.c.],

o(r)=ay(r)+8w(r,0)
=awp(r)+[8d(r)e™?+c.c.] .

Here we expand 8y and 8w in angular modes. 8w(7,6)
does not change the total vorticity for m >0. Substitut-
ing the expressions into Eq. (2) and keeping only the first
order terms in 8¢v and 8&, we get the following equations
for the perturbed quantities:

1d
r dr

Boy(r)[wy(r)—q 18%(r)=8d(r) .

The boundary conditions are as follows: in the disk 812; is
equal to zero at r =0 and r =1, and in the annulus we
have 8(r=1)= 81/J(r =2)=0. Equation (3) is an eigen-
value equation for 8¢(r). The solution of 8¢(r) and 8a&(r)
will only exist for a certain value of B. This defines the
bifurcation point of the axisymmetric states. We numeri-
cally integrate Eq. (3) and find the values of B which give
solutions of 8¢(r) with the required boundary conditions.
The m =1 bifurcation points, which have a lower energy
than the ones for m =2, are marked on the system state
curves as solid circles in Figs. 1 and 2 [30]. Note that
there is no bifurcation for C = —1 in the annulus.

As expected, all the bifurcations happen at negative in-
verse temperatures. From the form of the system energy
H =1 {|u(r)|?d?, the bifurcation energy will scale with
the square of the total vorticity Q. The energy will also
depend on the circulation within the inside cylinder
—27C, total angular momentum M, and a, which

d

2 /N
= T+ Ba(wo(r)—q] |89 =0,

(3
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characterizes the size of the hard core. So we can expect
the quantity E/Q? be a function of C/Q, M /Q, and a.
This has been verified by our calculations using different
values of Q. Figure 3 plots the m =1 bifurcation energy
(E—E_;,) as a function of C, with M =4, Q =2, and
a=2/3m, with E_;, the minimum possible energy for the
axisymmetric distribution. The dashed line marks the
maximum possible energy E_, —E_ . for the axisym-
metric solution. This limitation comes from the hard
core property. The bifurcations exist for C between two
critical values C°V*'=—0.2741 and C'***=2.521. In
this region the symmetrical distribution will be unstable
to a nonaxisymmetric perturbation if the system energy is
larger than that of the bifurcation point. A second bifur-
cation point also occurs for C near C°% and CIPP.
These lines divide the E-C parameter space into two re-
gions. In the upper region, we have unstable symmetrical
solutions and presumably an asymmetrical coherent vor-
tex will be the long-time state. Qualitatively similar dia-
grams are found when different values of @ and M are
used. The value of C/PPf is quite sensitive to changes in a
and M, but C°™ is less sensitive. We suggest that this is
because for positive C the symmetric vorticity distribu-
tion at the bifurcation is strongly peaked with a peak
value growing with C and with a position determined by
M. The driving force in the bifurcation may be ascribed
to the increased vorticity interaction due to its larger
peak value in the asymmetric coherent vortex. As C in-
creases, however, the vorticity in the symmetric ring also
approaches saturation, so that a maximum value C}PP¢f
for which the bifurcation occurs is to be expected. Since
the approach to saturation in the symmetric state will de-
pend strongly on a, the rapid dependence of C PP on
this quantity is accounted for. In addition, as M ap-
proaches its maximum or minimum value, the peak vorti-
city will be increased as the tails of the vorticity distribu-

FIG. 3. Phase diagram for asymmetric solutions. The solid
line is the bifurcation line for the m =1 mode in the annulus
with Q =2, M =4, and ¢ =1. The dashed line is the maximum
energy for the axisymmetric distribution. The dotted line is the
energy for the variational calculation of the maximum energy
asymmetric solution.
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tion with radius are truncated by the walls, producing a
rapid variation of C/PP** with this parameter as well. On
the other hand, at C'°* the symmetric vorticity distribu-
tion is not strongly peaked, the maximum value of the
vorticity is well below saturation, and so a much weaker
dependence of C°**" on @ and M is expected.

V. COMPACT SPOT APPROXIMATION

In the disk, an approximate solution of the mean field
equation can be computed when the vortices are close
packed at large energy. This is a straightforward general-
ization of the point vortex calculation in Refs. [27] and
[28]. Assume that the vortex is localized at the position
D away from the wall and the size of the localization of
the vortex is much smaller than D. Write the stream
function ¥(r) as y¥,(r)+¢'(r'), with ¢,;(r) the image po-
tential of a point vortex with strength equal to the total
vorticity Q at D, and r'=r—D. After Taylor expansion
of ¥;(r) about D, the governing equation involves only r’
and can easily be numerically integrated. Since the ap-
proximation is more accurate for a more localized distri-
bution, we calculate the case in the disk with ¢ =100.

The results are shown in Figs. 2(b) and 2(d) as dashed
lines. The branch goes to a limiting energy and zero en-
tropy when B goes to infinity. This is the state in which
the distribution of the vorticity is a spot with constant
value ¢g. For a given energy above the bifurcation point,
the asymmetrical solution always has a higher value of
the entropy and so to maximize the free energy the
asymmetrical distributions will be the statistical equilibri-
um states. Although the compact spot approximation
will break down at smaller energies, the intersection of
the extrapolation of the dashed lines in Figs. 2(b) and
2(d) with the solid line is consistent with the bifurcation
points marked by the solid circles.

VI. ZERO-TEMPERATURE STATES

A second way of estimating the tendency towards
coherent vortex formation in the annular geometry is a
comparison of the energy of a zero-temperature nonax-
isymmetric state, calculated approximately, with the en-
ergy of the axisymmetric zero-temperature state. In the
point vortex model, when f— — o, the vorticity distri-
butions become singular and the energy diverges. The
point vortex model clearly fails in this limit and cannot
give the properties of the limiting states. However, in the
present model, we can have a finite vorticity distribution
when B— — . In this limit, o(r) will generally be con-
stant at g inside the spot and zero elsewhere. Both entro-
py S and temperature T are equal to zero for this distri-
bution.

To calculate their properties we approximate the
coherent vortex as a sector of constant vorticity with
span angle ¢, inner radius a, and outer radius b. The to-
tal vorticity and total angular momentum give two con-
straints on the values of ¢, a, and b, leaving one number
to be chosen variationally. With the known vorticity dis-
tribution the stream function calculation is analogous to
the electrostatic problem, V>¢=—w. Using the Green
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function method we have calculated the energies of the
system for various values of span angle ¢.

On choosing the span angle ¢ as the free parameter,
the typical curve for the system energy E versus ¢ is in
Fig. 4. For most parameter values there is a maximum
energy for a particular value of the span angle or the
maximum occurs at the boundary of the possible range of
the span angle. Since we are at negative temperatures,
the thermodynamic equilibrium state will be the one with
the largest free energy F. If the maximum energy is
larger than the energy calculated from the axisymmetric
solution at the negative infinite B limit, the vortex spot
will be the preferred state. To explain this, consider a
symmetrical distribution in the limit. The vorticity is a
constant value ¢ in a circular belt. Both the temperature
T and the entropy S are equal to zero, so the free energy
F is the same as the system energy. Now assume the vor-
tex changes to a localized spot distribution conserving to-
tal vorticity and angular momentum. Because of the con-
servation of energy, the system cannot become the con-
stant value vorticity sector described above since the sec-
tor has larger energy. Instead, there must be some non-
trivial distribution of the vorticity inside the spot. The
nonaxisymmetric state will therefore have a positive
value of entropy and so is the preferred state.

The formation of the localized vorticity is calculated
for different values of the circulation C, and the max-
imum energy for the vortex sectors is plotted as the dot-
ted line in Fig. 3. The maximum energy sector becomes a
full circular belt, i.e., the same as the symmetrical state,
for C greater than 2.9 and the energy becomes smaller
than that of the axisymmetric distribution when C is
smaller than —0.4. We therefore find a range of C values
where a localized vortex is the preferred state, at least
compared to the symmetrical distribution, in the large
energy limit.

From the bifurcation analysis, we know that the sys-
tem has a second-order transition for C between CoVef
and CP*'. To complete the phase diagram in Fig. 3,

1.8} 1

Energy
3

1.6 4

Span Angle

FIG. 4. Typical curve of the energy of the vortex sector
versus the span angle.
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there must be first-order transition lines for C outside
Clo¥er and CPP' and in the range mentioned in the previ-
ous paragraph. A calculation of the exact position of the
line will involve the solution of the two-dimensional par-
tial differential equation to get the distribution of the
coherent vortex.

Figure 5 shows the results from both the linear pertur-
bation and vortex sector analysis in the M-C parameter
space. The dashed lines are from the linear stability
analysis. The solid line is from the zero-temperature
variational calculation. In region 2 the axisymmetric
solution becomes linearly unstable towards an asymmetri-
cal distribution as the energy is raised. The asymmetric
vortex sector will be the thermodynamically preferred
state at zero temperature in regions 1, 2, and 3. In re-
gions 1 and 3 there should be first-order transitions be-
tween symmetric and asymmetric states.

We can compare these results with the results of the
time evolution simulations of Marcus [6,9]. In the simu-
lations a background velocity distribution, e.g.,
vo=Br2/ 3+C’/r, is assumed unchanged with the extra
vorticity evolving on top of it. (His C’ is equal to our
—C. The B term corresponds to a gradient in the
Coriolis force which we have not included, although this
could easily be done by adding to the Hamiltonian an
external potential —Br>.) The background velocity acts
as a shear on the evolving vorticity. One of the main re-
sults of the simulations is that for a range of background
a single vortex will be stable for (&) /() greater than a
critical value ranging from —0.1 to —0.2, with (@) the
average vorticity of the spot and (&) the average value
of shear at the vortex. This results holds for different
values of C' and B, including the case 8=0. Both the in-
stability analysis and vortex sector approximation in our
work also predict the coherent vortex to be the equilibri-
um state for shear larger than a small negative value. For
our geometry and background shear, we find the critical

o0- B B—=——a

M
Q_.,-:_—B:‘_'_'fn

FIG. 5. Phase diagram in the M-C parameter space with
q =1. The two horizontal dotted lines mark the limiting values
of angular momentum M. The dashed lines are from the linear
bifurcation analysis; the solid lines from the vortex sector calcu-
lation.
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FIG. 6. e, the ratio of the length in azimuthal and radial
directions for the equilibrium vortex sector, as a function of C,
and for Q =2, M =4, and g =20.

ratio (&) /{®) to be about —0.43 from the approximate
zero-temperature calculation for a=2/3w, Q =2, and
M =4, with the ratio becoming smaller for smaller a,
e.g., —0.24 for the value a=0.4 /37 which is close to the
value in the Marcus simulation.

To investigate the equilibrium shape of the vorticity
spot, we define € as the ratio of the length of the spot in
its azimuthal direction to that in the radial. € is plotted
as a function of C in Fig. 6. The sectors are more
elongated in the azimuthal direction with increasing cir-
culation C. This is reasonable considering that the larger
shear stretches the vortex more and more. This result is
also consistent with that in Marcus’s paper. There a
graph shows a similar relation between € and (&) /{w)
for a Moor-Saffman ellipse with uniform vorticity (o).

PEILONG CHEN AND M. C. CROSS 50

VII. CONCLUSIONS

In this paper we have calculated the solution of the ex-
act mean field equations for the statistical mechanics of
the Euler equation that respect the infinity of conserved
quantities, in two-dimensional axisymmetric geometries
resulting from initial conditions consisting of two vortici-
ty levels. Curves are plotted in the energy-entropy and
energy—inverse-temperature planes to describe the ax-
isymmetric equilibrium states. Due to the hard cores of
the vortices in this description, there is a maximum ener-
gy for the vortex system, a significant difference from the
point vortex model. For background shears greater than
a slightly negative value and not too large to drive the
system to the saturated vorticity state, the system is
shown to have a continuous bifurcation to a nonaxisym-
metric state. The dependence of the bifurcation on the
system parameters is accurately calculated by linear sta-
bility analysis. This allows an easy way to calculate the
dependence of coherent vortex formation on the many
system parameters, compared with the numerically inten-
sive time evolution studies. The parameters M and a
have large effects on the upper limit, but not the lower
limit. For slightly negative and large positive back-
ground shears, we find that a discontinuous (first-order)
bifurcation to a nonaxisymmetric state must occur, al-
though we have not accurately calculated its location.
The properties of the nonaxisymmetric state at high ener-
gies (low temperatures) are calculated approximately by a
variational scheme.
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